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Some Series Converge: The Ruler Series

At first, it doesn’t seem that it would ever make any sense to add up an infinite number of things.
It seems that any time one tried to do this, the answer would always be infinitely large.

The easiest example that shows that this need not be true is the series I like to call the “Ruler
Series:”

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·

It should be clear here what the “etc etc” (...) at the end indicates, but the kth term being added
here (if one counts 1 as the 0th term and 1/2 as the 1st , etc.) is 1/2k . For instance the 10th term is
1/210 = 1/1024. If one looks at the sums as one takes more and more terms of these series, the sum
is 1 if one takes only the first term, 1 1

2 if one takes the first two, 1 3
4 if one adds the first three terms

of the series. As one adds more and more terms, one gets a sequence of sums

1 1 1
2 1 3

4 1 7
8 1 15

16 1 31
32 1 63

64 · · ·

These numbers are the ones found on a ruler as one goes up the scale from 1 towards 2, each time
moving towards the next-smaller notch on the ruler.

0 1 21 1
2

1 3
4 1 7

8

1 15
16

Once one sees the pattern, two things are clear:

(1) Even if one adds an incredibly large number of terms in this series, the sum never gets larger
than 2.

(2) By adding enough terms, the sum can be made arbitrarily close to 2.



2

We say that the series

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·
converges to 2. Symbolically, we indicate this by writing

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · · = 2 .

This notation doesn’t make any sense if interpreted literally, but it is common for students (and even
many teachers) to interpret this as meaning “If one could add all the infinitely many terms, then the
final sum would be 2.” This, unfortunately, is not too much different from saying, “If horses could fly
then riders could chase clouds.” The fact is that horses cannot fly and one cannot add together an
infinite number of things. Instead, one is taking the limit as one adds more and more and more of the
terms in the series.

The fact that one is taking a limit rather than adding an infinite number of things may seem like a
fine point that only mathematicians would be concerned with. However certain things happen with
infinite series that will seem bizarre unless you remember that one is not actually adding together all
the terms.

Some Series Diverge: The Harmonic Series

The nature of the human mind seems to be that we assume that the particular represents the
universal. In other words, in this particular instance, from the fact that the series

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·
converges, one is likely to erroneously infer that all infinite series converge. This is clearly not the
case. For instance,

1 + 2 + 3 + 4 + · · ·
is an infinite series that clearly cannot converge. For that matter, the series

1 + 1 + 1 + 1 + 1 + · · ·
also does not converge.

These examples illustrate a rather obvious rule: An infinite series cannot converge unless the
terms eventually get arbitrarily small. In more formal language:

An infinite series a0 + a1 + a2 + a3 + · · · cannot converge unless limk→∞ ak = 0.

The natural mistake to make now is to assume that any infinite series where limk→∞ ak = 0 will
converge. Remarkably enough, this is not true.
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For instance, consider the following series:

1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+
1
16

+ · · ·+ 1
16

+
1
32

+ · · · .

The idea is that there will be 8 terms equal to 1
16 , 16 terms equal to 1

32 , 32 terms equal to
1
64

,

etc. The kth term here (if we count 1 as the first) is 1/γ(k), where we define γ(k) to be the smallest
power of 2 which is greater than or equal to k :

γ(2) = 2

γ(3) = γ(4) = 4

γ(5) = · · · = γ(8) = 8

γ(9) = · · · = γ(16) = 16

γ(17) = · · · = γ(32) = 32

etc.

(For a more formulaic definition, we can define γ(k) = 2`(k) with `(k) = dlog2 ke , where dxe is the
ceiling of x : the smallest integer greater than or equal to x . For instance, since 24 < 23 < 25 , it
follows that ln2 23 = 4. ∗ ∗ ∗ . . . and so `(23) = d4. ∗ ∗∗e = 5 and so γ(23) = 25 = 32.)

Clearly in this series, limk→∞ ak = 0. On the other hand, we can see that the second term of the
series is 1

2 , and the sum of the third and fourth terms is also 1
2 , and so is the sum of the fourth

through eight terms. The ninth through sixteenth terms also add up to 1
2 , as do the seventeenth

through the thirty-secoond:

1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

+
1
32

=
1
2

.

We can see the pattern easily by inserting parenthesis into the series:

1 +
1
2

+ (
1
4

+
1
4
) + (

1
8

+
1
8

+
1
8

+
1
8
) + (

1
16

+ · · ·+ 1
16

) + (
1
32

+ · · ·+ 1
32

) + · · · .

The terms within each set of parentheses add up to 1
2 . Thus as one goes further down the series, one

keeps adding a new summand of 1
2 over and over again.

1 +
1
2

+
1
2

+
1
2

+
1
2

+ · · · .

Thus, by including enough terms, one can make the partial sum of this series as large as one
wishes. Hence the series

1 +
1

γ(2)
+

1
γ(3)

+
1

γ(4)
+

1
γ(5)

+
1

γ(6)
+ · · ·

does not converge.

This example may not seem very profound, but by using it, it is easy to see that the Harmonic
Series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9
· · ·
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also does not converge. Despite the fact that the terms one is adding one keep getting smaller and
smaller, to the extent that eventually they fall below the level where a calculator can keep track of
them, nonetheless if one takes a sufficient number of terms amd keeps track of all the decimal places,
the sum can be made arbitrarily huge.

In fact, the kth term of the Harmonic Series is
1
k

. If γ(k) is the function we defined above, then

by definition k ≤ γ(k). Thus

1
k
≥ 1

γ(k)
.

Thus the partial sums of the Harmonic Series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+
1
10

+ · · ·
are even larger than the partial sums of the series

1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+ · · ·+ 1
γ(k)

+ · · ·

which, as we have already seen, does not converge. Therefore the Harmonic Series must also not
converge.

In fact, if we use parentheses to group the Harmonic Series we get

1 +
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+
1
6

+
1
7

+
1
8

)
+
(

1
9

+ · · ·+ 1
16

)
+
(

1
17

+ · · ·+ 1
32

)
+ · · · ,

and we can see that the group of terms within each parenthesis adds up to a sum greater than 1
2 ,

making it clear that if one takes enough terms of the Harmonic Series one can get an arbitrarily large
sum. (The parentheses here do not change the series at all; they only change the way we look at it.)

The Geometric Series

The Ruler Series can be rewritten as follows:

1 + (1
2 ) + (1

2 )2 + (1
2 )3 + (1

2 )4 + . . .

This is an example of a Geometric Series:

1 + x + x2 + x3 + x4 + x5 + x6 + · · ·
If −1 < x < 1, then we will see that this series converges to 1/(1− x). On the other hand, if x ≥ 1 or
x ≤ −1 then the series diverges.

The second of these assertions is easy to understand. If x = 1, for instance, then the Geometric
series looks like

1 + 1 + 1 + 1 + 1 + · · ·
and obviously does not converge. Making x larger can only make the situation worse.

On the other hand, if x = −1 then the series looks like

1− 1 + 1− 1 + 1− 1 + 1− · · ·
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Even though the partial sums of this series never get any larger than 1 or more negative than 0, the
series doesn’t converge since the partial sums keep jumping back and forth between 0 and 1. Making
x more negative can only make the situation worse. For instance, when x = −2 we get

1− 2 + 4− 8 + · · · ± 2k · · ·
which clearly does not converge.

To understand what happens when |x| < 1, we need a factorization formula from college algebra:

(1 − x)(1 + x + x2 + x3 + · · ·+ xn) = 1− xn+1

Thus

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
=

1
1− x

− xn+1

1− x
.

Thus if we take the displayed formula above and take the limit as n approaches +∞ , we get

1 + x + x2 + x3 + x4 + · · · = lim
n→∞

1
1− x

− lim
n→∞

xn

1− x
.

It’s important to note that when one takes this limit, x does not change; only n changes. It’s also
important to know that if |x| < 1, then xn converges to 0 as n goes to ∞ . (A calculator will show
that this happens even if x is very close to 1, say x = .9978.) Thus if |x| < 1 then on the right-hand
side we get

1 + x + x2 + x3 + · · · = 1
1− x

− 1
1− x

lim
n→∞xn =

1
1− x

for |x| < 1 .

The geometric series is of crucial important in the theory of infinite series. Most of

what is known about the convergence of infinite series is known by relating other series
to the geometric series.

By using some simple variations, we can get a number of different series from the geometric series.
For instance the series

1 + 3x + 9x2 + 27x3 + 81x4 + · · ·+ 3kxk + · · ·
can be rewritten as

1 + (3x) + (3x)2 + (3x)3 + · · ·+ (3x)k + · · ·
which is just the geometric series with 3x substituted for x . Thus from the formula for the geometric
series, we get

1 + 3x + 9x2 + 27x3 + 81x4 + · · ·+ 3kxk + · · · = 1
1− 3x

.

This will converge when −1 < 3x < 1, i. e. when − 1
3 < x < 1

3 .
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Likewise, if we look at

x2 + x3 + x4 + · · ·

we can factor out the x2 to see that

x2 + x3 + x4 + · · · = x2(1 + x + x2 + x3 + · · · )

= x2

(
1

1− x

)
=

x2

1− x
.

It converges for −1 < x < 1.

For a more complicated example, consider

5x3 + 10x5 + 20x7 + 40x9 + · · ·+ 5 · 2kx2k+3 + · · ·

We can evaluate this as

5x3 + 10x5 + 20x7 + 40x9 + · · · = 5x3 [1 + 2x2 + (2x2)2 + (2x2)3 + · · ·+ (2x2)k + · · · ]

=
5x3

1− 2x2
,

which converges when | 2x2| < 1, i. e. |x| < 1/
√

2.

For still another trick, consider the function

f(x) =
1

2x + 3
.

This can be expanded in a variation of the geometric series as follows:

f(x) =
1

2x + 3
=

1
3
· 1
1− (− 2

3x)

=
1
3
(
1 + (− 2

3x) + (− 2
3x)2 + (− 2

3x)3 + · · · )

=
1
3
− 2x

9
+

4x2

27
− 8x3

81
+ · · ·+ (−1)n 2nxn

3n+1
+ · · · .

This converges when
∣∣∣∣2x

3

∣∣∣∣ < 1, i. e. when −3
2

< x <
3
2

.
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Now consider f(x) = 1/(x2 − 2x + 8). Using partial fractions, we can expand this as

f(x) =
1

(x− 2)(x− 4)
=

1
2

x− 4
−

1
2

x− 2
=

1
2

2− x
−

1
2

4− x

=
1
4
· 1
1− x

2

− 1
8
· 1
1− x

4

=
(

1
4

+
x

8
+

x2

16
+

x3

25
+ · · ·

)

−
(

1
8

+
x

32
+

x2

2 · 43
+

x3

2 · 44
+ · · ·

)

=
1
4

+
3x

16
+

7x2

64
+ · · ·+ (2n+1 − 1)xn

22n+3
+ · · · .

For this to converge, we need both
∣∣∣x
2

∣∣∣ < 1 and
∣∣∣x
4

∣∣∣ < 1. Thus the series converges for −2 < x < 2.

Note. We will see below that subtracting two series in this way can sometimes be a little more
delicate than one might think. It’s generally important to interlace the terms of the two series in such
a way that the balance between positive terms and negative terms is not affected. For these particular
series, however, this is not an issue in any case because, using a concept to be defined below, these
series converge absolutely for any value of x for which they converge at all.

If q(x) is a polynomial with a repeated factor in the denominator, then this partial fractions trick
cannot be used this simply to expand a function p(x)/q(x) (where p(x) is a polynomial with no factor
in common with q(x)). To expand a function like 1/(x− 5)3 , for instance, one needs the Negative
Binomial Series, discussed below.

Positive Series

When one thinks of a series diverging, one usually thinks of one like the Harmonic Series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · ·
that just keeps getting larger and larger, and can in fact be made as large as one wants by taking
enough terms. In symbolic form, one represents this behavior by writing

∞∑
n=1

1
n

= +∞.

However, a series can fail to converge in a less obvious way. For instance,

1− 1 + 1− 1 + 1− 1 + 1− 1 · · · .

This series is not very subtle, but it illustrates the point. The partial sums oscillate between 0 and 1,
and thus never stay close to any limit.
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However when all the terms of a series are positive, then this kind of wavering-back-and-forth
behavior cannot occur, since as we add on more and more terms the sums keep getting larger and
larger.

In fact, the following is true:

If all the terms of a series are positive, then either the series converges or
∑∞

n=1 an = +∞ .

(If, on the other hand, all the terms are negative, then either the series converges
or
∑∞

n=1 an = −∞ . It is only series having both positive and negative terms that can oscillate.)

Before suggesting why the above principle should be accepted, I want to state it in its more usual
form.

Bounded Series. A number B is said to be an upper bound for the series if
∑N

1 an ≤ B , no
matter how many terms we take. (If a series has one upper bound, then it has lots of them, since
B + 1 would also be an upper bound, as would B + 8, B + π , etc.) A series that has an upper bound
is called bounded above.

We have agreed to write
∑∞

n=1 an = ∞ to indicate that the sums
∑N

n=1 an can be made
arbitrarily large by taking N large enough. This is precisely the same as saying that the series is not
bounded above. Therefore, the principle stated above can be rephrased as saying that the only
possibility for a positive series are either to converge or to be not bounded above.

In other words, the principle in question says that

If a positive series is bounded above, then it converges.

Although this principle is usually stated as an axiom in most books, I would like to give some
indication as to why it should be believed.

Consider the integer part of the sums as we take more and more terms of a positive series. (These
sums are usually called the partial sums of the series.)

For instance there could be a series where the partial sums are as follows:
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Partial Sum Integer Part of Partial Sum

a1 = 4.9873 4

a1 + a2 + a3 + a4 = 6.594 6

a1 + · · ·+ a20 = 8.27 8

a1 + · · ·+ a100 = 8.316 8

a1 + · · ·+ a600 = 8.359 8

If the series is bounded, then this sequence of integers can’t keep getting larger and larger. On the
other hand, they can never get smaller if the series is positive, since the partial sums keep getting
larger. Therefore, eventually these integer parts must stabilize. (For instance in the example above, it
certainly looks as though the integer parts of the partial sums stabilize at a value of 8.)

