
Dijkstra’s Algorithm for Finding the Shortest Path Through a Weighted Graph
E. L. Lady

(December 1, 1999)

The way the algorithm works is to put labels on a growing number of vertices. A label on a
vertex v will have two parts: a length L(v) and a pointer back to another vertex. L(v)
represents the length of the shortest known path (to date) from a to v , and the pointer
shows the vertex that precedes v on that path. At each step of the algorithm we will have:

A set of vertices S . Vertices in S will all have permanent labels.

One vertex u which is the newest vertex added to S .

Vertices which are one step away from S will all have provisional labels.

Vertices more than one step away from S are unlabeled, or we can label them with
L(v) = ∞ .

As we go through the algorithm, at each step the following things will be true:

(1) For vertices v ∈ S , L(v) is the best possible. (This is why the labels on vertices in S

are permanent.)
(2) For vertices v one step away from S , L(v) is the length of the shortest possible path

from a to v that stays inside S up until the last edge: however there may be shorter
paths if we use more vertices outside S .

algorithm: At each step, Dijkstra’s algorithm does two things:

(a) It chooses a new vertex u to add to S .
(b) It updates the labels on all the vertices which are one step away from (the new) S .

We will describe how it does these two things and at the same time we will prove by
induction that assertions (1) and (2) are true at each step. (note: In what follows, when
we speak of the “smallest” value chosen from a certain set, we mean that there is no smaller
possible value, but perhaps some other values could be equal.)

(a) If we are just starting the algorithm, we choose u to be a and we set L(a) = 0. At
all the later steps, we choose u to be one step away from S and having the smallest possible
L(u). (L(u) will be already given from the previous step.) We then adjoin u to S .



2

To see that assertion (1) will still be true for the new S , we need to see that L(u) is
the length of the shortest possible path from a to u . This is certainly true at beginning of
the algorithm, when u = a . At the later steps, we know that L(u) is the length of the
shortest possible path that stays completely in S . (This is because (2) is true for the old S .)
But assertion (2) (for the old S ) also tells us that any path from a to u that goes outside S

already becomes at least as long as L(u) at the moment it leaves S . In other words, if some
path from a to u goes outside S , and v is the first vertex on this path which is outside S ,
then we know from assertion (2) that the length of the part of the path from a to v is
already at least as long as L(v), and L(v) ≥ L(u). Thus no path from a to u could be
shorter than L(u).

(b) Now we need to update the labels on all vertices v which are one step away from
the new S . We actually only need to worry about the vertices adjacent to u . If v is adjacent
to u and either v is still unlabeled or if the existing L(v) is larger than L(u) + w(u,v), then
we set L(v) equal to L(u) + w(u,v) and change the pointer on v to point back to u .

Now we need to see that assertion (2) is true for these new labels. If we are at the very first
step (so that S = {a}), then this is clear. At the later steps, notice that what we’ve done is
to check whether any path to v with u as its next to the last vertex is shorter than the paths
we already know about. So there are two things we need to rule out: i) that some vertex w
which is not adjacent to u should have been given a new label; ii) that with the new S , for
some vertex v adjacent to u there is now an even shorter path from a to v which lies in S

except for the last edge, and which does not have u as the next to the last vertex.

Okay, first consider objection i). Suppose w is one step away from S and consider a path
from a to w that lies inside S until the very last edge, and suppose that next to the last
vertex is v , where v ∈ S and v 6= u . Then v lies in the old S , and we already know from
assertion (1) that the path we previously had from a to v was the shortest conceivable path;
therefore monkeying around with this path can get us nowhere.

Now consider objection ii): The answer here is really the same as the answer to objection i):
There’s no point in considering paths to v that don’t have u as their next to the last vertex,
because the old label on v already shows the best that can possibly be achieved that way.

Therefore assertions (1) and (2) are true at every step. Since there are a finite number
of vertices, after enough steps we finally have z ∈ S , and assertion (1) then tells as that the
label on z gives the length of the shortest possible path from a to z. Furthermore, by
starting at z and tracing backwards using the pointer part of the labels, we actually see what
this shortest path is.


