MATH 205

APPLICATIONS OF INTEGRATION

E. L. Lady

We will show how to derive formulas $Q=\int_{a}^{b} g(x) d x$, where Q is a given variable depending on a continuous function $g(x)$ defined between $x=a$ and $x=b$. We assume that Q is increasing with respect to the function g, i. e. making g bigger always makes Q bigger. We will also assume that $Q=0$ whenever $a=b$.

Basically what will be seen is that if a formula of this sort gives the right answer for a particular variable Q whenever $g(x)$ is a constant function, then it will work for all continuous functions $g(x)$.

Hopefully, the examples that follow will make clear what is meant by a variable Q which depends on a function g.

Examples.

(1) Q is the area under the graph $y=g(x)$ between the endpoints a and b.
(2) Q is the distance traveled between time a and time b by an object moving at (variable) speed $g(x)$.
(3) Q is the volume of the solid obtained by revolving around the x-axis the graph of the function $f(x)$ between the endpoints a and b. In this case, we will choose $g(x)=\pi f(x)^{2}$.
(4) Q is the volume of the solid obtained by revolving around the y-axis the graph of the function $f(x)$ between the endpoints a and b. In this case, we will choose $g(x)=2 \pi x f(x)$.
(5) Q is the work done by a force $F=g(x)$ acting on an object moving between points $x=a$ and $x=b$.

Solids of Revolution. The canonical application of integration is the problem of finding the volume of the solid obtained by revolving the area under the graph of a function $y=g(x)$ around the x-axis or y-axis.

Our point of view is that a solid of revolution is simply a misshapen cylinder. It is well known that the volume of a cylinder is given by the formula $V=\pi R^{2} H$, where R is the radius and H the height.

If the cylinder is positioned horizontally, so that the x-axis becomes its axis, with the base at position $x=a$ and the other end at $x=b$, then this formula can be written as

$$
V=\pi R^{2} H=\pi R^{2}(b-a)=\pi \int_{a}^{b} R^{2} d x
$$

Now if we now allow the radius R to become a variable quantity $g(x)$ as the variable x moves through the cylinder, then we now have a solid of revolution and the formula for the volume should be modified to read

$$
V=\pi \int_{a}^{b} g(x)^{2} d x
$$

If a cylinder with height H is positioned vertically, so that the y-axis becomes its axis, and if the radius is given by $R=b$, then the volume can be given by the formula

$$
V=\pi R^{2} H=\pi b^{2} H=\pi \int_{0}^{b^{2}} H d\left(x^{2}\right)=2 \pi \int_{0}^{b} x H d x .
$$

(The first integral looks slightly strange, but we can think of it as simply a shorthand for a change of variables $u=x^{2}$. In other words, for practical purposes, $d\left(x^{2}\right)=2 x d x$.) If we now allow the height H to become a variable quantity $h(x)$ as the variable x moves from the center of the cylinder outwards, then the formula for volume should be modified to read

$$
V=\pi \int_{0}^{b^{2}} h(x) d\left(x^{2}\right)=2 \pi \int_{0}^{b} x h(x) d x
$$

There is a charm to this way of deriving the standard formulas for the volume of a solid of revolution, but at first the thinking behind it seems a little dubious. However it can in fact be justified.

THEOREM. Suppose that Q is a quantity that depends on a function $g(x)$ defined between a and b. (In formal notation, we can write $Q=Q(g, a, b)$.) Suppose further that Q is increasing as a function of g (i.e. making the function g larger always makes Q larger) and is additive over disjoint intervals, and that whenever $g(x)=m$, where m is a constant, then for all values a and $b, \quad Q=(b-a) m$. Then it will be true that for every specific choice of a continuous function g,

$$
Q=\int_{a}^{b} g(x) d x
$$

Proof: Consider any given function $g(x)$. Hold a fixed and write $Q(x)$ for the value Q takes when we consider the function between a and x instead of between a and b. Since $Q(a)=0$, by the Fundamental Theorem of Calculus