The point is that the partial sums as a whole can keep getting bigger and bigger forever, by
smaller and smaller increments, and still be bounded above. But integers can’t do this. If a sequence
of integers never decreases and never gets larger than a certain upper bound, then eventually it has to
become constant.

At the risk of running this into the ground, let me explain in even more detail. Suppose we have a
positive series

∑
bn and we know that it is bounded above. This means that there is some number,

maybe 43.17, that b1 + · · ·+ bn never gets any bigger than. I. e. 43.17 is an upper bound for the
partial sums. Now lets say that b1 = −12.642. Now we can look at the integers between −13 and 44.
Some of these (44, for instance) are upper bounds for the partial sums, and some of them (−13, for
instance) are not.

So somewhere between −13 and 43 there is an integer K so that b1 + · · ·+ bn < K + 1 no matter
how large n is, but b1 + · · ·+ bn ≥ K for some value of n (and therefore for all succeeding values of n

as well, since the series is positive).

For instance, in the example above, we can see that a1 + · · ·+ a20 ≥ 8, but it certainly looks like
a1 + · · ·+ an < 9 for all n . (We can’t say for sure, though, without knowing the whole series.)
Assuming that this is so, then the integer part of a1 + · · ·+ an eventually stabilizes at 8.

Now consider the first decimal to the right of the decimal point for the partial sums. At first, this
decimal may waver back and forth in a rather erratic fashion (for instance, in the example above we
have 4.9873, 6.594, 8.273 as the first, fourth, and twentieth partial sums). But once the integer part
of the partial sum stabilizes, then first digit to the right of the decimal point can’t decrease, since the
partial sums are increasing. Since there are only ten choices (0 — 9) for this digit, eventually it has to
also stabilize.

For instance, we might imagine the example above (which converges much much more slowly than
most series one works with) continuing as follows.
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Partial Sum Initial Two Digits

a1 + · · ·+ a100 = 8.316 8.3

a1 + · · ·+ a600 = 8.359 8.3

a1 + · · ·+ a1000 = 8.364 8.3

It certainly seems as if the initial two digits will be 8.3 from the 100th term on out. (Again,
though, one can’t be absolutely sure without seeing the whole series.)

Notice also that once the tenths digit stabilizes, the hundredths digit (the second digit to the right
of the decimal point) cannot decrease. Therefore eventually the hundredths digit must stabilize as
well. The sequence of partial sums might continue

Partial Sum Initial Three Digits

a1 + · · ·+ a1000 = 8.364 8.36

a1 + · · ·+ a2000 = 8.3651 8.36

a1 + · · ·+ a5000 = 8.36574 8.36

a1 + · · ·+ a10,000 = 8.36577 8.36

If a series takes as long to stabilize as this example then, for many purposes, it will not be very
practical to use. However, as one adds in more and more turns, one digit after another has to
eventually stabilize. To repeat: this is because once the k th digit has stabilized, the k + 1st can
only stay the same or increase, and it can only increase a maximum of 9 times since there are only 10
possible values for it.

If one is willing to take enough terms, one can find a point at which the first hundred digits of the
partial sums have stabilized. Or the first thousand, for that matter.

Now as a practical matter, one is not usually willing to add up an enormous number of terms, and
it’s often not at all easy to know how many terms one would need to achieve a given degree of
accuracy (especially if the partial sums increase steadily but very very slowly).

The point of the above discussion is not to say that it’s easy to find the limit of a series by sheer
arithmetic. What’s at issue is a question of principle, of theory.

Namely, we see that

A bounded positive series must converge

because the sequence of partial sums keeps increasing and so
every decimal place in the sequence of partial sums
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will eventually stabilize to some fixed value.

The more digits you want to stabilize, the further you have to go out in the series, and, in most
cases, no matter how far out you’ve gone there will still be digits left that have not yet stabilized.

A Catch. It is not quite correct to say that the decimal places of the partials sums will always
eventually stabilize to agree with the decimal places of the limit. For instance if we consider the ruler
series, we get

1 = 1

1 +
1
2

= 1.5

1 +
1
2

+
1
4

= 1.75

1 +
1
2

+
1
4

+
1
8

= 1.875

1 +
1
2

+
1
4

+
1
8

+
1
16

= 1.9375

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

= 1.96875

1 +
1
2

+
1
4

+ · · ·+ 1
1024

= 1.999023438 .

The partial sums here will always be slightly less than two, so the units digit of the partial sums will
never actually reach 2, and the digits to the right of the decimal place will eventually stabilize at
.9999 . . .. The point is, though, that while we cannot say that the decimal expansions of the partial
sums eventually reach the true limit, namely 2.0000 . . . , we do see that by taking enough terms the
partial sums can be made to agree with the true limit to within any desired degree of accuracy.

The Comparison Test

At first, it seems almost impossible to prove that a series converges without knowing what the
limit is. But in fact, there are a number of important convergence tests that do just that.

Almost all of the basic convergence tests depend on the principle above: a bounded positive series
must converge. Once you realize that what you’re really trying to do is to prove that a (positive)
series is bounded, the convergence tests start to make a lot more sense.

For instance, there is the comparison test:
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If all the terms of a positive series
∑

bn are smaller than the terms of a
series

∑
an which is known to converge, then

∑
bn must also converge.

Since for a positive series, converging is the same as being bounded, thus the comparison test can
be restated as follows: If all the terms bn of a positive series are smaller than the terms of a series∑

an which is bounded, then
∑

bn must also be bounded.

Using the comparison test is often confusing because one is usually trying to compare fractions.
It’s important to remember the following basic principle.

Making the denominator of a fraction larger makes the fraction smaller.

Example. The series

1 +
1
4

+
1
9

+
1
16

+
1
25

+ · · ·+ 1
k2

+ · · ·

converges.
Proof: Since this is a positive series, it is valid to use the comparison test. Now for k ≥ 2,

1
k2

<
1

k(k − 1)

since k2 > k2 − k = k(k − 1). But we claim that the series
∞∑
2

1
k(k − 1)

converges. This is because of

the algebraic identity

1
k(k − 1)

=
1

k − 1
− 1

k
.

(For instance, for k = 3,
1
6

=
1
2
− 1

3
, and for k = 8,

1
56

=
1
7
− 1

8
.) When we look at the kth partial

sum of the series
∑ 1

k(k − 1)
with this identity in mind, we see that

1
2

+
1
6

+
1
12

+
1
20

+ · · ·+ 1
k(k − 1)

=
(

1− 1
2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · ·+

(
1

k − 2
− 1

k − 1

)
+
(

1
k − 1

− 1
k

)
.

Now in this sum, each negative terms cancels with the following positive term, so that the entire

sum “telescopes” to a value of 1− 1
k

. Since limk→∞
1
k

= 0, we see that the series converges to 1.

Use of the comparison test now shows that the series
∑ 1

k2
also converges.
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In the same way, one can show that the series
∑ 1

k3
converges by comparing it with the series

∞∑
k=3

1
k(k − 1)(k − 2)

.

One can show that this latter series telescopes, although in a more complicated way that the previous
example, by using the formula (derived by using partial fractions)

1
k(k − 1)(k − 2)

=
1
2

k − 2
− 1

k − 1
+

1
2

k
.

Thus one gets

1
6

+
1
24

+
1
60

+
1

120
+ · · ·+ 1

k(k − 1)(k − 2)
+ · · ·

=
(

1
2
− 1

2
+

1
6

)
+
(

1
4
− 1

3
+

1
8

)
+
(

1
6
− 1

4
+

1
10

)
+
(

1
8
− 1

5
+

1
12

)
+
(

1
10

− 1
6

+
1
14

)
+ · · ·

=
1
2
− 1

2
+

1
4

=
1
4

,

since all the other terms cancel in groups of three. (One group of three canceling terms is indicated in
boldface.)

However this approach, while entertaining, is much more work than what is required. The series∑ 1
k3

obviously converges by comparison to the series
1
k2

, since

1
k3

<
1
k2

.

In fact, this logic shows that
∑ 1

kp
converges whenever p ≥ 2. (Using the Integral Test— not

discussed in these notes— one can show that in fact
∑ 1

kp
converges if and only if p > 1.)

The Limit Comparison Test

The comparison test as it stands is extremely useful and in fact is fundamental in the whole theory
of convergence of infinite series. And yet, in a way, it almost misses the point.

In the comparison test, we are comparing the size of the terms in a series of interest with the size
of the terms in a series that is known to converge or diverge. However consider the following series:

5 +
5
4

+
5
9

+
5
16

+ · · ·+ 5
k2

+ · · · .

Now we know that the series
∑ 1

k2
converges. If we are rather stupid, we might think that this is

not very helpful, since 5/k2 is not smaller than 1/k2 . Looking things this way, though, is not using

our heads. Obviously
∑ 5

k2
will converge, and in fact, its limit will be exactly five times the limit of∑ 1

k2
(whatever that may be).
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What the comparison test in its original form fails to take into consideration is the following
important principle:

What counts is not how big the terms of a series are, but how quickly they get
smaller.

Furthermore,

The convergence or divergence of a series is not affected by what happens in the
first twenty or thirty or one hundred or even one thousand terms. The convergence
or diverge depends only on the behavior of the tail of the series. Therefore if the
tail of a series from a certain point on is known to converge or diverge, then the
same will be true of the series as a whole.

Taking this into account, we could tweak the comparison test in the following way.

If
∑

bn is a positive series, and bn < Can for all n from a certain point
on, where C is any positive (non-zero) constant (independent of n) and∑

an is a series which is known to converge, then
∑

bn will also
converge.
If, on the other hand, bn > Can for all n from a certain point on and∑

an is known to diverge, then
∑

bn will also diverge.

However one can get an even better tweak than this.

Consider, for example, the series

1 +
2
3

+
3
11

+
4
31

+ · · ·+ k + 1
k3 + k + 1

+ · · · .

When k is fairly large (which is what really matters, since we need only look at the tail of the series),

(k + 1)/(k3 + k + 1) is very close to 1/k2 . Thus it is tempting to compare this series to
∑ 1

k2
, which

is known to converge. Working out the inequality is a bit of a nuisance, though, and unfortunately it
turns out that (k + 1)/(k3 + k + 1) is slightly larger than 1/k2 : just the opposite of what we need.
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However, in light of the tweak mentioned above, it would be sufficient to prove that, for instance,

k + 1
k3 + k + 1

<
100
k2

for large enough k . This is certainly true.

However it seems that one shouldn’t have to work this hard. Given that (k + 1)/(k3 + k + 1) and
1/k2 are almost indistinguishable for very large k , and that the tail of the series is all we care about
anyway, one would think that if one of the two series

∑
(k + 1)/(k3 + k + 1) and 1/k2 converges, then

the other should also (although not to the same limit), and if one of them diverges, then they both
should.

This is in fact the case. Any time limn→∞ an/bn = 1, then two positive series
∑

an and
∑

bn

will either both converge or both diverge.

In fact, if we now take into consideration the tweak that we previously made to the limit
comparison test (i. e. the observation that what really matters is not how large the terms of a series
are, but how fast they get smaller, and that therefore a constant factor in the series will have no effect
on its convergence), we get the following:

Limit Comparison Test. Suppose
∑

an and
∑

bn are positive series and that

limn→∞
bn

an
exists (or is ∞).

1. If limn→∞
bn

an
< ∞ , and if

∑
an is known to converge, then

∑
bn also

converges.

2. If limn→∞
bn

an
> 0 (or is ∞) and

∑
an is known to diverge, then

∑
bn also

diverges.

Thus the only inconclusive cases are when limn→∞ bn/an does not exist; or when the limit is ∞
and

∑
an converges; or the limit is 0 and

∑
an diverges. When the limit is ∞ , the terms bn are so

much larger than an that
∑

bn might possibly diverge even when
∑

an converges. And when the
limit is 0, the bn are so much smaller than an that

∑
bn might converge even when

∑
an diverges.

Proof of the Limit Comparison Test. Let’s suppose, say, that limn→∞ bn/an = 5. This says
that if n is large, then bn/an is very close to 5. Then certainly, for large n , 4 < bn/an < 6. This says
that, for large n ,

bn < 6an and bn > 4an .

But then if
∑

an converges, we conclude that
∑

bn also converges, using the tweaked form of the
comparison test. And if

∑
an diverges, then

∑
bn also diverges, for the same reason.

More generally, if limn→∞ bn/an = ` > 0, and we choose positive numbers r and s such that

0 < r < ` < s ,
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then for large enough n , bn/an is so close to ` that

r <
bn

an
< s ,

so that

bn < san and bn > ran

for all terms in the series from a certain point on. It then follows from the tweaked form of the
comparison test that if

∑
an converges than so does

∑
bn and if

∑
an diverges then

∑
bn does as

well.

Now consider the possibility that limn→∞ bn/an = 0. This would say that for large n , bn/an is
very small, so certainly bn < an . Thus if

∑
an converges, then so does

∑
bn , according to the

comparison test.

And if limn→∞ bn/an = ∞ , then for large n , bn > an , so if
∑

an diverges then
∑

bn must also
diverge.

Mixed Series

If a series has both positive and negative terms, it is called a mixed series. The theory for mixed
series is more complicated than for positive or negative series, since a mixed series can diverge even
though it is bounded both above and below. In this case, we say that it oscillates.

A simple example of a series which oscilates is

1− 1 + 1− 1 + 1− 1 + · · · .

This series is both bounded above and bounded below, since the partial sums never get larger
than 1 or smaller than −1. In this case, we find that as we take more and more terms, the partial
sums do in fact oscillate between the alternate values +1 and 0. As a practical matter, most of the
oscillating series one encounters do tend to jump back and forth more or less in this way. However
technically, any series which does not go to +∞ or to −∞ and does not converge is called oscillating.

