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MATH 205

APPLICATIONS OF INTEGRATION

E.L. Lady

We will show how to derive formulas Q =
∫ b

a

g(x) dx , where Q is a given variable

depending on a continuous function g(x) defined between x = a and x = b . We assume
that Q is increasing with respect to the function g , i. e. making g bigger always makes Q
bigger. We will also assume that Q = 0 whenever a = b .

Basically what will be seen is that if a formula of this sort gives the right answer for
a particular variable Q whenever g(x) is a constant function, then it will work for all
continuous functions g(x) .

Hopefully, the examples that follow will make clear what is meant by a variable Q
which depends on a function g .

Examples.

(1) Q is the area under the graph y = g(x) between the endpoints a and b .

(2) Q is the distance traveled between time a and time b by an object moving at
(variable) speed g(x) .

(3) Q is the volume of the solid obtained by revolving around the x-axis the graph
of the function f(x) between the endpoints a and b . In this case, we will choose
g(x) = πf(x)2 .

(4) Q is the volume of the solid obtained by revolving around the y-axis the graph
of the function f(x) between the endpoints a and b . In this case, we will choose
g(x) = 2πxf(x) .

(5) Q is the work done by a force F = g(x) acting on an object moving between
points x = a and x = b .
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Solids of Revolution. The canonical application of integration is the problem of finding
the volume of the solid obtained by revolving the area under the graph of a function
y = g(x) around the x-axis or y-axis.

Our point of view is that a solid of revolution is simply a misshapen cylinder. It is
well known that the volume of a cylinder is given by the formula V = πR2H , where R is
the radius and H the height.

If the cylinder is positioned horizontally, so that the x-axis becomes its axis,
with the base at position x = a and the other end at x = b , then this formula can be
written as

V = πR2H = πR2(b − a) = π

∫ b

a

R2 dx.

Now if we now allow the radius R to become a variable quantity g(x) as the variable x
moves through the cylinder, then we now have a solid of revolution and the formula for
the volume should be modified to read

V = π

∫ b

a

g(x)2 dx.

If a cylinder with height H is positioned vertically, so that the y-axis becomes its
axis, and if the radius is given by R = b , then the volume can be given by the formula

V = πR2H = πb2H = π

∫ b2

0

H d(x2) = 2π

∫ b

0

xH dx.

(The first integral looks slightly strange, but we can think of it as simply a shorthand for
a change of variables u = x2 . In other words, for practical purposes, d(x2) = 2x dx .) If
we now allow the height H to become a variable quantity h(x) as the variable x moves
from the center of the cylinder outwards, then the formula for volume should be modified
to read

V = π

∫ b2

0

h(x) d(x2) = 2π

∫ b

0

xh(x) dx.

There is a charm to this way of deriving the standard formulas for the volume of a
solid of revolution, but at first the thinking behind it seems a little dubious. However it
can in fact be justified.
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THEOREM. Suppose that Q is a quantity that depends on a function g(x) defined
between a and b . (In formal notation, we can write Q = Q(g, a, b) .) Suppose further
that Q is increasing as a function of g (i. e. making the function g larger always makes Q
larger) and is additive over disjoint intervals, and that whenever g(x) = m , where m is a
constant, then for all values a and b , Q = (b − a)m . Then it will be true that for every
specific choice of a continuous function g ,

Q =
∫ b

a

g(x) dx.

Proof: Consider any given function g(x) . Hold a fixed and write Q(x) for the value Q
takes when we consider the function between a and x instead of between a and b . Since
Q(a) = 0, by the Fundamental Theorem of Calculus

Q(b) = Q(b) − Q(a) =
∫ b

a

Q′(x) dx.

Therefore it suffices to prove that Q′(x) = g(x) . Now

Q′(x) = lim
h→0

Q(x + h) − Q(x)
h

.

If g were a constant function g(x)=m, then the basic assumption about Q could
be applied to the interval with endpoints x and x + h [ or the interval from x − h
to x in case h is negative] to show that Q(x + h) − Q(x) = mh in this special case.
For a non-constant function g(x) , if m is the minimum value that g takes between x

and x + h and M is the maximum, then m ≤ g(x′) ≤ M for all x′ between x and
x + h and so applying the constant function case to the constants m and M yields
mh ≤ Q(x + h) − Q(x) ≤ Mh (because of the assumption that Q increases when the
function gets larger), and so

m ≤ Q(x + h) − Q(x)
h

≤ M.

Now m and M actually depend on h , and since g is continuous they both converge to
g(x) when h approaches 0 (with x being held constant):

lim
h→0

m(h) = lim
h→0

M(h) = g(x).

Thus by the Pinching Theorem,

g(x) = lim
h→0

m(h) ≤ Q(x + h) − Q(x)
h

= Q′(x) ≤ lim
h→0

M(h) = g(x).

Therefore Q′(x) = g(x) and so Q(b) =
∫ b

a

Q′(x) dx =
∫ b

a

g(x) dx . X
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Application to examples. (1) Since the area under the graph of a horizontal line
g(x) = m between x = a and x = b is just (b − a)m , the theorem shows that the
area under the graph of any function g(x) between the endpoints x = a and x = b is∫ b

a

g(x) dx .

(2) Since the distance traveled between time x = a and x = b by an object moving at
a constant speed m is (b − a)m , the theorem shows that the distance traveled between

time x = a and time x = b by an object moving at a variable speed g(x) is
∫ b

a

g(x) dx .

(3) If graph of a constant function f(x) = m between x = a and x = b is revolved
around the x-axis, the solid obtained is a horizontal cylinder with radius m and length
b − a , so the volume is π(b − a)m2 . Thus the theorem shows that the volume of the solid
obtained by revolving around the x-axis the graph of the function f(x) between the

endpoints a and b is π

∫ b

a

f(x)2 dx .

(4) If the graph of a constant function f(x) = m between x = a and x = b is revolved
around the y-axis, the solid obtained is a vertical cylindrical shell with inner radius a and

outer radius b . Its volume is (πb2 − πa2)m , which can be also written as 2π

∫ b

a

mx dx .

Although this doesn’t quite fit the pattern of the theorem, the same logic shows that the
volume of the solid obtained by revolving around the y-axis the graph of any function

f(x) between the endpoints a and b is 2π

∫ b

a

xf(x) dx .

(5) The work done by a constant force g(x) = m acting on an object moving between
x = a and x = b is (b − a)m . Thus the theorem shows that the work done by a variable

force g(x) acting on an object moving from x = a to x = b is
∫ b

a

g(x) dx .


