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There are three ways that a function can be discontinuous at a point. (1) The function

can be undefined at the given point, even though it does have a limit there. (2) The limit of

the function at the given point may not exist. (Note: This includes the case where the limit

is ±∞ , since these are not real numbers.) (3) The function may be defined and have a limit

at the point, but the limit and the value of the function do not agree.

In practice, though, when one talks about discontinuities, one is almost always thinking

about case (2). Cases (1) and (3) simply mean that one has not assigned the “correct” value

to the function at the given point. These are called “removeable discontinuities,” since one

can fix the discontinuity simply by assigning a more appropriate value to the function at the

given point.

But case (2) means that there’s a problem at the given point which cannot be fixed

(without drastically changing the function).

Functions of One Variable. One way case (2) can occur for a function of one variable is

a “jump discontinuity,” where the limit from the left and from the right at a given point

exist, but do not exist. It is easy to contrive functions with jump discontinuities, but this sort

of discontinuity almost never occurs in functions defined by the usual type of formulas found

in calculus books. Two examples of functions with jump discontinuities at x = 0 are

f(x) =
|x|
x

g(x) = tan−1

(
1
x

)

Here f(x) has a limit of +1 as x approaches 0 from the right and −1 as x approaches 0

from the left. And g(x) has a limit of π/2 as x approaches 0 from the right and a limit of

−π/2 as x approaches 0 from the left.

Usually, though, when one talks about a discontinuity for a function f(x) of one variable,

one usually thinks of a place where the function “blows up.” In fact, the functions one

encounters in calculus courses and most commonly in elementary applications are

constructed by combining polynomials, trig functions, logarithms, and the exponential



2

function. For instance,

f(x) =
ex3

sin(4x2 + 5)
x2 − 3x + 2

.

would be a fairly complicated example of such a function. (This function blows up at x = 1

and at x = 2.) Such functions are “analytic.” This means (roughly speaking) that

differentiability is so strongly built into the structure of the function that the function is

differentiable even if one allows complex numbers as values of x .

Functions with formulas of this kind normally have discontinuities only at points where a

denominator becomes 0, or where one is attempting to take the logarithm of 0 or the tangent

of π/2 or doing something else which is clearly bad. At points like this, a function will

usually blow up.

In Complex Analysis, a singularity where the function blows up is called a pole of the

function. To say that a function f(x) has a pole at a point x = a is to say that for values

of x very close to a , |f(x)| will be extremely large. However there is another, somewhat less

common, type of singularity for a function of a complex variable. This is called an essential

singularity. As x gets very close to an essential singularity of a function f(x), the values of

f(x) will not keep getting larger and larger. Instead, the values will fluctuate through a

range of different possibilities, without stabilizing. (Sometimes one cannot see this without

looking at complex values for the variable x — something one doesn’t learn to do in a basic

calculus course.) The most straightforward example of an essential singularity is the behavior

of f(x) = sin x as x “approaches infinity.” In fact, as x gets larger and larger, sinx certainly

does not “blow up,” since | sin x| ≤ 1 for all real values of x , even when x is extremely large.

Instead, sinx keeps oscillating over the complete range of values between −1 and +1.

Now the concept of a “discontinuity at infinity” does not even arise in a basic calculus

course. However it is not too difficult to use the sine function to construct examples of

essential singularities at finite points. For instance, one can define

f(x) = sin
(

1
x

)

or

g(x) = sin
(

x + 5
x − 2

)
.

The function f has an essential singularity at x = 0 and g has an essential singularity

at x = 2.

To understand this, consider the behavior of f(x) = sin(1/x), for example, as x gets close

and closer to 0. (At x = 0 itself, it is, of course, undefined.) The function f does not blow

up at 0. In fact, f(x) does not get extremely large since | sin(1/x)| can never be larger
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than 1. But what happens is that as x gets closer and closer to 0, the values for sin(1/x)

fluctuate more and more unstably.

For instance, if x = .001 then sin(1/x) ≈ .8269, but for x = .00101, sin(1/x) ≈ −.477.

(Note that

1/.001 = 1, 000 ≈ 318π + .974,

so sin(1.001) ≈ sin .974 = .8269. And

1/.00101 ≈ 990.1 ≈ 315π + .498,

so sin 1/.00101 ≈ − sin .498 = −.477.) For practical purposes, when x is extremely close to 0

one might as well think of sin(1/x) as a random number between −1 and 1, since it is

almost impossible to compute it accurately to even one decimal place because a very slight

error in then rounding of x will cause such a large fluctuation. If one now imagines the graph

of sin(1/x) near x = 0 (i. e. near the y-axis), one realizes that at a certain point close to the

y-axis it will simply start looking like a solid black blur filling the vertical space between

y = −1 and y = 1, and this image can never be resolved, no matter how much one magnifies

the graph. Thus sin(1/x) has no limit at x = 0 and therefore is discontinuous there,

although it is continuous at all other values of x .

A less conspicuous example of an essential singularity is the function g(x) = e1/x . One

quickly sees that if one considers only positive values of x , then

lim
x→+0

e1/x = e∞ = ∞.

However, technically g(x) does not have a pole at 0, since by looking at negative x one gets

lim
x→−0

e1/x = e−∞ = 1/e∞ = 0.

In fact, if one considers complex numbers as values for x , then it can be seen that the

behavior of e1/x at 0 is very similar to the behavior of sin 1/x .