Below, we will distinquish below two different types of convergence for mixed series: absolute
convergence and conditional convergence.

The possible behaviors for series are described as follows:
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Positive Series Negative Series Mixed Series

Converges absolutely Converges absolutely Converges absolutely

Goes to +∞ Goes to −∞ Goes to ±∞
Oscillates

Converges conditionally

For a mixed series, we can talk about the positive part of the series, consisting of all the positive
terms in the series, and the negative part. For instance, in the series

1− 1
2

+
1
3
− 1

4
+

1
5
− · · ·

the positive part is

1 +
1
3

+
1
5

+ · · ·

and the negative part is

1
2

+
1
4

+
1
6

+ · · ·

Notice that in writing the negative part, we have taken the absolute value of the terms. Thus we can
write

Whole Series = Positive Part−Negative Part .

This is a little misleading, though. It’s not always true that in a mixed series the positive terms and
negative terms alternate. So when we subtract two series, it’s not clear how to interlace the positive
and negative terms. For instance, in the example given, we could misinterpret the difference as

Positive Part−Negative Part = 1 +
1
3
− 1

2
+

1
5

+
1
7

+
1
9
− 1

4
+

1
11

+
1
13

+
1
15

+
1
17

− 1
6

+ · · ·

where there are several positive terms for every negative term. A little thought will show that as long
as one keeps including a negative term every so often, all the negative terms will eventually be
included in the series so, paradoxically enough, this new series actually contains the same terms as the
original one even though the positive terms are being used more rapidly than the negative ones.

One’s first impulse is to think that changing the way the positive terms and negative terms of a
series are interlaced shouldn’t make any different to the limit, since both series ultimately do contain
the same terms. However consideration of the partial sums seems to clearly indicate that the two
series do not have the same limit. In fact, the second series

Positive Part−Negative Part = 1 +
1
3
− 1

2
+

1
5

+
1
7

+
1
9
− 1

4
+

1
11

+
1
13

+
1
15

+
1
17

− 1
6

+ · · ·

does not seem to converge at all, whereas we shall see from the Alternating Series Test below that the
first one does.



18

This is the reason that one should not think of an infinite series as merely a process of adding up
an infinite number of terms. Instead, it is a process of adding more and more terms taken in a
particular sequence.)

Here are the possibilities for a series with both positive and negative terms.

1. The positive part of the series and the negative part both converge. In this case, the series as a
whole must converge.

2. The positive part converges, but the negative part diverges. In this case, the series as a whole
must diverge. More precisely, as one adds on more and more terms, the result becomes more and
more negative, i. e. the sum “goes to −∞ .”

3. The positive part diverges and the negative part converges. Once again, the series as a whole
diverges. In this case, it goes to +∞ .

4. The positive part and the negative part both diverge. In this case, anything can happen.

Positive part

Converges
Positive Part

Diverges

Negative part
Converges

Series
Converges Absolutely

Series
Diverges

Negative part

diverges
Series

Diverges

Series diverges
or

Converges conditionally

At first, it seems very unlikely that a series can converge if its positive and negative parts are both
diverging. What happens, though, is that as one adds more and more terms, even though the positive
terms alone add up to something which eventually becomes huge, and the negative terms add up to
something which becomes hugely negative, as one goes down the series the two sets of terms keep
balancing each other out so that one gets a finite limit.

Alternating Series

In practice, mixed series are not usually as troublesome as the discussion above would suggest.
This is because in most mixed series, the positive and negative terms alternate. In this case, what
usually happens is that either the series obvious diverges (in fact, oscillates) because limn→∞ an 6= 0,
or else it converges (either absolutely or conditionally) according to a very simple test, which will be
described below.

Consider the following series, whose positive and negative parts both diverge.

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · ·
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SIDEBAR: Decimal Representations As Infinite Series

We usually take if for granted that a real number is given in the form of a
decimal. But this leaves the problem of explaining just exactly what we mean by a
decimal number which has infinitely many decimal places. We can explain 3.48, for

instance, as a shorthand for
348
100

. But what is 1.2345678910111213 . . . a

shorthand for?
It seems clear that a workable explanation can only be given in terms of the

limit concept. The idea of an infinite series is one way of giving such an
explanation.

For instance, the decimal expanion for π ,

π = 3.14159265 . . .

can be interpreted as the infinite series

3 + x + 4x2 + x3 + 5x4 + 9x5 + 2x6 + 6x7 + 5x8 + · · ·
where x = 1/10.

This is particularly useful in the case of decimals such as

.001001001001 . . . .

We can interpret this as
1

1000
(1 + x + x2 + x3 + x4 + · · · ) ,

with x = 1
1000 . Since the expression in parentheses is a geometric series, we can

evaluate .001001. . . . as

.001001001 · · ·= 1
1000

1
1− x

=
1

1000
1

.999
=

1
999

.

From this, we can see that any repeating decimal with the pattern .xyzxyz . . .
evaluates to xyz/999. For instance,

.027027027 · · ·= 027× .001001001 =
027
999

=
1
37

.

It’s great that infinite series give us a way of actually explaining what a
non-terminating decimal really means. On the other hand, there is a certain
amount of circular reasoning here. We explain what it means for an infinite series
to converge by saying that it converges to a real number. And then we explain
what a real number is by thinking of it in terms of its decimal expansion. And now
we explain what a decimal expansion is by interpreting it as an infinite series. This
is enlightening, and sometimes useful, but hardly adequate for a rigorous
foundation of mathematical analysis.

Also note that if wee take the method described above for evaluating repeating
decimals, and apply it to .999999999 . . . , we get the apparently paradoxical (but
true)

.9999999999 · · ·= 999
999

= 1 ,

so that in cases like this, two different decimal expansions can correspond to the
same real number.
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If one looks at what happens as one adds in more and more terms of this series, one gets the following
partial sums:

1

1− 1
2

=
1
2

=
30
60

1− 1
2

+
1
3

=
5
6

=
50
60

1− 1
2

+
1
3
− 1

4
=

7
12

=
35
60

1− 1
2

+
1
3
− 1

4
+

1
5

=
47
60

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
=

37
60

· · ·

0 1
s

1
2

s

5
6

s

7
12

s

47
60

s

37
60

s

Each new term being added on has the opposite sign of the one before, so it takes the sum in the
opposite direction to the previous one: if the previous term was positive and moved the sum towards
the right, then the new term will be negative and move it towards the left. As the fractions get more
complicated here, it becomes difficult to visualize their relative positions on the number line, but it’s
not hard to show that what happens is that instead of getting large and larger, the partial sums are
jumping back and forth within a smaller and smaller radius. On the other hand, the jump to the left
will be smaller than the previous jump to the right, because the terms ak keep getting smaller (in
absolutely value). Since the partial sums of this series keep jumping back and forth within a space
whose radius is converging to 0, one’s intuition suggests that the series must eventually converge to
some limit.

Now anyone who goes through a calculus sequence paying careful attention to the theory will
eventually realize the general principle that intuition is very often wrong. However in this case we
have an exception. Intuition is correct, and any series of this kind does converge.

A series which changes sign with each term— i. e. the sign of each term is the opposite of the sign
of the preceding one — is an alternating series. Not every mixed series is an alternating series, but
a lot of the most important ones are.
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Alternating series are particularly nice because of the following:

Alternating Series Test: An alternating series will always converge
any time both the following two conditions hold:

(1) Each term is smaller in absolute value than the one preceding it;

(2) As k goes to ∞, the kth term converges to 0.

Neither one of these two conditions is adequate without the other. For instance, the series

1.1− 1.01 + 1.001− 1.0001 + 1.00001− 1.000001 + · · ·

is alternating and clearly does not converge, even though each term is smaller in absolutely value than
the preceding one.

On the other hand, the alternating series

1− 1 +
1
2
− 1

5
+

1
3
− 1

25
+

1
5
− 1

53
+

1
6
− ·

fails the alternating series test because

1
3

�
1
5

1
6

�
1
53

etc.

even though the nth term does go to zero as n increases. A series like this might still converge, but
this particular one does not. (The negative part converges and the positive part diverges, so the series
as a whole must diverge.)

An annoying thing about using infinite series for practical calculuations is that even though you
know that by taking enough terms of a convergent series you can get as close to the limit as you want,
in many cases it’s not very easy to figure out just exactly how many terms you’ll need to achieve some
desired degree of accuracy.

But one of the nice things about series for which the alternating series test applies is that, since
the partial sums keep hopping back and forth from one side of the limit to the other in smaller and
smaller hops, you can be sure that the error at any given stage is always less than the size of the next
hop: i. e. less than the absolute value of the next term in the series.
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Let

a1 − a2 + a3 − a4 + a4 + · · ·
be an alternating series satisfying the two conditions of the alternating series test.
Then for any n , the difference between the partial sum

a1 − a2 + · · · ± an

and the true limit of the series is always smaller than |an+1| .

In fact, for many alternating series that one actually works with in practice, once one goes a way
out in the series, the size of each term is not much different from the size of the preceding one. This
means that as partial sums hop back and forth across the limit, the forward hops and the backward
ones are roughly the same size. This suggests that the true limit should lie roughly halfway between
any two successive partial sums. In other words, the error obtained by approximating the series by the
nth partial sum will be roughly |an+1|/2. (However one can easily cook up contrived examples where
this is not a good estimate.)

The frustrating thing here, though, is that for some of the most well known alternating series, this
criterion shows that the error after a reasonable number of steps is still discouragingly large. For
instance, the following alternating series (derived from the Taylor series for the arctangent function)
converges to π/4:

1− 1
3

+
1
5
− 1

7
+

1
9

+ · · ·

One might hope that we could get a pretty accurate approximation by taking 100 terms of this series.
But the 100th term here will be −1/101, and so the theorem above only guarantees us that after
taking 100 terms, the error will be smaller than 1/103 ≈ .01. In other words, the theorem only tells us
that after taking 100 terms of the series, we can only be sure of having an accurate result up to the
second digit after the decimal point. If we want to be sure of accuracy up to the sixth digit after the
decimal point, the theorem says that we would need to take a million terms of the series.

Now mathematicians are not bothered by the idea that one needs to take a million terms of a
series to get reasonable accuracy— they’re not going to actually do the calculation, they’re just going
to talk about it. For end users of mathematics, though— physicists, engineers, and others who walk
around carrying calculators— this sort of accuracy (or rather lack thereof) is anything but thrilling.
These people prefer to work with series where one gets accuracy to at least a couple of decimal places
by taking the first two or three terms, not half a million.

Of course if we use the idea that the actual error for the alternating series that one usually
encounters is likely to be roughly half the next term in the series, this would suggest that to get
accuracy to the sixth place after the decimal point in the above series for π/4, one should really only
need a half of a million terms. What a thrill!
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However if it’s really true that the limit for the most typical alternating series is often about
halfway between two successive terms, then we ought to be able to get much better accuracy by
replacing the final term in the partial sum by half that amount. In other words, we could try a partial
sum of

a1 − a2 + a3 − · · · ± an−1 ∓ an

2
.

Suppose we try this with the series for π/4, this time taking only ten terms. A calculation shows
that

1− 1
3

+
1
5
− 1

7
+

1
9
− 1

11
+

1
13

− 1
15

+
1
17

− 1
2
· 1
19

≈ .7868 .

On the other hand, to four decimal places, π/4 = .7854. So in this example, at least, by tweaking
the calculation we got accuracy up to an error of roughly .001 using only 10 terms of the series,
instead of needing five hundred thousand.

Tweaking an alternating series in this way is likely to often give fairly good results when an+1 and
an are roughly the same size (at least for large n), although without a theorem to justify one’s
method, one doesn’t have guaranteed reliability.

On the other hand, consider the alternating series
∞∑
0

(−1
5

)n

= 1− 1
5

+
1
25

− 1
125

+
1

625
− · · ·+ (−1)n 1

5n
+ · · · .

Look at some partial sums for this series:

1 = 1

1− 1
5

= 1− .2 = .8

1− 1
5

+
1
25

= .8 + .04 = .84

1− 1
5

+
1
25

− 1
125

= .84− .008 = .832

1− 1
5

+
1
25

− 1
125

+
1

625
= .832 + .0016 = .8336 .

Here an+1 is much smaller than an (in fact, an+1 = an/5). This is a geometric series and its limit is

1
1 + 1

5

=
5
6

= .833333 . . . . If we were to use a0 + a1 + a2 + a3 +
a4

2
as an approximation to the limit

we would wind up with a value of .8328, which is not nearly as good an approximation as
a0 + a1 + a2 + a3 + a4 = .8336.

Obviously no series for which limk→∞ ak 6= 0 can ever converge. On the other hand, occasionally
one will encounter an alternating series where the successive terms do not consistently get smaller in
absolute value. If a series like this does not converge absolutely, it may be quite a problem figuring
out what happens.
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Absolute Convergence

For mixed series, we distinguish between two types of convergence: conditional convergence and
absolute convergence. The issue here is whether the terms of the series get small so rapidly that it
would converge even if we ignored the signs, or if the terms of the series get small slowly but the series
still converges only because the positive and negative terms remain in balance.

Let’s restate this more carefully. If we take a mixed series and make all the terms positive, then we
get the corresponding absolute value series. The absolute value series is obtained from the original
series by adding together the positive and negative parts instead of subtracting them.

Original Series = Positive Part−Negative Part

Absolute Value Series = Positive Part + Negative Part

Absolute convergence means that the absolute value series converges. (Conditional convergence
will be defined below as meaning that the original mixed series converges, but the corresponding
absolute value series does not.)

(For the record, we note the following trivial fact: Any positive series converges if and only
if it converges absolutely. Likewise for a negative series.)

The definition does not explicitly say that a series which converges absolutely actually does
converge, however this is in fact the case. To see this, we can note the following important principle.

If a positive series converges, and a new series is formed by leaving out some of the
terms of this series, then the new series will also converge.

