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Finding the formula in polar coordinates for the angular momentum of a moving

particle around the origin (the essential step in proving Kepler’s Second Law of

planetary motion) and computing the curvature of a parametrized curve in space can

both be done by taking the cross product of a vector with its derivative. In the first

case, the vector is the position vector for the moving particle. In the second, it is the

velocity vector for the curve. The basic reasoning is the same in both cases, but

because the symbols involved are very different, this is not apparent on first glance.

Lemma. If w(t) is a vector with constant magnitude, then w′ is orthogonal to w

and the magnitude of w′ equals ||w|| times the rate at which w is turning (measured

in radians per unit time).

proof: It is enlightening to first consider a proof in the two dimensional case. If

w(t) is a plane vector with constant magnitude c, then when we position w(t) at the

origin, its tip moves along a circle of radius c with a speed of c |θ′(t)| (where θ is the

usual polar coordinates parameter).
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||w′|| = c |θ′|
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Then w′ is the velocity vector for this motion, thus

||w′(t)|| = c |θ′| ,
which is in fact ||w|| times the rate at which w is turning. Furthermore, w′ is in this

case tangent to the circle, and thus by elementary geometry is perpendicular to the

radius vector, which is w .

For a more computational proof in the two-dimensional case, note that by

elementary trigonometry

w = ||w|| (cos θ i + sin θ j) ,

so that if ||w|| is constant,

w′ = θ′ ||w|| (− sin θ i + cos θ j) .

Since the factor in parenthesis has magnitude 1 and is perpendicular to w (see the

previous formula), the result follows.

For the three-dimensional (or higher dimensional) case, start with the fact that

w ·w = ||w||2 = constant .

Differentiating this yields,

2w ·w′ = 0 ,

showing that w′ is orthogonal to w . Now

w′(t) = lim
h→0

w(t + h) − w(t)

h
.

Visually, the numerator of this fraction looks like this:
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w(t)

w(t + h)
Length of arc =

||w||ϕ
ϕ

If ϕ is the angle between w(t + h) and w(t), then the rate at which w(t) is turning is

limh→0+
ϕ

h
. (We assume that ϕ is by definition considered positive— in three

dimensions, the concept of a negative angle doesn’t make sense— so in taking the limit

we should only consider positive values of h or, equivalently, replace h by |h| in the

denominator.) By assumption, ||w(t + h)|| = ||w(t)|| . For h small, ϕ is small and
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||w(t + h) = w(t)|| can be closely approximated by the length ||w||ϕ of the arc of a

circle of radius ||w|| and central angle ϕ (see the picture). I. e.

||w′(t)|| = lim
h→0+

||w(t + h) −w(t)||
h

= lim
h→0+

||w||ϕ
h

= ||w|| lim
h→0+

ϕ

h
,

and this equals ||w|| times the rate at which w is turning. (For a more careful

argument, one can use the Law of Cosines to see that

||w(t + h) −w(t)||2 = ||w|| (2 − 2 cosϕ) and then prove that

lim
ϕ→0

√
2 − 2 cosϕ

ϕ
= 1 . ) X

Proposition A. If v(t) is a vector function of time, then
dv

dt
can be written as the

sum of two orthogonal components,

dv

dt
= (v′)‖ + (v′)⊥ ,

the first one parallel to v and the second one orthogonal to v , with

∣∣∣∣ (v′)‖
∣∣∣∣ =

∣∣∣∣ d ||v||
dt

∣∣∣∣
|| (v′)⊥ || = ||v|| · (rate at which v is turning) .

Furthermore, ∣∣∣∣
∣∣∣∣v× dv

dt

∣∣∣∣
∣∣∣∣ = ||v||2 · (rate at which v is turning) .

proof: Let u(t) = v(t)/ ||v(t)|| . The u is a unit vector with the same direction as v

and v(t) = ||v||u. Differentiating this equation and applying the product rule yields

v′ = ||v||′ u + ||v||u′ .

Write

v′
‖ = ||v||′ u and v′

⊥ = ||v||u′ .

Clearly v′
‖ is parallel to v and

∣∣∣∣∣∣v′
‖

∣∣∣∣∣∣ =

∣∣∣∣d ||v||dt

∣∣∣∣. Furthermore, by the Lemma u′ is

perpendicular to u and ||u′|| equals the rate at which u is turning, which is also, of

course, the rate at which v is turning. Therefore ||v′
⊥|| equals ||v|| times the rate at

which v is turning.
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Finally, notice that since v×v′
‖ = 0 and v ⊥ v′

⊥ , so that

||v×v′|| = ||v×v′
⊥|| = ||v|| · ||v′

⊥||
= ||v||2 · (rate at which v is turning). X

When we apply this to the position vector r(t) of a point in the plane, this

Proposition gives us the formula in polar coordinates for the angular momentum of a

moving object around the origin.

Proposition. If r(t) is distance from the origin of a particle of mass m and ω is its

angular speed about the origin, then the angular momentum of the particle about the

origin is mr2ω . In particular, if the particle is moving in the plane and if (r, θ) are its

polar coordinates, then the angular momentum about the origin is given by mr2 |θ′| .

proof: Applying Proposition A to the position vector r(t) of the particle, we get that

dr

dt
= (r′)‖ + (r′)⊥ ,

with

||(r′)⊥|| = ||r|| · (the angular speed of the particle) = ||r|| · ω .

Here r′ is of course the velocity of the particle and the angular momentum is given by

either mr ||(r′)⊥|| or, equivalently, m ||r× r′|| . Thus by Proposition A the angular

momentum equals

m ||r||2 ω = mr2ω .

If the particle is moving in the plane, then the r here is simply the usual r for polar

coordinates and ω = |dθ / dt| . X

If we now apply Proposition A to the velocity vector of a moving point, then we

can derive the formula for the curvature of a parametrized curve in R
3 . Recall that

curvature κ(t) is defined to be the rate at which the unit tangent vector is turning

when one moves along a curve at a speed of one unit per second. It follows that when

one moves according to the given parametrization, then the rate at which the velocity

vector v(t) is turning equals κ(t) ||v|| , where ||v|| is of course speed.
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Proposition. Let r(t) be the parametrization of a curve in R
3 and v(t) the velocity

vector and a(t) the acceleration vector and κ(t) the curvature. Let s(t) denote arc

length (i. e. distance traveled along the curve), T(t) = v/ ||v|| the unit tangent vector,

and N the principal normal vector for the curve. Then

a =
d2s

dt2
T +

(
ds

dt

)2

κN

and

κ(t) =
||v× a||
||v||3 .

proof: Since s(t) is arc length, ds/dt = ||v|| . According to Proposition A,

a = v′ = a ‖ + a⊥

where since κ ||v|| is the rate at which v is turning, the directions and magnitudes are

such that

a ‖ =
d ||v||

dt
T =

(
d2s

dt2

)
T

a⊥ = ||v|| · κ ||v||N
= ||v||2κN

=

(
ds

dt

)2

κN .

Furthermore, according to the Proposition A,

||v× a || =

∣∣∣∣
∣∣∣∣v× dv

dt

∣∣∣∣
∣∣∣∣ = ||v||2 · (rate at which v is turning)

= ||v||2 · κ(t) ||v||
= ||v||3 κ

so that

κ =
||v× a||
||v||3 . X