The very weirdness of f(x) = sin(1/x) suggests that it is not the kind of function which

one would expect to arise in applications. In practice, for functions of one variable one will

not often be mistaken if one interprets the term “discontinuity” as a point where a function

blows up.
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Functions of Two Variables. A function f(x, y) of two or more variables (if given by a

reasonable formula) will also usually also be continuous except at points where a

denominator becomes zero or something else happens which is clearly illegal. And just as in

the case of one variable, a function clearly blows up at points where the denominator is zero

but the numerator is not. The only problematic limits are the ones where a numerator and

denominator both approach zero, or one gets some other indeterminate form.

What makes the theory of functions of several variables different is that when a

discontinuity does occur, it is quite common for the function not to blow up but instead to

behave rather weirdly.

The classic example of this is the behavior of the function

f(x, y) =
2xy

x2 + y2

at the point (x, y) = (0, 0). Since the denominator is 0, there is the possibility of a

discontinuity, but since the numerator is also zero, it is not obvious what will happen.

Now the interesting (and misleading) thing here is that if one holds y fixed, then the

function

g(x) =
2xy

x2 + y2
(y fixed)

is a continuous function of x . This is clear if y is not zero, since in that case the

denominator never becomes 0. But it is also true when y = 0, because in that case, g(x) = 0

for x 6= 0, so that x = 0 is a “removable discontinuity” for g which can be eliminated by

giving g(0) the value 0 (which amounts to giving f(0, 0) the value 0). Likewise, if one

holds x fixed, the function

h(y) =
2xy

x2 + y2
(x fixed)

is a continuous function of y with h(0) = 0. So it would seem pretty clear that

lim
(x,y)→(0,0)

2xy

x2 + y2
= 0 (?)

This is, however, incorrect. There are, in fact, points (x, y) arbitrarily close to (0, 0)

where f(x, y) is not at all close to 0. Consider, for instance, a point (x, x) with x non-zero

but extremely small. One sees that

f(x, x) =
2x2

x2 + x2
= 1,

no matter how small x is.
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In fact, f(x, y) is constant on every straight line going through the origin. Consider a line

y = mx . Substituting any point on this line into f , we get

f(x,mx) =
2mx2

x2 + mx2
=

2m
1 + m2

,

a value which is constant along the whole line. Indeed, it turns out that the lines through the

origin are all level curves for f(x, y). (Well, almost so, anyway. It can be seen that a level

curve is actually the union of the two different lines y = mx and y = x/m , since

f(x,
x

m
) =

2x2/m

x2 +
x2

m2

=
2/m

1 +
1

m2

=
2m

m2 + 1
= f(x,mx). )
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It doesn’t really seem right that the different level curves for a function should intersect.

In fact, if one thinks a bit, one realizes that if two different level curves for a function

intersect at a point, that would indicate that the function would have to have two different

values at that particular point. Since a function can have only one value at a given point,

what this means is that anywhere two different level curves of a function intersect has to be a

discontinuity for that function.

Now the function f(x, y) described above has a discontinuity at (0, 0) but does not blow

up there. In fact, it is easy to see that f(x, y) actually never gets larger than 1. To see this,

consider an arbitrary point (x, y). This point certainly belongs to some straight line going

through the origin (namely, the line connecting the origin to the point in question). And we
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have seen above that if m is the slope of that line, then f(x, y) = f(x,mx) = 2m/(1 + m2).

(If the line is vertical, then x = 0 and f(x, y) = f(0, y) = 0.) And it’s not too hard to show

that the function 2m/(1 + m2) always takes values between −1 and +1.

This function 2xy/(x2 + y2) is a lot stranger than it looks at first glance. To understand

it better, and to better be able to see what the discontinuity at (0,0) looks like, it is useful to

change to polar coordinates: x = r cos θ , y = r sin θ . One then gets

f(x, y) =
2xy

x2 + y2
=

2r2 cos θ sin θ

r2
= 2 sin θ cos θ = sin 2θ.

This makes several things more clear. For one thing, it is now obvious that |f(x, y)| ≤ 1

everywhere, as claimed above. Furthermore, since the value of f at a point (x, y) depends

only on the argument θ , this makes it obvious why the function is constant on straight lines

through the origin. Furthermore, it now doesn’t take too much imagination to roughly

visualize the graph z = f(x, y). Namely, the graph looks somewhat like a circular staircase,

except that instead of a staircase it’s a ramp, and instead of steadily climbing up, its

elevation moves up and down in something like a wave as it circles the z-axis . Furthermore,

at the z-axis all the stairs collide (as it were), causing the discontinuity. (This is in fact the

reason that circular staircases are always built with a hole in the middle.)

More generally, consider any function defined by a fraction

f(x, y) =
p(x, y)
q(x, y)

,

where p(x, y) and q(x, y) are homogeneous polynomials of the same degree. In other words,

each term in the numerator and the denominator has the same degree. An example would be

f(x, y) =
x3 − x2y + 9xy2

5x2y + 7y3
.

Here, each term in the numerator and denominator has degree 3. Such a function can be

algebraically rewritten so that it becomes a function of
y

x
:

f(x, y) =
1 − y

x + 9( y
x)2

5 y
x + 7( y

x )3
.

This shows that the function takes a constant value along any line through the origin, since

the value depends only on the slope
y

x
.

Since the origin belongs to all these lines, and since the function can have only one value

at the origin, we see that there must be a discontinuity at the origin (except in the case

where f(x, y) is a constant function).