The reason for this is that saying that a positive series converges is the same as saying it is
bounded. But leaving out some of the terms of a bounded series can’t possibly make it become
unbounded.

Since the absolute value series corresponding to an original mixed series is the sum of the positive
and negative parts of the original series, the above principle shows that the absolute value series
corresponding to a given series converges if and only if the positive and negative parts of the series
both converge. From this, we see the following:

If a series converges absolutely, then it converges.

The limit comparison test can sometimes be used to determine whether an infinite series converges
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absolutely or not.

New Limit Comparison Test Suppose
∑

an and
∑

bn are

not-necessarily-positive series and that limn→∞

∣∣∣∣ bn

an

∣∣∣∣ exists (or is +∞).

1. If limn→∞

∣∣∣∣ bn

an

∣∣∣∣ < ∞ , and if
∑

an is known to converge absolutely, then
∑

bn

also converges absolutely.

2. If limn→∞

∣∣∣∣ bn

an

∣∣∣∣ > 0 (or is ∞) and
∑

an is known to not converge absolutely,

then
∑

bn also does not converge absolutely.

As indicated above, a series can sometimes converge even when its positive and negative parts
both diverge i. e. without converging absolutely. This can happen because as we go further and further
out in the series, the positive and negative terms balance each other out.

For instance the alternating series discussed above,

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · ·

converges but does not converge absolutely, since the absolute value series is the divergent Harmonic
Series.

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · ·

In a case like this, although the convergence is quite genuine, it is also rather delicate, since it
depends on the positive and negative terms staying in balance. If we were to rearrange the order of
the series, for instance,

Positive Part−Negative Part = 1 +
1
3
− 1

2
+

1
5

+
1
7

+
1
9
− 1

4
+

1
11

+
1
13

+
1
15

+
1
17

− 1
6

+ · · ·
the new series would not converge, since the positive terms would outweigh the negative ones. And
yet both series consist of the same terms, only arranged in a different order. (At first, one is likely to
think that some negative terms will get left out of the second series, since the positive terms are being
“used up” much more quickly than the negative ones. But in fact, every term in the original series,
whether positive or negative, does eventually show up in the new one, although the negative ones
show up quite a bit further out than originally.)

When a series converges, but the corresponding absolute value series does not
converge, one says that the series converges conditionally.

This term is unfortunate, because it leads students to think that a series which converges
conditionally doesn’t “really” converge. It does quite genuinely converge, though, as long as one takes
the terms in the order specified. Rearranging the order of terms, however, will cause problems in the
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case of a conditionally converging series. The rearranged series may diverge, or it may converge to
some different limit, since rearranging changes the balance between positive and negative terms.

This is a key reason to remember than when one finds the limit of an infinite series one is not
actually adding up all the infinite number of terms. In evaluating an infinite series, one is doing
calculus, not algebra. In algebra, one always gets the same answer when adding a bunch of numbers,
no matter what order one adds them in. In infinite series, the order of the terms can effect what the
limit is, if the series converges conditionally.

In fact, there’s a theorem due to Riemann that says that by rearranging the terms of a series
which converges conditionally, you can make the limit come out to anything you want.

Theorem [Riemann]. By rearranging the terms of a conditionally convergent series, you can get a
series that diverges or converges to any preassigned limit.

proof: The point is that if a series converges conditionally, then the positive and negative parts
both diverge, but they are in such a careful balance that the difference between them converges to
some finite limit. Rearranging the series will affect this balance, and with sufficient premeditation one
can make the limit come out to anything one wants.

Let’s consider, for instance, the series

1− 1
2

+
1
3
− 1

4
+

1
5
− · · ·

which is known to converge to ln 2. The positive part of this series

1 +
1
3

+
1
5

+
1
7

+ · · ·
and the negative part

1
2

+
1
4

+
1
6

+
1
8

+ · · ·
both diverge. This is an essential requirement for the trick we shall use to work. It is also essential to
know that the limit of the nth term as n goes to infinity is 0. This would always be the case,
otherwise the series could not converge even conditionally.

Now suppose we want to rearrange this series to get a limit of, say, −20. Considering the size of
the terms we’re working with, −20 is a really hugely negative number, but we could even go for
−500, if we really wanted.

To start with, we’ll use only negative terms of the series. Since the negative part of the series
diverges, we know that by taking enough terms

−1
2
− 1

4
− 1

6
− 1

8
− 1

10
− 1

12
− · · ·

we can eventually get a sum more negative than −20. It would be rather painful to calculate exactly
how many terms we’d need to get this, and it really doesn’t matter, but just out of curiosity we can
make a rough approximation. Our guesstimate for the required number of terms will be based on the
fact that the sum of the third and fourth terms here is numerically larger than 1/4 (i. e. larger in
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absolute value), since 1/6 is larger than 1/8. Likewise the sum of the next four terms is numerically
larger than 1/4, since

1
10

+
1
12

+
1
14

+
1
16

>
1
16

+
1
16

+
1
16

+
1
16

=
1
4

.

Continuing in this way, the sum of the next eight terms after that is numerically larger than 1/4, as is
the sum of the next sixteen terms after that.

Now −1/4 is not a very negative number in comparison to −20, but by the time we get 80 groups
of terms, all less than −1/4, we’ll have a sum of less than −20. A careful consideration thus shows
that

−1
2
− 1

4
− 1

6
− · · · − 1

280
< −20 .

Note that 280 =
(
210
)8 , and 210 = 1024, so that 280 is not a whole lot bigger than (103)8 = 1024 .

Thus it looks like it will take roughly an octillion negative terms to push the partial sum below −20.
But nobody promised it was going to be easy! After all, we’re trying to produce a large number (or
rather an extremely negative one) by adding up an incredible number of small ones.

At this point, we can now finally include a positive term, so that the rearranged series so far looks
something like

−1
2
− 1

4
− 1

6
− 1

8
− · · · − 1

280
+ 1 .

Now this positive term will undoubtedly push the sum back up above −20. If not, we can include
still more positive terms until we achieve that result. The crucial thing is that no matter how big a
push we need, there are enough positive terms to achieve that, since we know the positive part of the
series diverges.

Once we manage to push the sum above −20, we start using negative terms again to push it back
down. And once the sum is less than −20, we use positive terms again to push it back up to
something greater than −20.

As we keep making the partial sums keep swinging back and forth from one side of −20 to the
other, it’s essential to make sure that the radius of the swings approaches 0 as a limit, so that the new
series actually converges to −20. We can accomplish this by always changing direction (i. e. changing
from negative to positive or vice-versa) as soon as the partial sum crosses −20, since in this case the
difference between the partial sum and −20 will always be less than the absolute value of the last
term used, and we know that the last term will approach 0 as we go far enough out in the series.

Now one can’t help but notice that in the above process one is using up the negative terms at an
extravagantly lavish rate, and using positive terms at an extremely miserly rate. So one’s first thought
is that either one eventually runs out of negative terms, or that sum of the positive terms never get
included at all.

In the first place, though, one never runs out of negative terms because there are an infinite
number of them available.
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But do all of the positive terms eventually get used? Well, choose a positive term and I’ll convince

you that it does eventually appear in the new series. Suppose, say, you choose
1

201
. This is the 100th

positive term in the original series. Now if we never got to
1

201
in the rearranged series, this would

mean that at most 99 positive terms from the original series are being used for the new series. But
this means that in the new series, the positive terms would add up to less than

1 +
1
3

+
1
5

+ · · ·+ 1
201

.

Now we don’t need to worry about just exactly how big that sum is, because the point is that it’s
some finite number, even if possibly somewhat large. On the other hand, the negative part of the
series diverges. This would mean that our new series would eventually start becoming indefinitely
negative, approaching −∞ , which would violate our game plan, because once the partial sum is less
than −20, we are supposed to use another positive term. So the point is, if we follow the game plan

then we can be sure that
1

201
, or in fact any of the positive terms, does eventually occur.

Using variation on this method, we can produce a rearranged series that diverges. We start out as
before, using negative terms until the partial sum is less than −20. Then we use one positive term,
then use more negative terms until the sum is less than −40. Again we use one positive term, then go
back to negative ones until the sum is less than −60. Etc. etc. Once again, one can see that even
though one seems to almost never use any positive terms, eventually all the positive terms of the
original series do get included in the rearranged series.

Hilbert’s Infinite Hotel. Riemann’s trick, as described above, depends on properties of infinite
sets that mathematicians were only beginning to appreciate in the Nineteenth Century.

Around the beginning of the Twentieth Century, Hilbert explained this basic idea as follows:
Suppose that we have a hotel with an infinite number of rooms, number 1, 2, 3, · · · , and all the rooms
are full. (This is a purely imaginary hotel, of course, because infinity does not occur in the real world.
If modern physics is correct, even the number of atoms in the whole universe, although humongous, is
still not infinite.)

Now suppose a new guest shows up. In the real world, since all the rooms are full, there would be
no room for the new guest. But in the infinite hotel, one simply has the guest in room 1 move into
room 2, and the guest in room 2 move into room 3, and the guest in room 4 move into room 5, etc.
Everytime one has the guest in room n move, there is always a room n + 1 to move him into.

(One might even be able to get away with this in a real world hotel if there were enough rooms.
Say there were a thousand rooms. Before one got to room 1000, where there would be a problem,
surely someone would have checked out.)

Hilbert’s Infinite Hotel is a little like a Ponzi scheme, where one sells a worthless security to
investors, but keeps paying off the old investors by using the money paid in by the new ones. Ponzi
schemes don’t work because the real world is not infinite, so eventually one runs out of new suckers,
er, investors to supply the necessary money.
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One of the miracles of modern mathematics is that it manages to use something that can’t exist in
the real world— infinity —to achieve results that do work in the real world.

Absolutely Convergent Series (continued). To see that what happens in conditionally
convergent series cannot happen for absolutely convergent ones, let’s first consider the case of a
positive series. In the case of a series whose terms are all positive, one cannot affect whether the series
converges or not by rearranging the terms. This is because a positive series converges if and only if it
is bounded, and you can’t change whether a series is bounded or not by taking the same terms in a
different order. Not only that, but you can’t affect what the limit is by rearranging the terms of a
positive series. To see why this is, let’s consider the example of the Ruler Series:

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·
The limit of this series is 2 and by the time one has taken the first 8 terms, the sum agrees with the
limit to within an error smaller than .01:

1 +
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

+
1

128
= 1

127
128

.

Now this means that all the terms from the 9th one out never add up to more than .01 (in fact,
never add up to more than 1/128), no matter how many one takes. Now suppose we take the same
terms in some different order, but without repeating any or leaving any out. Eventually, if we go far
enough out in the rearranged series we will have to include all the first 8 terms
1, 1/2, 1/4, 1/8, . . . , 1/128 of the original series (and probably many others as well), because by
assumption no terms are getting left out. For instance, the beginning of the rearranged series might
look like

1
4

+
1

512
+

1
32

+
1
2

+ 1 +
1

128
+

1
64

+
1

1024
+

1
16

+
1
8

.

Now note that

2 >
1
4

+
1

512
+

1
32

+
1
2

+ 1 +
1

128
+

1
64

+
1

1024
+

1
16

+
1
8

> 1 127
128 .

(The first inequality is true because the limit of the original series is 2 and the sum in the middle does
not have all the terms of the complete series. The second inequality is true because the sum in the
middle is larger than the sum of the terms from 1 to 1/128.) But at that point, whatever terms are
left will add up to less than .01. That means that eventually the sum of the rearranged terms will be
within .01 of the original limit 2. So the new limit and the original limit must agree to with a possible
error of .01.

But .01 was nothing except an arbitrarily convenient standard of accuracy. By going far enough
out in the series, we could replace this by an desired small number. Thus we can show that the limit
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of the rearranged series and the limit of the original series agree to within any conceivable degree of
accuracy. Thus they are the same.

The logic here applies to any series whose terms are all positive.

Rearranging the terms of a positive series does not affect whether the series converges or
not, and if it does converge, rearranging the terms does not affect what the limit is.

Now, going back to mixed series, what we see is that if we rearrange a series, this will not affect
the limit of the corresponding absolute value series. Therefore if the mixed series in question
converges absolutely, no matter how one rearranges the terms, the new series would still converge
absolutely and thus could not diverge. And furthermore, even when an absolutely convergent series is
rearranged, if one goes far enough out in the series then all the positive terms which are still left as
well as all the negative terms still left will only add up to something extremely small. In fact, the
same of the terms at the end can be made arbitrarily small by going far enough out in the series.
Thus essentially the same logic as given above for positive series applies to show that

Rearranging the terms of an absolutely convergent series does not affect whether the series
converges or not, and if it does converge, rearranging terms does not affect what the limit is.

The Ratio Test

Consider the series

72 + 36 + 12 + 3 +
3
5

+
1
10

+
1
70

+
1

560
+ · · ·

The pattern here is that the second term is one-half the first term, the third term is one-third the
second term, the fourth term is one-fourth the third term, and for all k , ak = ak−1/k . The numbers
in this series are fairly large, which makes it seem unlikely that the series converges. However we can

notice that since
1
k

<
1
2

for k > 2, each term of this series after the second is smaller than one-half
the preceding term, so that

72 + 36 + 12 + 3 +
3
5

+
1
10

+
1
70

+ · · · < 72 (1 +
1
2

+
1
4

+
1
8

+ · · ·+ 1
2k

+ · · · ) = 72× 2,

showing that this series converges by the comparison test with respect to the geometric series
for x = 1/2. (The comparison test is valid since the series is positive.)
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In general, suppose that we have a positive series

a0 + a1 + a2 + a3 + . . .

such that for all k , ak+1/ak < r , where r is a positive number strictly smaller than 1. Then
ak+1 < rak and so

a0 + a1 + a2 + · · · < a0(1 + r + r2 + r3 + · · · )

and therefore the series converges by comparison with the geometric series.

