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The way the algorithm works is to put labels on a growing number of vertices. A label on a
vertex v will have two parts: a length L(v) and a pointer back to another vertex. L(v)
represents the length of the shortest known path (to date) from a to v, and the pointer
shows the vertex that precedes v on that path. At each step of the algorithm we will have:

A set of vertices S. Vertices in S will all have permanent labels.
One vertex u which is the newest vertex added to S'.
Vertices which are one step away from S will all have provisional labels.

Vertices more than one step away from S are unlabeled, or we can label them with
L(v) = 0.

As we go through the algorithm, at each step the following things will be true:

(1) For vertices v € S, L(v) is the best possible. (This is why the labels on vertices in S
are permanent.)

(2) For vertices v one step away from S, L(v) is the length of the shortest possible path
from a to v that stays inside S up until the last edge: however there may be shorter

paths if we use more vertices outside S'.

ALGORITHM: At each step, Dijkstra’s algorithm does two things:

(a) It chooses a new vertex u to add to S.

(b) It updates the labels on all the vertices which are one step away from (the new) S.

We will describe how it does these two things and at the same time we will prove by
induction that assertions (1) and (2) are true at each step. (NOTE: In what follows, when
we speak of the “smallest” value chosen from a certain set, we mean that there is no smaller

possible value, but perhaps some other values could be equal.)

(a) If we are just starting the algorithm, we choose u to be a and we set L(a) = 0. At
all the later steps, we choose u to be one step away from S and having the smallest possible

L(u). (L(u) will be already given from the previous step.) We then adjoin u to S.



To see that assertion (1) will still be true for the new S, we need to see that L(u) is
the length of the shortest possible path from a to u. This is certainly true at beginning of
the algorithm, when u = a. At the later steps, we know that L(u) is the length of the
shortest possible path that stays completely in S. (This is because (2) is true for the old S.)
But assertion (2) (for the old ) also tells us that any path from a to u that goes outside §
already becomes at least as long as L(u) at the moment it leaves S. In other words, if some
path from a to u goes outside S, and v is the first vertex on this path which is outside 5,
then we know from assertion (2) that the length of the part of the path from a to v is
already at least as long as L(v), and L(v) > L(u). Thus no path from a to u could be
shorter than L(u).

(b) Now we need to update the labels on all vertices v which are one step away from
the new S. We actually only need to worry about the vertices adjacent to u. If v is adjacent
to u and either v is still unlabeled or if the existing L(v) is larger than L(u) 4+ w(u,v), then

we set L(v) equal to L(u) + w(u,v) and change the pointer on v to point back to u.

Now we need to see that assertion (2) is true for these new labels. If we are at the very first
step (so that S = {a}), then this is clear. At the later steps, notice that what we’ve done is
to check whether any path to v with u as its next to the last vertex is shorter than the paths
we already know about. So there are two things we need to rule out: i) that some vertex w
which is not adjacent to u should have been given a new label; ii) that with the new S, for
some vertex v adjacent to u there is now an even shorter path from a to v which lies in S

except for the last edge, and which does not have u as the next to the last vertex.

Okay, first consider objection i). Suppose w is one step away from S and consider a path
from a to w that lies inside S until the very last edge, and suppose that next to the last
vertex is v, where v € S and v # u. Then v lies in the old S, and we already know from
assertion (1) that the path we previously had from a to v was the shortest conceivable path;

therefore monkeying around with this path can get us nowhere.

Now consider objection ii): The answer here is really the same as the answer to objection i):
There’s no point in considering paths to v that don’t have u as their next to the last vertex,

because the old label on v already shows the best that can possibly be achieved that way.

Therefore assertions (1) and (2) are true at every step. Since there are a finite number
of vertices, after enough steps we finally have z € S, and assertion (1) then tells as that the
label on z gives the length of the shortest possible path from a to z. Furthermore, by
starting at z and tracing backwards using the pointer part of the labels, we actually see what

this shortest path is.



