## THE CANTOR EXPANSION OF A NUMBER

## E. L. Lady

By comparison, think of the base 8 representation (for example) of an integer $x$. This consists of a sequence of digits $b_{n}, \ldots, b_{0}$ such that $0 \leq b_{i} \leq 7$ and $x=8^{n} b_{n}+\cdots+8^{2} b_{2}+8 b_{1}+b_{0}$.

Analogously, the cantor expansion of $x$ consists of coefficients $a_{n}, \ldots, a_{1}$ such that $0 \leq a_{i} \leq i$ and

$$
x=a_{n} n!+\cdots+a_{2} 2!+a_{1} 1!.
$$

The following algorithms find the cantor expansion of an integer $x$ and, conversely, compute $x$ from its cantor expansion.
procedure decimal-to-cantor(x: positive integer)
$\mathrm{n}:=1$
$\mathrm{y}:=\mathrm{x} \quad\{\mathrm{y}$ is a temporary variable used so that this procedure won't destroy the original value of x.$\}$
while $\mathrm{y} \neq 0$
begin
$\mathrm{a}_{\mathrm{n}}:=\mathrm{y} \bmod (\mathrm{n}+1)$
$y:=\left(y-a_{n}\right) /(n+1)$
$\mathrm{n}:=\mathrm{n}+1$
end
$\left\{\right.$ The expansion for x will be $\left.\mathrm{a}_{\mathrm{n}} \mathrm{n}!+\mathrm{a}_{\mathrm{n}-1}(\mathrm{n}-1)!+\ldots+\mathrm{a}_{2} 2!+\mathrm{a}_{1} \cdot\right\}$
procedure cantor-to-decimal ( $\mathrm{a}_{\mathrm{n}}, \ldots, \mathrm{a}_{1}$ : integers with $\left.0 \leq \mathrm{a}_{\mathrm{i}} \leq \mathrm{i}\right)$
x :=0
for $i=n$ to 1
begin
$\mathrm{x}:=\mathrm{x}+\mathrm{a}_{\mathrm{i}}$
$\mathrm{x}:=\mathrm{i} * \mathrm{x}$
end
\{ x is the value of the number whose cantor expansion has the digits $\left.a_{\mathrm{n}}, \ldots, a_{1}.\right\}$