Conversely, if ak+1/ak > r for some positive number r with r ≥ 1, then clearly the series cannot
converge. (In this case, the terms aren’t even getting smaller.)

This is the crude form of the ratio test.

There are two pitfalls to the crude form of the ratio test. First, the reasoning here does not justify
applying it to series which are not positive, since the comparison test only works for positive series.
(We will later see a way around this restriction.) Secondly, it is not enough to merely know that
ak/ak+1 < 1 for all k . One must have a positive number r strictly smaller than 1 which is
independent of k such that ak+1/ak < r for all k .

As an example to illustrate this second pitfall, consider the Harmonic Series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · · .

For this positive series, ak+1/ak < 1 for all k , yet the series diverges.

There are two ways of tweaking the ratio test. First, since the convergence or divergence of a series
won’t be affected by what happens in the first few terms (or first 100 terms, or even first 1000 terms),

instead of requiring that ak+1/ak < r for all k, it is sufficient to know
that this is true from a certain point on, i. e. for all sufficiently large k.

Thus if we know that ak+1/ak < .9 for all k larger than 1000, then the series converges.

Consider, for instance, the series

1 + 1 +
1
2

+
1
6

+
1
24

+ · · ·+ 1
k!

+ · · · .

For this series, we have ak+1 = ak/(k + 1), so that surely ak+1 < 1
2ak for k = 3, 4, · · · . Therefore

the series converges. (In fact, it is known to converge to e = 2.718 . . . .)

Now consider the series

1 + 100 +
1002

2
+

1003

6
+

1004

24
+ · · ·+ 100k

k!
+ · · ·

The first few terms of this series (in fact the first hundred or so) are completely humongous, so it
seems to have no change of converging. And yet for k > 200 we have ak+1 = 100ak/k < 1

2ak , so that
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the ratio test shows that the series does in fact converge. (In fact, it converges fairly rapidly, once one
gets past the first hundred terms or so, which are indeed huge.)

The second tweak is even more powerful, despite being essentially a special case of the first.

One can actually take the limit of ak+1/ak as k gets larger and larger. If this limit is
strictly smaller than 1, then the series converges.

To see why this is so, suppose, for instance, that limk→∞
ak+1

ak
= .9. This means that by taking k

large enough, we can make ak+1/ak arbirarily close to .9. For instance, from some point on, all the
values of ak+1/ak will lie within a distance smaller than .05 from .9. Restated, this says that

.85 <
ak

ak+1
< .95

from some point in the series on. But this means that the series converges by the ratio test with
r = .95.

In more general terms, the reasoning is that if limk→∞
ak+1

ak
= ` and ` < 1, then there exist a real

numbers r between ` and 1. Furthermore, if we write ε = r − ` , then ε > 0 and by definition of the
concept of limit, whenever k is large enough then

`− ε <
ak+1

ak
< ` + ε = r .

But then since r < 1, the series converges by the crude form of the ratio test.

The flip side of the ratio test also works. Namely, if limk→∞
ak+1

ak
> 1, then the series diverges.

This is because if limk→∞
ak+1

ak
= ` > 1, and if s is any number such that ` > s > 1, then applying

the same kind of reasoning as above it can be seen that ak+1/ak > s for all k from a certain point on.
But since s > 1, this says that for all k from a certain point on, ak+1 > ak , so surely the series
cannot converge. (Note that this reasoning can be applied even if the series is not positive, provided
we look at limk→∞ |ak+1/ak| .)

It turns out the the ratio test works even for series which are not positive, if we consider
limk→∞ |ak+1/ak| . If this limit is strictly smaller than 1, this will in fact show that the series

|a0|+ |a1|+ |a2|+ |a3|+ |a4|+ · · · converges, so that the original series converges absolutely, and thus
converges. On the other hand, if limk→∞ |ak+1/ak| > 1, this means that |ak+1| > |ak| for all large k ,

so certainly the original series can’t converge.

Ratio Test. If a0 + a1 + a2 + · · · is an infinite series, let ` = limk→∞
|ak+1|
|ak| .

If ` < 1 then the series converges and if ` > 1 then the series diverges.
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The ratio test is a marvelous trick because it enables one to decide whether a vast number of series
converge or not without doing any hard thinking, provided that one can compute ` , which is often not
very difficult. (In fact, it’s so powerful that maybe it should be outlawed for students. ©..^ )

The only drawback to the ratio test is that it doesn’t give any information in case ` = 1. In this
case, the decision could go either way. Consider, for instance, the following three series:

1 + 2 + 3 + 4 + · · ·

1 +
1
2

+
1
3

+
1
4

+ · · ·

1 +
1
4

+
1
9

+
1
16

+ · · ·+ 1
k2

+ · · ·

The first series obviously diverges, and the second is the Harmonic Series, which also diverges. The
third series is known to converge. And yet for all three of these series, ` = limk→∞ ak+1/ak = 1.

POWER SERIES

The idea of a power series is a variation on the geometric series. Instead of just considering the
geometric series

1 + x + x2 + x3 + x4 + · · · ,

one can allow the powers of x to have coefficients:

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · .

As a simple example, suppose we set an = 3n for all n . Then
∞∑
0

anxn =
∞∑
0

3nxn =
∞∑
0

(3x)n .

This is just the Geometric Series for the variable 3x , hence it converges for to 1/(1− 3x) for |3x| < 1,
i. e. for − 1

3 < x < 1
3 , and diverges for |x| ≥ 1

3 .

Power series can be much more complicated than this. And yet this sort of Geometric Series is in
some sense a model for the convergence of every power series.

It seems clear that whether a power series

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · ·

converges or not for a certain value of x will depend both on the size of x and on the size of the
coefficients an or, more precisely, on how fast they get small or how slowly they get large. For
instance in the series

1 + 3x + 9x2 + · · ·+ 3nxn + · · · ,
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the coefficients get large fairly quickly, so we would expect that x would have to be fairly small for the
series to converge. And, in fact, we know that the series converges only for − 1

3 < x < 1
3 . On the other

hand, in the series

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ · · · ,

we have an = an−1/n , so the coefficients an eventually get small quite rapidly. (And “eventually” is
what matters!) Thus we might expect that the series could converge even when x is comparatively
large. In fact, this series is known to converge for all x .

It seems extremely plausible that if a power series
∑

anxn converges for a certain value of x , then

it would also converge for smaller values, since in this case the terms anxn would be smaller (in
absolute value).

If this is in fact the case, then a consequence would be that the set of values of x where
∑

anxn

converges would form an interval around the origin.

-
0

C
C
C
C
C
CCW

If
∑

anxn converges here,
then it also converges
for all x closer to 0.

If, furthermore, convergence of
∑

anxn depends only on |x| , then this interval of convergence

would be symmetric around 0.

The catch in this reasoning is that the convergence of a series does not always depend solely on the
size of the terms (in absolute value). In the case of conditional convergence, the balance between
positive and negative terms is also a crucial factor, and it is not completely clear how changing the
size of x will affect the balance between positive and negative terms in

∑
anxn .

And in fact, the set of points x where
∑

anxn converges is not always absolutely symmetrical

around 0. For instance,
∑ (−1)nxn

n
converges when x = 1 by the alternating series test, but when

x = −1 it becomes the the Harmonic Series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · · ,

and therefore diverges.

Fortunately, however, it turns out that power series either converge absolutely whenever they
converge at all, or converge conditionally at only one or two point: one or both of the endpoints of the
interval of convergence for the series.
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Thus, for instance, from the very fact that
∑ (−1)nxn

n
converges conditionally when x = 1, we

will be able to immediately conclude that the interal of convergence for this series consists of those x

with −1 < x ≤ 1.

We now proceed to the proof of this assertion, as well as the proof that the set of points x where a
power series converges does in fact constitute an interval which is symmetric around 0 except possibly
for the endpoints.

For a fixed x , consider the following five possibilities for the series
∑

anxn , arranged in order of
increasing desirability.

1. limn→∞ |anxn| = ∞ (or, more generally, the set of numbers |anxn| is not bounded), so clearly
the series does not converge.

2. limn→∞ |anxn| < ∞ (or, more generally, the set of numbers |anxn| is bounded)
but limn→∞ |anxn| 6= 0, so the series can’t possibly converge.

3. limn→∞ |anxn| = 0, but the series still doesn’t converge.
4. The series converges conditionally.
5. The series converges absolutely.

Possibilities number (1) and (5) are the most clear-cut cases. Possibilities number (2), (3) and (4)
are the most difficult to recognize. How fortunate it is, then, as we shall see, that possibilities (1)
and (5) are the ones most commonly encountered, and possibilities (2), (3) and (4) can occur for only
rare values of x .

Most specifically, if limn→∞ |anxn
0 | < ∞ but

∑
anxn

0 diverges or if
∑

anxn
0 converges

conditionally, then the series
∑

anxn converges absolutely for all x with |x| < |x0| and diverges

for all x with |x| > |x0| .

The set of x where a power series
∑

anxn converges is either the whole real line R, or
consists of the single point {0}, or is an interval centered around 0, whether open,
closed, or half-open. (All these possibilities do occur.)

If
∑

anxn
0 converges conditionally or limn→∞ |anxn

0 | < ∞ but
∑

anxn
0 diverges, then

x0 is one of the two endpoints bounding the interval where
∑

anxn converges.

In some cases, this fact enables us to instantly see for what values of x a series converges and for
what values it diverges. Consider the series

x− x2

2
+

x3

3
− x4

4
+

x5

5
+ · · · .
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For x = 1 this converges by the alternating series test. But it does not converge absolutely, since the
corresponding absolute value series

1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·

diverges. Therefore, the principle we have claimed above this enables us to conclude that the series
converges for all x with |x| < 1 and diverges for all x with |x| > 1. As we have seen, the series
converges for x = +1, and it diverges for x = −1 because in this case it becomes the negative of the
Harmonic Series.

It remains to see why this extremely useful principle is true. It is in fact a consequence of an even
more far-reaching principle.

Proposition [Abel]. Suppose that there is an upper bound B such that |anxn
0 | < B for all n .

(This is essentially equivalent to the statement that limn→∞ |anxn
0 | < ∞ , except in cases where the

limit does not exist.) Then there exist positive numbers r and B such that∣∣∣x0

r

∣∣∣ ≤ 1 and |an| ≤ B

rn
for all n.

Furthermore the series
∑

anxn may or may not converge when x = x0 , but it converges absolutely

whenever |x| < |x0| .

In particular, this is the case if
∑

anxn
0 converges, whether absolutely or conditionally.

proof: By assumption, there exists B such that |anxn
0 | ≤ B for all n . Now let r = |x0| . Then

|x0/r| = 1 so certainly |x0/r| ≤ 1 and |an| ≤ B/|xn
0 | = B/rn .

Now the point of these rather trivial observations is that we see that if |x| < |x0| then
∑

anxn

converges absolutely by comparison to the geometric series∑(x

r

)n

since |anxn| < B|x/r|n .

Now notice in particular that this theorem applies if
∑

anxn
0 converges, since in that case

certainly limn→∞ |anxn
0 | = 0. X

If we turn this proposition around, we can see that it actually gives even more than it seems to.

Corollary. If
∑

anxn
1 diverges or converges conditionally for x = x1 , then it diverges for all x with

|x| > |x1| .

proof: If |x| > |x1| then
∑

anxn can’t converge, because otherwise by the Proposition (applied
with x playing the role of x0 ),

∑
anxn

1 would converge absolutely, contrary to the assumption. X
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Radius of Convergence

We started out by asserting that if
∑

anxn converges conditionally for a certain value x0 of x , or
if
∑

anxn
0 diverges but limn→∞ |anxn| < ∞ then the series

∑
anxn converges absolutely for all x

with |x| < |x0| and diverges for all x with |x| > |x0| . Clearly this assertion is included in the
statements of the preceding Proposition and its Corollary.

In fact, though, we get an even more general result. What we see from the proposition and its
corollary is that the set of values x where

∑
anxn converges must be a interval (whether open,

closed, or half-open) centered at the origin. The only exceptions are the cases when the series
converges for all real numbers x , and the case where it diverges for all x except x = 0.

In other words:

Theorem. For a power series
∑

anxn , there are only three possibilities.

(1) The series converges for all values of x .

(2) The series converges only when x = 0.

(3) There exists a positive number R such that
∑

anxn converges absolutely whenever |x| < R

and diverges whenever |x| > R .

In case (3), the number R is called the radius of convergence of the series. In case (1), we say
that the radius of convergence is ∞ , and in case (2) we say that it is zero.

If
∑

anxn has a finite non-zero radius of convergence R , then the convergence of the series is

roughly the same as the convergence of the series
∞∑
0

xn

Rn
, which is a simple variation on the

Geometric Series. The only difference is that
∑

anxn may converge when x = R or x = −R or both,

whereas
∞∑
0

xn

Rn
diverges for both these values.

If R is the radius of convergence for
∑

anxn , then limn→∞ |an|Rn can be zero, infinity, or any
positive number, or may not exist at all.

Examples of these four possibilities are as follows:

1 + x + x2 + x3 + · · · an = 1, R = 1, lim
n→∞ anRn = 1

x + 2x2 + 3x3 + 4x4 + · · · an = n, R = 1, lim
n→∞ anRn = ∞

x +
x2

2
+

x3

3
+ · · · an =

1
n

, R = 1, lim
n→∞ anRn = 0

x + 3x3 + 5x5 + 7x7 + · · · an =


n for n odd

0 for n even
R = 1, lim

n→∞ anRn does not exist.
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Suppose now that limn→∞ |an|Rn does exist (or is infinity). The nice thing is that, according to
the Proposition above, if |x| > R , then limn→∞ |anxn| = ∞ , which makes it really easy to see that
the series diverges in this case. Obviously if |x| < R then limn→∞ anxn = 0 since in this case

∑
anxn

converges. Thus R can be characterized as the dividing point between those x > 0 such that
limx→∞ anxn = 0 and those such that limn→∞ |anxn| = ∞ .