$$
Q(b)=Q(b)-Q(a)=\int_{a}^{b} Q^{\prime}(x) d x
$$

Therefore it suffices to prove that $Q^{\prime}(x)=g(x)$. Now

$$
Q^{\prime}(x)=\lim _{h \rightarrow 0} \frac{Q(x+h)-Q(x)}{h}
$$

If \mathbf{g} were a constant function $\mathbf{g}(\mathbf{x})=\mathbf{m}$, then the basic assumption about Q could be applied to the interval with endpoints x and $x+h$ [or the interval from $x-h$ to x in case h is negative] to show that $Q(x+h)-Q(x)=m h$ in this special case. For a non-constant function $g(x)$, if m is the minimum value that g takes between x and $x+h$ and M is the maximum, then $m \leq g\left(x^{\prime}\right) \leq M$ for all x^{\prime} between x and $x+h$ and so applying the constant function case to the constants m and M yields $m h \leq Q(x+h)-Q(x) \leq M h$ (because of the assumption that Q increases when the function gets larger), and so

$$
m \leq \frac{Q(x+h)-Q(x)}{h} \leq M
$$

Now m and M actually depend on h, and since g is continuous they both converge to $g(x)$ when h approaches 0 (with x being held constant):

$$
\lim _{h \rightarrow 0} m(h)=\lim _{h \rightarrow 0} M(h)=g(x) .
$$

Thus by the Pinching Theorem,

$$
g(x)=\lim _{h \rightarrow 0} m(h) \leq \frac{Q(x+h)-Q(x)}{h}=Q^{\prime}(x) \leq \lim _{h \rightarrow 0} M(h)=g(x)
$$

Therefore $Q^{\prime}(x)=g(x)$ and so $Q(b)=\int_{a}^{b} Q^{\prime}(x) d x=\int_{a}^{b} g(x) d x$ 。 \checkmark

Application to examples. (1) Since the area under the graph of a horizontal line $g(x)=m$ between $x=a$ and $x=b$ is just $(b-a) m$, the theorem shows that the area under the graph of any function $g(x)$ between the endpoints $x=a$ and $x=b$ is $\int_{a}^{b} g(x) d x$.
(2) Since the distance traveled between time $x=a$ and $x=b$ by an object moving at a constant speed m is $(b-a) m$, the theorem shows that the distance traveled between time $x=a$ and time $x=b$ by an object moving at a variable speed $g(x)$ is $\int_{a}^{b} g(x) d x$.
(3) If graph of a constant function $f(x)=m$ between $x=a$ and $x=b$ is revolved around the x-axis, the solid obtained is a horizontal cylinder with radius m and length $b-a$, so the volume is $\pi(b-a) m^{2}$. Thus the theorem shows that the volume of the solid obtained by revolving around the x-axis the graph of the function $f(x)$ between the endpoints a and b is $\pi \int_{a}^{b} f(x)^{2} d x$.
(4) If the graph of a constant function $f(x)=m$ between $x=a$ and $x=b$ is revolved around the y-axis, the solid obtained is a vertical cylindrical shell with inner radius a and outer radius b. Its volume is $\left(\pi b^{2}-\pi a^{2}\right) m$, which can be also written as $2 \pi \int_{a}^{b} m x d x$. Although this doesn't quite fit the pattern of the theorem, the same logic shows that the volume of the solid obtained by revolving around the y-axis the graph of any function $f(x)$ between the endpoints a and b is $2 \pi \int_{a}^{b} x f(x) d x$.
(5) The work done by a constant force $g(x)=m$ acting on an object moving between $x=a$ and $x=b$ is $(b-a) m$. Thus the theorem shows that the work done by a variable force $g(x)$ acting on an object moving from $x=a$ to $x=b$ is $\int_{a}^{b} g(x) d x$.