It would be simplistic to say that as n approaches infinity, |an| becomes roughly (or
“asymptotically”) comparable to a constant multiple of (1/R)n . However what is true is that

lim
n→∞

an

an+1
= R

or else the limit is undefined. It is also true that

lim
n→∞

n
√
|an| = R

if the limit exists at all. These two formulas make it fairly easy to compute the radius of convergence
for most power series.

The most frequent case where the two limits above do not exist is when the series skips powers
of x . For instance the series for the sine function contains only odd powers of x :

sin x = x− x3

3!
+

x5

5!
+ · · ·

Clearly, then, the above two limits do not exist. One can get around this however by re-writing the
series as

x

(
1− x2

3!
+

(x2)2

5!
− (x2)3

7!
+ · · ·

)

and then regarding what’s inside the parentheses as a series in the variable x2 . If one writes bn for
the coefficients of this series (i. e. b0 = 1, b1 = −1/3!, b2 = 1/5!, etc.) then one gets a radius of

convergence for this series as S = 1/ lim
n→∞

bn+1

bn
. Thus the original series converges for |x2| < S , so

the radius of convergence for the original series is
√

S . (A fairly easy calculation shows that S = ∞
in this case, so the series for sin x converges for all values of x .)

Use of Complex Numbers

In the preceding, we have taken it for granted that the variable x and the coefficients ai are real
numbers. However the logic used applies just as well when these are complex.

Most students have probably seen complex numbers somewhere before (although probably without
a convincing explanation as to why anyone should care about them!) Complex numbers have the form
c + di , where c and d are real numbers and i is the square root of −1. Of course −1 doesn’t have

a square root. This is why complex numbers are not real!

We define the absolute value of a complex number c + di as

|c + di| =
√

c2 + d2 .



39

Geometrically, this means that |c + di| is the length of the hypotenuse of a right triangle whose legs
are |c| and |d| . From this it is clear that |c| < |c + di| , |d| < |c + di| and

|c + di| < |c|+ |d| .

For an infinite series
∑

ck + idk we define the real part as the series
∑

ck and the imaginary

part as i
∑

dk . We say that the series converges absolutely if the corresponding absolutely value
series

∑ |ck + idk| converges.

Since |ck| < |ck + idk| and |dk| < |ck + idk| , the comparison test shows that if
∑ |ck + idk|

converges, then so do
∑ |ck| and

∑ |dk| . And since |ck + idk| < |ck|+ |dk| , if follows that if |ck| and∑ |dk| both converge, then so does
∑ |ck + idk| . Thus a series

∑
ck + idk converges absolutely if

and only if both the real and imaginary parts converge absolutely. And from this we see that a
complex series which converges absolutely does in fact converge.

Now all the logic used above for real power series applies just as well to a complex power series∑
(ck + idk)xk and shows that

Theorem. For a complex power series
∑

(cn + idn)xn , there are only three possibilities.

(1) The series converges for all values of x .

(2) The series converges only when x = 0.

(3) There exists a positive number R such that
∑

anxn converges absolutely whenever |x| < R

and diverges whenever |x| > R .

In case (3), the number R is called the radius of convergence of the series.

It is usual to think of a complex number c + id as corresponding to the point in the Euclidean
plane with coordinates (c, d). In terms of this representation, we see that the power series converges
for all points x strictly inside the circle around 0 with radius R , and diverges for all points strictly
outside that circle. For points actually on the circle itself, convergence is a delicate question.

In case (1), we say that the radius of convergence is ∞ , and in case (2) we say that it is zero.

Why Use Complex Numbers?

One might wonder why anyone would ever want to do calculus using complex numbers. There are
three reasons why this can be worthwhile.

In the first place, even though complex numbers do not occur in most problems from ordinary life,
there are many places in science where they are quite useful. This is especially true in electrical
engineering, where they are a standard tool for the study of ac circuits.
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Secondly, complex numbers enable one to considerably simplify certain sorts of calculations even
when one only really cares about real numbers.

And third, in a lot of ways calculus simply makes more sense when one uses complex numbers and
it becomes a much more beautiful subject.

Although there is a sizable literature on the philosophy of mathematics (very little of which I have
read), I don’t know of anyone who has ever tried to discuss precisely what we mean when we talk
about “beauty” in mathematics. But it seems to me that one of the things that makes a particular
piece of mathematics beautiful is the existence of an unexpected orderliness — a nice pattern where
one would have expected only chaos. In fact, I think that one of the things that attracts people to the
study of mathematics is that in many parts of mathematics one finds a world that is orderly, a world
where things make sense in a way that things in the real world rarely do. (And yet the study of this
unreal, orderly mathematical world, which is almost like a psychotic fantasy that an
obsessive-compulsive personality might have come up with, can produce very useful applications in
terms of the real world. This is a fascinating paradox.)

When one first thinks about the set of points at which a power series would converge, one might
imagine that it could have any conceivable form, or even be completely formless. To me, the fact that
this set of points in fact forms the interior of a circle— geometry’s most perfect figure—is beautiful.

But furthermore, when one looks at complex numbers one discovers that the radius of convergence
for a power series is exactly what it needs to be. The radius of convergence for a power series will
always be as big as it possibly can in order to avoid having any singularities of corresponding function
within the circle of convergence. (Unfortunately, though, I don’t know any proof of this simple enough
to include here.)

If we look at the expansion for 1/(1− x) as a series in powers of x , for instance, we find that the
radius of convergence is 1. This makes sense: it couldn’t be any larger than 1 since the function
1/(1− x) blows up at x = 1.

Likewise, the radius of convergence for the expansion of ln(1 + x) as a series in powers of x is 1,
which is just small enough to avoid the point x = −1 where the function blows up.

On the other hand, if we think only of real numbers, the function tan−1 x has no bad points. It is
continuous, differentiable, and even analytic for all real numbers x . So then why does its power series

1− x3

3
+

x5

5
− x7

7
+ · · ·

have 1 as its radius of convergence rather than ∞? As long as we only consider real values for x , it
doesn’t make any sense. But if we look at complex values it does. Remember that the radius of
convergence for tan−1 x will be the same as the radius of convergence for its derivative. And the
derivative of tan−1 x is 1/(1 + x2). Now 1/(1 + x2) can never blow up as long as x is a real number,
since in this case x2 is positive and so 1+x2 6= 0. But if x = i (where i =

√−1 ), then 1+x2 = 0 and
so 1/(1 + x2) blows up. And once we figure out how to define tan−1 x when x is a complex number,
we will discover that this function also blows up when x = i . The radius of convergence for the power
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series tan−1 x is thus as big as it possibly can be and yet still exclude the singular point x = i .

Differentiation and Integration of Power Series

If we take the Geometric Series
1

1− x
= 1 + x + x2 + x3 + x4 + x5 + · · ·

and differentiate it in the obvious way, we get an equation

1
(1− x)2

= 1 + 2x + 3x2 + 4x3 + 5x4 + · · · .

(Note that the differentiation of the left hand side produces two minus signs which cancel each other.)
On the other hand, if we integrate the geometric series in the obvious way we get an equation

− ln(1− x) = C + x +
x2

2
+

x3

x
+

x4

4
+ · · · (C = 0)

(where C is the constant of integration, which in this case must be equal to ln 1 = 0). These two
results are actually correct. In fact, simple algebra shows that

(1− x)(1 + 2x + 3x2 + 4x3 + · · ·+ (n + 1)xn)

= 1 + 2x + 3x2 + 4x3 + · · ·+ (n + 1)xn

−x− 2x2 − 3x3 − · · · − nxn − (n + 1)xn+1

= 1+x + x2 + x3 + · · · + xn − (n + 1)xn+1

and so

(1− x)2(1 + 2x + 3x2 + 4x3 + · · ·+ (n + 1)xn) = (1− x)(1 + x + x2 + · · ·+ xn − (n + 1)xn+1)

= 1− (n + 2)xn+1 − (n + 1)xn+2 .

Since limn→∞ xn = 0 for |x| < 1, it follows that

1 + 2x + 3x2 + 4x3 + · · · = lim
n→∞

1− (n + 2)xn+1 − (n + 1)xn+2

(1− x)2
=

1
(1 − x)2

for |x| < 1 and the series diverges for |x| ≥ 1.

The correctness of the second formula can be verified if one knows that Taylor Series expansion of
the natural logarithm function, except that in this case the series also converges for x = −1 by the
Alternating Series Test.

It may seem quite obvious that, in general, if

f(x) = a0 + a1x + a2x
2 + a3x

2 + · · ·

then

f ′(x) = a1 + 2a2x + 3a3x
2 + · · · .
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But this, although true, is not as obvious as it might seem. Because the notation makes an infinite
series look like merely a process of adding an enormous number of things up, it is tempting to assume
that all the things that work for algebraic addition will also work for infinite series. But in fact this is
not always the case, and there do exist infinite series where differentiation does not yield the result
one would expect it to.

This is shown by the fact that the series for arctanx ,

x− x3

3
+

x5

5
− x7

7
+ · · · ,

converges for −1 ≤ x ≤ 1, whereas the derivative series,

1− x2 + x4 − x6 + · · ·
(which represents the function 1/(1 + x2) does not converge for x = ±1.

A less simplistic example is the series

cosx +
1
4

cos 8x +
1
9

cos 27x + · · ·+ 1
n2

cosn3x + · · · .

(Note that this is not a power series.) Comparison to the series
∑ 1

n2
shows that this converges

absolutely for all x . But if we differentiate it term by term, we get

− sinx− 2 sin 8x− 3 sin 27x− · · · − n sinn3x− · · ·
which seems to clearly diverge for most values of x . (The derivative series clearly converges when x is
a multiple of π , since all the terms are then 0. But when x = 2kπ +

π

4
, for instance, where k is an

integer, the series looks like

− sin
π

4
− 2 sin

8π

4
− 3 sin

27π

4
− 4 sin

64π

4
− 5 sin

125π

4
− · · · − n sin

n3π

4
+ · · ·

=−
√

2
2
− 0− 3 ·

√
2

2
− 0 + 5 ·

√
2

2
− 0 + · · · ,

which clearly diverges since we keep seeing larger and larger terms: for odd n we have ±n
√

2
2

. This

shows that the domain of convergence for a series which is not a power series need not be an interval.)

It turns out, however, that in the case of power series, differentiating and integrating in the
obvious fashion does always work in the way one would hope, the only exception being at the
endpoints of the interval of convergence.

To see why this is true, let’s start by looking at the radius of convergence of the differentiated
series.

Recall that we observed above that the radius of convergence R for a power series
∑

anxn is the
point on the positive number line that separates the set of x such that limn→∞ anxn = 0 from those
such that limn→∞ |anxn| = ∞ . In particular, for |x| > R then limn→∞ |anxn| = ∞ . But then

lim
n→∞ |nanxn−1| = 1

|x| lim
n→∞ |nanxn| ≥ 1

|x| lim
n→∞ |anxn| = ∞ ,

so clearly the differentiated series
∑

nanxn−1 diverges.
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In particular, if R = 0 then the differentiated series always diverges for x 6= 0.

Now suppose for the moment that the power series
∑

anxn has a radius of convergence R which
is neither zero nor infinity. Then we have seen above that the tweaked form of the comparison test can
be used to see that, as respects convergence, the series

∑
anxn behaves exactly like the Geometric

Series ∑( x

R

)n

for |x| < R (where both series converge) and |x| > R (where both series diverge). (The behavior of
the series when x = ±R is a much more delicate matter and varies depending on the specific series.)
But the comparison test can then also be used to show that the series

∑
nanxn−1 and∑

n
( x

R

)n−1

have the same radius of convergence. But the radius of convergence for
∑

n
( x

R

)n−1

has already
been shown to be R .

The reasoning here is simplest if, as is often the case, limn→∞ |an|Rn < ∞ . (This would always be
the case, for instance, if the power series converges at either of the two endpoints of its interval of
convergence.) From this we get

lim
n→∞

|nanxn−1|
|n(x/R)n−1| =

1
R

lim
n→∞ |anRn| < ∞

(recall that we are temporarily assuming that R 6= 0, ∞), so the limit comparison test shows that∑
nanxn−1 converges absolutely whenever

∑
n
( x

R

)n−1

does. Since it was shown above that

∑
n
( x

R

)n−1

converges absolutely when |x/R | < 1 and diverges for |x/R | > 1, it follows that

0 + a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · ·
converges for |x| < R . Thus, in the case when 0 < R < ∞ and limn→∞ |an|Rn < ∞ , the
differentiated series has the same radius of convergence as the original series. (If 0 < limn→∞ |an|Rn ,
note also that clearly

∑
anxn diverges for x = ±R , and thus

∑
nanxn−1 also diverges, since∑

nanxn−1 =
1
x

∑
nanxn and |nan| > |an| .)

Now if limn→∞ |an|Rn = ∞ , then we have to use a little more finesse to prove convergence for
|x| < R . If |x| < R then choose r between |x| and R :

|x| < r < R .

Then, as noted earlier, limn→∞ anrn = 0, and we can see that
∑

nanxn−1 converges absolutely by
using the limit comparison test with respect to∑

n
(x

r

)n−1

.

This reasoning also shows that the differentiated series∑
anxn

converges absolutely for all x in case R = ∞ .
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This finishes the proof that the differentiated series has the same radius of convergence as the
original series.

Since the original series

a0 + a1x + a2x
2 + a3x

3 + · · ·

can be obtained by differentiating the integrated series

a1 + 2a2x + 3a3x
2 + · · · ,

the above shows that the original series and the integrated series also have the same radius of
convergence.

It sometimes happens, however, that the original series converges at one or both endpoints of the
interval of convergence but the differentiated series does not. For instance, as previously mentioned,
the series for the tan−1 x ,

x− x3

3
+

x5

5
− x7

7
+ · · ·

turns out to have 1 as its radius of convergence. It converges conditionally at x = ±1. The
differentiated series

1− x2 + x4 − x6 + · · ·

is simply the Geometric Series in the variable −x2 , and has the same radius of convergence, viz 1, but
does not converge at either x = 1 or x = −1.

When R = 0 or R = ∞ , the endpoints are not a problem, of course, since the interval of
convergence has no endpoints.

Now that we’ve seen that the differentiated power series has the same radius of convergence as the
original one, it remains to be shown that if

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

then

a1 + 2a2x + 3a3x
2 + · · ·

does in fact equal f ′(x) for those values of x where both series converge.

There’s a very easy (but flawed) explanation here Suppose we start with a power series

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · .

According to the standard formula for Taylor series,

an =
f (n)(0)

n!
.
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Now apply the same standard formula to compute f ′(x):

f ′(x) = f ′(0) + (f ′)′(0)x +
(f ′)(2)(0)

2!
x2 +

(f ′)(3)(0)
3!

x3 + · · ·

= f ′(0) + f (2)(0)x +
f (3)(0)

2!
x2 +

f (4)(0)
3!

x3 + · · ·+ f (n+1)(0)
n!

xn + · · · .

But from the formula above, we have fn+1(0) = (n + 1)! an+1 . Substituting this, we get

f ′(x) = a1 + 2! a2x +
3! a3

2!
x2 + · · ·

= a1 + 2a2x + 3a3x
2 + · · ·+ (n + 1)an+1x

n + · · ·

where we have used the identity (n + 1)! = (n + 1) · n! . But this series expansion for f ′(x) is exactly
the one we get by differentiating the original series

a0 + a1x + a2x
2 + a3x

3 + · · ·

in the obvious way.

Unfortunately, however, this simple explanation is flawed. We have made two assumptions which,
although true, are as yet unproved. In the first place, we have assumed that if a function has a Taylor
series, then the coefficients for that series must necessarily be given by the standard formula

an =
f (n)(0)

n!
.

And second, we’ve assumed that if f(x) has a Taylor series and that Taylor series does in fact
converge to f(x), then the same will be true of f ′(x).

What’s It All For?

Why do we care about infinite series in the first place? And in particular, why should we care
about showing that an infinite series converges if we don’t know what it converges to?

The value of infinite series is exactly the same as the value of algebraic formulas. Namely, they can
be used to calculate things and also to define things.

For example, Taylor Series give us the only practical way of computing such common functions as
sin x , lnx , or ex . Calculators and computer software all use accelerated forms of Taylor series to
compute these function.

This process has theoretical as well as practical significance. There are many functions which

cannot be described by simple algebraic formulas such as f(x) =
x3 − 8x + 2

x2 + 5
, or even

f(x) =
√

8x2 + 7 . We are often not lucky enough to be able to find some geometric relationship to
describe such functions, as is the case with the trig functions, or to be able to describe them by simple
integrals, as can be done for lnx . Power series give one a much more far-reaching type of formula that
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can be used to describe a large class of functions, which include almost all those which are likely to
arise in practical applications.

The solutions to linear ordinary differential equations can usually be expressed in the form of
Taylor Series, whereas in many cases they cannot be described in terms of common functions such as
sin x or ex .

Likewise, Fourier Series give one of the primary means for solving partial differential equations.

The Power Series Method for Differential Equations

The use of infinite series to solve differential equations is one of the reasons why it’s so important
to know that the obvious method for differentiating and integrating power series is valid.

In using power series to solving an ordinary differential equation, one starts by assuming that the
solution function can be written in the form of a power series

a0 + a1x + a2x
2 + a3x

3 + · · ·

and then substitutes this expression into the differential equation in order to solve for the
coefficients ai .

Not only can one use this to find solutions that cannot otherwise be easily written down, but the
same trick can be used to find the Taylor series expansions for many familiar functions. The sine
function and cosine functions, for instance, satisfy the differential equation

f ′′(x) = −f(x) .

They are further characterized by the fact that, for the sine function, f(0) = 0 and f ′(0) = 1,
whereas for the cosine function, f(0) = 1 and f ′(0) = −1. It is easy to use this differential equation
to derive the familiar Taylor series expansions for sinx and cosx .

In using this method, one should note that a function may satisfy several different differential
equations. Some of these may be easy to work with while others may not. For instance, if we wanted
to use the power series method to derive the geometric series, it would be natural to start with the
observation that the function f(x) = 1/(1− x) satisfies the differential equation

f ′(x) = f(x)2 .

However substituting the power series into this equation is rather awkward, since on the left hand side
one needs to square the power series, which is an ugly process. However one can also note that the
function f(x) = 1/(1− x) satisfies the equation

(1− x)f ′(x) = (1− x)
1

(1 − x)2
= f(x)
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(compare this to the binomial series, below). From this, the derivation of the geometric series is easy:

f(x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1 + akxk + ak+1x
k+1 + · · ·

f ′(x) = a1 + 2a2x + a3x
2 + · · · + kakxk−1 + (k + 1)ak+1x

k + · · ·
−xf ′(x) = − a1x− 2a2x

2 − · · · − (k − 1)ak−1x
k−1 − kakxk − · · · ,

which, together with the initial condition a0 = f(0) = 1, yields

a1 = a0

2a2 − a1 = a1

· · ·
(k + 1)ak+1 − kak = ak

and if then follows easily that

ak+1 = ak = · · · = a2 = a1 = a0 = 1 .

However one can derive the geometric series even more easily by noticing that the function
f(x) = 1/(1− x) satisfies the algebraic equation (1− x)f(x) = 1. Leaving this as a very easy exercise
for the reader, we will use essentially the same trick to derive the series for the arctangent function.
The function f(x) = tan−1 x satisfies the differential equation

(1 + x2)f ′(x) = 1 .

From this, we get the following:

f(x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1 + akxk + ak+1x
k+1 + · · ·

f ′(x) = a1 + 2a2x + 3a3x
2 + · · ·+ (k − 1)ak−1x

k−2 + kakxk−1 + (k + 1)ak+1x
k + · · ·

x2f ′(x) = a1x
2 + 2a2x

3 + · · · + (k − 1)ak−1x
k + · · · .

The differential equation (1 + x2)f ′(x) = 1 together with the initial condition f(0) = 0 then yields

a1 = 1

2a2 = 0

3a3 + a1 = 0

· · ·
(k + 1)ak+1 + (k − 1)ak−1 = 0

from which we easily conclude that ak = 0 for all even integers k and that for odd k , ak = ±1
k

,

where the signs alternate. I. e.

tan−1 x = 1− x3

3
+

x5

5
− x7

7
+ · · · .

This method for solving differential equations is not universally useful, though. The Taylor Series
expansion for tan x is very difficult to compute using the standard formula, since the derivatives
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quickly become quite complicated. For instance,

d2

dx2
tanx = 2 sec2 x tanx

d3

dx3
tanx = 4 sec2 x tan2 x + 2 sec4 x ,

and from there on, things get even worse.

If we try the differential equation approach, we can notice that if f(x) = tanx then
f ′(x) = sec2 x = tan2 x + 1, so that tanx satisfies the differential equation

f ′(x) = f(x)2 + 1

with the initial condition f(0) = 0. However this differential equation is not “linear,” since the
unknown function occurs in it squared. This means that if one tries writing

f(x) = a0 + a1x + a2x
2 + · · ·

and substituting this into the differential equation, one has to square the power series, which is a
rather ugly process. (One has to include all the cross-products, getting

f(x)2 = a2
0 + 2a0a1x + (2a0a2 + a2

1)x
2 + (2a0a3 + 2a1a2)x3 + (2a0a4 + 2a1a3 + a2

2)x
4 + · · · .)

For the case f(x) = tanx , one has a0 = f(0) = 0, a1 = f ′(0) = 1. Thus from the differential equation
f ′(x) = 1 + f(x)2 one gets

a1 = 1

2a2x = 0

3a3x
2 = a1x

2 = x2

4a4x
3 = 2a1a2x

3 = 2a2x
3

5a5x
4 = (2a1a3 + a2

2)x
4 = (2a3 + a2

2)x
4

. . .

which implies a2 = 0, a3 = 1
3 , a4 = 0, and a5 = 2/15.

In using the differential equation method to derive the Taylor series for a function, one starts out
from the assumption that the function in question is analytic, i. e. that it can be represented by some
power series. This amounts to a gap in the logic if one’s interest is in deriving everything rigorously
from the ground up. However often one’s concern is more practical: one knows as a matter of fact (or
is willing to believe) that the function is analytic, and one just wants a practical method of figuring
out what the Taylor series is.

In any case, one can say this. If one substitutes a generic expression of a power series into a
differential equation and solves for the unknown coefficients, and if the resulting power series does
converge at least in some interval, then it will in fact represent a function which satisfies the given
differential equation. Therefore the only possible thing that might go wrong is that there is in fact
more than one function satisfying the given differential equation with given intial conditions, and that
the power series one has found gives one of these functions, but not the one actually desired.
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Anyone who has much experience with differential equations is likely to take it for granted that
this will not in fact occur. One knows that there are existence and uniqueness theorems which
guarantee that a differential equation with appropriate initial conditions almost always has a unique
solution. A check with a text on differential equations, however, will show that these existence and
uniqueness theorems do depend on the function in question satisfying certain conditions which,
although seeming fairly innocuous, can conceivably fail.

Bad examples are not easy to come by, but consider the function

e−1/x2
.

(This is almost the only bad example that can be written down in any convenient form, at least as far
as I know.) This function is technically undefined at 0, but assigning the value f(0) = 0 will make it
continuous, since

lim
x→0

e
−1
x2 = e−∞ = 0 .

(One can now see the careful logic of the way this function is defined. One needs the minus sign in the
exponent in order to make the function go to 0 when x goes to 0. Using e−1/x would not have
worked, because as x approaches 0 from the left, one would then get e+∞ = ∞ .)

Now let g(x) = e−1/x2
. Notice that

g′(x) =
2
x3

e
−1
x2 ,

so that g(x) satisfies the differential equation

x3g′(x) = 2g(x) .

This equation is linear. (The fact that it involves x3 is not important. What’s important is that the
function itself is not squared or cubed.)

Now suppose that g(x) has a Taylor series expansion

g(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · ,

with a0 = g(0) = 0. Substituting this into the differential equation yields

a0x
3 + a1x

4 + a2x
5 + + · · · = 2a0 + 2a1x + 2a2x

2 + 2a3x
3 + 2a4x

4 + 2a5x
5 + · · · .

Comparing coefficients, we immediately see that a0 = 0, a1 = 0, and a2 = 0. It then follows that
2a3 = a0 = 0, and so 2a4 = a1 = 0, and in fact, one can eventually show that ak = 0 for all k .

We have thus managed to prove that g(x) = 0 for all x . But this result has to be fallacious, since
raising e to any finite power can never produce 0 (although one can get very close by taking x

extremely negative).

The fallacy here consists not in the way we have manipulated the power series, but in the
assumption that e−1/x2

can be represented by a power series in the first place . Unlike most of the
functions one finds in calculus books (as well as physics and chemistry and biology books), this
function is not analytic at 0. The reason for this is that the exponential function has a rather
complicated sort of singularity at ∞ , and by choosing −1/x2 we have managed to transfer this
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singularity to the origin, with the result that the function fails to be analytic there, despite being
differentiable. (In fact, g(k)(0) is defined and equal to 0 for all k .)

The differential equation

x3y′ = 2y

satisfied by the function y = e−1/x2
does not satisfy the conditions given in existence and uniqueness

theorem. (If we write this equation in standard form as

y′ =
2y

x3
,

we see that the right-hand side is not continuous at x = 0.) Indeed there are at least two different
solutions to this equation both satisfying the initial condition y(0) = 0, namely y = e−1/x2

and y = 0.

To see why this happens, let’s go through the process of solving this differential equation. The
technique for “separable” equations applies, and we get a solution by going through the following
sequence of steps.

x3y′ = 2y

y′

y
= 2x−3

ln y = −x−2 + ln c

y = e−1/x2+ln c = ce−1/x2

If we assign the arbitrary constant here the value c = 0, we get y(0) = 0. However if we assign the
constant the value c = 1, we also get y(0) = 0, since e−

1
0 = e−∞ = 0. In fact, no matter what value

we assign to c , it will always be true that y(0) = 0. Thus the differential equation x3y′ = 2y with
initial condition y(0) = 0 has an infinite number of different solutions.

And in fact, for this equation existence also breaks down. Because, as we have seen, any possible
solution to x3y′ = 2y will have the property that y(0) = 0. Thus there is no solution, for instance, to
the differential equation x3y′ = 2y with the initial condition y(0) = 5.

The Binomial and Negative Binomial Series

Another interesting example of using Taylor series to solve differential equations is the derivation
of binomial series. If we write

f(x) = (1 + x)p ,

where p is any real number (in particular, probably not a positive integer), then f ′(x) = p(1 + x)p−1 ,
and it follows that

(1 + x)f ′(x) = pf(x) .
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Let’s now use the power series method to solve this differential equation. Assuming that

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · ,

we get

f ′(x) = a1+2a2x + 3a3x
2 + · · ·

xf ′(x) = a1x + 2a2x
2 + 3a3x

3 + · · ·

so that the equation (1 + x)f ′(x) = pf(x) implies

a1 + (a1 + 2a2)x + (2a2 + 3a3)x2 + · · · + (kak + (k + 1)ak+1)xk + · · ·
= pa0 + pa1x + · · · + pakxk + · · · .

Furthermore, from the fact that f(0) = (1 + 0)p = 1, we get

a0 = 1 .

We can now solve for the ai recursively be equating the coefficients of the corresponding powers of x ,
as follows:

a0 = 1

a1 = pa0 = p

a2 =
(p− 1)a1

2
=

p(p− 1)
2

a3 =
(p− 2)a2

3
=

p(p− 1)(p− 2)
3 · 2

· · ·

ak =
(p− (k − 1))

k
=

p(p− 1)(p− 2) · · · (p− (k − 1))
k!

.

It is customary to define the binomial coefficients to be(
p

k

)
=

p(p− 1) · · · (p− (k − 1))
k!

.

(Here p need not be either positive or an integer.) With this notation, the binomial series can be
written as

(1 + x)p = 1 +
(

p

1

)
x +

(
p

2

)
x2 +

(
p

3

)
x3 + · · ·+

(
p

k

)
xk + · · · .

It is easy to see that if p is not a positive integer, this series has 1 as a radius of convergence,
whereas when p is a positive integer all the terms after the pth one vanish, so the series becomes a
simple polynomial and therefore converges (so to speak) for all x .
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As a variation on the binomial series, consider what happens when we differentiate the geometric
series.

1
1− x

= 1 + x + x2 + x3 + x4 + x5 + x6 + · · ·

1
(1− x)2

=
d

dx

(
1

1− x

)
= 1 + 2x + 3x2 + 4x3 + 5x4 + 6x5 + · · ·

2
(1 − x)3

=
d2

dx2

(
1

1− x

)
= 2 · 1 + 3 · 2x + 4 · 3x2 + 5 · 4x3 + 6 · 5x4 + · · ·

3 · 2
(1 − x)4

=
d3

dx3

(
1

1− x

)
= 3 · 2 · 1 + 4 · 3 · 2x + 5 · 4 · 3x2 + 6 · 5 · 4x3 + · · ·

4 · 3 · 2
(1 − x)5

=
d4

dx4

(
1

1− x

)
= 4 · 3 · 2 · 1 + 5 · 4 · 3 · 2x + 6 · 5 · 4 · 3x2 + · · ·

Continuing in this fashion, we find that, in general,

(r − 1)!
(1 − x)r

= (r − 1)! + r(r − 1) · · · 2 x + (r + 1)r · · · 3 x2 + · · · + (r + k − 1) · · · (k + 1)xk + · · ·

Dividing through, and applying the formula for the binomial coefficients, and using the identity(
r + k − 1

r − 1

)
=
(

r + k − 1
k

)
,

we get

(1− x)−r = 1 +
(

r

r − 1

)
x +

(
r + 1
r − 1

)
x2 + · · ·+

(
r + k − 1

r − 1

)
xk + · · · .

= 1 +
(

r

1

)
x +

(
r + 1

2

)
x2 + · · ·+

(
r + k − 1

k

)
xk + · · · .

This is the negative binomial series. It has important applications in probability theory and
combinatorics.

The function (1− x)−r can also be expanded using the standard binomial series. One gets

(1 − x)−r = 1 +
(−r

1

)
(−x) +

(−r

2

)
(−x)2 +

(−r

3

)
(−x)3 + · · · .

But a function can have only one power series expansion, since this expansion must be given by
the standard Taylor series formula. Therefore it must be true that these two expansions for (1− x)−r

are in fact identical, in other words, that(−r

k

)
(−x)k =

(
r + k − 1

k

)
xk

for all k .
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In fact, it’s easy to see this. For instance(−r

3

)
(−x)3 =

(−r)(−r − 1)(−r − 2)
3!

(−1)3x3

=
(−1)3r(r + 1)(r + 2)

3!
(−1)3x3 = (−1)6

(
r + 2

3

)
x3 =

(
r + 3− 1

3

)
x3 .

The Trig Functions and the Exponential Function

There are only a handful of functions whose Taylor series has a convenient formula. Fortunately,
these are precisely the functions which occur most frequently in mathematics and its applications.
One might wonder whether this is merely a piece of good luck, or whether the fact that functions such
as the sine and cosine, the exponential and the logarithm are useful in so many different ways might
in some way be a consequence of the fact that they have very nice Taylor series, or at least be closely
related to that fact.

One first learns about the sine and cosine in connection with the measurement of triangles. At
first, then, it seems that these functions would be primarily of interest to surveyors, and other people
concerned with practical applications of simple geometry. But as one learns more science, and more
calculus, one finds the sine and the cosine functions coming up over and over again in contexts with
no apparent relationship with triangles. For instance if one plots the length of the day as a function of
the time of year, one finds that the resulting curve has the shape of the sine function (or cosine
function). The voltage produced by a generator is also described by a sine function, as if the output of
an electornic oscillator constructed by using a simple LC circuit. And even simple harmonic motion,
such as the motion of a weight attached to a spring, is described by the sine function.

Some of these facts can be explained on the basis of geometry. But it seems more enlightening to
see them all as consequences of the fact that if y = sin x or y = cosx , then y′′ = −y . The theory of
differential equations further tells us that if y(x) is any function satisfying the differential equation
y′′ = −y , then y(x) can be written in the form A sinx + B cosx , where A and B are constants.

Likewise, the wide ranging importance of the exponential function (for instance in describing
population growth and radioactive decay) can be seen as largely due to the fact that if y(x) = Cex

(where C is a constant), then y satisfies the differential equation y′ = y .

Now there is a certain similarity in this respect between the sine and cosine functions and the
exponential function. To try and see this more clearly, consider the function f(x) = e−x . This
function satisfies the differential equation f ′ = −f , which is very much like the equation f ′′ = −f

satisfied by the sine and cosine functions.

From this point of view, the exponential function and the sine and cosine functions, which at first
seem so different from each other, seems on some level to be very similar. And, in fact, when one
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looks at the Taylor series expansions, it almost looks like the sine function and the cosine functions
could be fit together as the two halves of the exponential function.

ex = 1 + x +
2x

2
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

cosx = 1 − 2x

2
+

x4

4!
− · · ·

sinx = x − x3

3!
+

x5

5!
− · · ·

e−x = 1 − x +
2x

2
− x3

3!
+

x4

4!
− x5

5!
+ · · ·

However the minus signs don’t quite work here. And, as in most parts of mathematics, the
difficulty with the minus signs is not something which can be ignored or easily fixed.

Look at it this way: If f(x) = sin x or f(x) = cosx , then f ′′(x) = −f(x). The fact that
differentiating twice reverses the sign of the function corresponds to the fact that in the Taylor series,
there is a difference of 2 between the degrees of successive terms, and these have opposite signs
(e. g.. −x2/2! and +x4/4! or −x3/3! and +x5/5!). On the other hand, in the Taylor series for e−x ,
positive terms and negative terms follow each other with a gap of only 1 between the degrees
(e. g. +x2/2! and −x3/3!), which corresponds to the fact that differentiating the function once
reverses the sign.

We could also look at it this way: differentiating e−x once results in a 180o reversal, and
differentiating sinx or cosx twice results in a 180o reversal. One might be tempted then to
conjecture that somehow or other differentiating sin x or cosx once results in a 90o rotation. And, in
fact, differentiating sin x or cosx produces a phase-shift of π/2 in the corresponding graph.

d

dx
(sin x) = cosx = sin(x + π

2 )

d

dx
(cosx) = − sinx = cos(x + π

2 )

d2

dx2
(sin x) = − sinx = sin(x + π)

d2

dx2
(cosx) = − cosx = cos(x + π)

However the thinking here is a little muddled, since we have started to interpret the phrase “180o

reveral” in two different ways.

On some level this can be straightened out, but the explanation becomes much simpler if we allow
the use of complex numbers. If we consider the function g(x) = eix , then differenting this function
does in fact in some sense produce a 90o rotation: g′(x) = ig(x). To see why it makes sense to say
this, notice that

g′′(x) = i2g(x) = −g(x) ,
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so that differentiating twice prduces a 180o reversal.

Now sin x and cosx are two independent solutions to the differential equation y′′ = −y . Since we
now see that eix is also a solution to this differential equation, the general theory states that there
should be constants A and B such that

eix = A cosx + B sin x .

Now admittedly, once we start using complex numbers in this way we are moving into uncharted
territory, and we should no longer automatically assume that the old rules work. But we’ll assume for
the time being that they do (since I happen to know that they do!) and see if we can find a way of
making this equation work. Doing some elementary manipulation, we get the following set of
equations:

eix = A cosx + B sinx (by assumption!)

1 = e0 = A cos 0 + B sin 0 = A

ieix =
d

dx
eix =

d

dx
(A cos x + B sinx) = −A sinx + B cosx

i = ie0 = −A sin 0 + B cos 0 = B .

We then conclude that

eix = cosx + i sinx .

Now this is not a proof, and in fact cannot be a proof, because, so far, eix has not even been
defined! What we have shown, though, is that if the basic principles from the theory of differential
equations are going to apply to calculus when complex numbers are allowed, then eix = cosx + i sinx

is the only possible definition that will make sense.

As another way of seeing this, we can compute the Taylor series for eix and compare it to
cosx + i sinx . Using the fact that i2 = −1, i3 = −i , i4 = +1, etc., we get

eix = 1 + ix− x2

2
− i

x3

3!
+

x4

4!
+ i

x5

5!
− · · ·

cosx = 1− x2

2
+

x4

4!
− · · ·

i sinx = ix− i
x3

3!
+ i

x5

5!
− · · ·

These Taylor series expansions give a second justification (based on the assumption that the usual
Taylor series expansion for the exponential function should continue to work when the variable is a
complex number) for defining eix = cosx + i sin x . Once we accept this definition (and indeed we



56

should), then it becomes possible to apply the exponential function to any complex number x + iy . In
fact, if x and y are real numbers (or, in fact, even if they are complex!) we get

ex+iy = ex · eiy = ex(cos y + i sin y) .

Since this formula unifies the concepts of the sine, cosine, and exponential functions, it turns out
to be a very handy even in many cases where one is ultimately interested only in real numbers. In
fact, it is precisely for this reason that complex numbers are so useful in electronic circuit theory.

Since we have seen that the exponential function can be applied to complex values of the
independent variable (although for a completely rigorous discussion one should consult a textbook on
complex analysis), one might wonder whether the same is true for the sine and cosine (as in fact has
already been assumed in a parenthetical remark above!). In fact, this turns out to be easy, based on
what we already have. From the two equations

eix = cosx + i sinx

e−ix = cos(−x) + i sin(−x) = cosx− i sinx

we easily derive the very useful formulas

sin x =
eix − e−ix

2i

cosx =
eix + e−ix

2

These formulas must continue to be valid even when used for complex values of the variable. In
particular, we get

sin ix =
ei2x − e−i2x

2i
=

e−x − ex

2i
=

i(ex − e−x)
2

(since
1
i

= −i)

cos ix =
ei2x + ei2x

2
=

e−x + ex

2

(Those who are comfortable with the hyperbolic sine and cosine functions can easily see, for what it’s

worth, that sin ix =
− sinh x

i
= i sinhx and cos ix = coshx . This seems to show that those strange

hyperbolic functions actually do have some intrinsic significance after all, and are not just the
artificial contrivances they at first seem to be.)

From these formulas, one can see that once one allows complex values for the variable, one no
longer needs three separate functions sinx , cosx and ex . The exponential function subsumes all
three. This is certainly one strong argument for the use of complex numbers in calculus.
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Generating Functions

When we use the power series method to solve an ordinary differential equation, we find the
coefficients of the resulting series by solving for them recursively: We find a1 by using the value of a0 ,
and a2 by using the value of a1 , etc; or in some cases we find a2 by using the values of both a1 and
a0 , and then solve for a3 by using a2 and a1 , etc.

This process can be turned on its head. If we start with a sequence of numbers a0, a1, a2, . . .

defined recursively, we can consider these as the coefficients of a power series. This power series is
called the generating function for the sequence in question (or for the recursion relation that
determines it), and can sometimes provide considerable insight into the sequence.

One of the most famous recursive sequences is the Fibonacci numbers:
1, 1, 2, 3, 5, 8, 13, 21, . . . . This sequence, which arises in many different parts of nature, is

characterized by the fact that each number is the sum of the preceding two. It is natural to ask if
there is an algebraic formula that enables one to calculus the nth element in this sequence without
needing to calculate all the preceding n− 1. The method of generating functions is an ingenious way
of finding such a formula.

If we write ai for the ith number of this sequence, beginning with a1 , and in addition set a0 = 0,
then we have

ai = ai−1 + ai−2, a0 = 0, a1 = 1 .

Now let f(x) be the power series with ai as the coefficients. Then we have

f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · ·+ anxn + · · ·

xf(x) = a0x+ a1x
2 + a2x

3 + a3x
4 + · · ·+ an−1x

n + · · ·
x2f(x) = a0x

2 + a1x
3 + a2x

4 + · · ·+ an−2x
n + · · · .

If we now use the known fact that a0 = 0, a1 = 1, and an = an−1 + an−2 , we see that

xf(x) + x2f(x) = (a1 + a0)x2 + · · ·+ (an−1 + an−2)xn + · · ·
= a2x

2 + · · ·+ anxn + · · ·
= f(x)− a1x− a0 = f(x)− x

From this we can solve to get

(1− x− x2)f(x) = x
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and so, completing the square in the denominator and using partial fractions,

f(x) =
x

1− x− x2

=
x

(1− x
2 )2 − 5

4x2

=
1/
√

5

1−
(

1 +
√

5
2

)
x

− 1/
√

5

1−
(

1−√
5

2

)
x

.

But each of these ugly looking fractions can be expanded as a geometric series, so we get

f(x) =
1√
5


1 +

(
1 +

√
5

2

)
x +

(
1 +

√
5

2

)2

x2 +

(
1 +

√
5

2

)3

x3 + · · ·



− 1√
5


1 +

(
1−√

5
2

)
x +

(
1−√

5
2

)2

x2 +

(
1−√

5
2

)3

x3 + · · ·



Since by assumption the coefficients of the power series for f(x) are the Fibonacci numbers, we thus
see that

an =
1√
5

((
1 +

√
5

2

)n

−
(

1−√
5

2

)n )
.

(It is quite remarkable that this formula even produces values which are integers, much less that it
produces the Fibonacci numbers. I think that students should be encouraged to be skeptical and
actually try this formula out for a few values of n , using a calculator.)


