The Greatest Common Divisor As a Linear Combination
 E. L. Lady

Proposition. Let a and b be integers. If t is a linear combination of a and b (i.e. $a x+b y=t$ for some x and y) then $a \bmod t$ and $b \bmod t$ are also linear combinations of a and b.

PRoof: Let q be the quotient and r the remainder when a is divided by t. Then

$$
\begin{aligned}
a \bmod t=r=a-q t & =a-q(a x+b y) \\
& =a(1-q x)+b(-q y)
\end{aligned}
$$

showing that $a \bmod t$ is a linear combination of a and b.
Likewise for $b \bmod t . \square$
Corollary. If a linear combination of a and b is not also a common divisor of a and b, then there exists a smaller strictly positive linear combination.

Proof: Suppose that $a x+b y=t$ and t does not divide a, for instance. Then $t \bmod a \neq 0$ and $t \bmod a<t$. But by the Proposition, $t \bmod a$ is a linear combination of a and b. \checkmark

Theorem. The smallest strictly positive linear combination of a and b is the same as the greatest common divisor of a and b.

Proof: Let $t=a x+b y$ and $g=\operatorname{gcd}(a, b)$. Since g divides both a and b, it is clear that g divides $a x+b y=t$. Thus $g \leq t$. On the other hand, by the above Corollary, if t is the smallest linear combination of a and b, then t must also be a common divisor of a and b, so $t \leq \operatorname{gcd}(a, b)=g$. Thus in this case $t=g . \square$

The proof of the Proposition above actually provides an algorithm for finding the smallest strictly positive linear combination of a and b, which by the Theorem is the same as $\operatorname{gcd}(a, b)$.

We start with any x and y such that $a x+b y \neq 0$ and let $t=a x+b y$. Now if t does not divide both a and b then either we let q be the quotient when a is divided by t and replace x, y, and t by $1-q x,-q y$ and $a \bmod t$, or, in case t divides a, let q be the quotient when b is divided by t and replace x, y, and t by $-q x, 1-q y$, and $b \bmod t$. Repeat until t divides both a and b. At this point, t will equal $\operatorname{gcd}(a, b)$ and $t=a x+b y$.

The algorithm below accomplishes this.

```
procedure smallest-linear-combination(a, b, x, y)
t : = ax + by
while ( \(\mathrm{a} \bmod \mathrm{t} \neq 0\) and \(\mathrm{b} \bmod \mathrm{t} \neq 0\) )
if \(a \bmod t \neq 0\) then
    begin
    \(\mathrm{q}:=\lfloor\mathrm{a} / \mathrm{t}\rfloor\)
    \(\mathrm{x}:=1-\mathrm{qx}\)
    y:= - qy
    \(\mathrm{t}:=\mathrm{a} \bmod \mathrm{t}\)
    end
else if \(\mathrm{b} \bmod \mathrm{t} \neq 0\)
    begin
    \(\mathrm{q}:=\lfloor\mathrm{b} / \mathrm{t}\rfloor\)
    \(\mathrm{x}:=-\mathrm{qx}\)
    \(y:=1-q y\)
    \(\mathrm{t}:=\mathrm{b} \bmod \mathrm{t}\)
    end
```

This algorithm works fairly quickly. For hand calculation, the most annoying part, if a and b are large numbers, is the continual need to divide a or b by t.

If we start with the initial values $x=1, y=0$, and $t=a$, then the following algorithm implements the same idea but with the advantage that the required long divisions involve increasingly small numbers.

After the algorithm, we give a pair of short numerical examples.
procedure linear-combination(a, b: strictly positive integers)
\{ We will find a sequences of values for x, y, and g such that in each case $a x+b y=g$, and the final value for g equals $\operatorname{gcd}(a, b) . \quad\}$

$$
\begin{aligned}
& \mathrm{g}_{0}:=\mathrm{a} \\
& \mathrm{x}_{0}:=1 \\
& \mathrm{y}_{0}:=0 \\
& \mathrm{~g}_{1}:=\mathrm{b} \\
& \mathrm{x}_{1}:=0 \\
& \mathrm{y}_{1}:=1
\end{aligned}
$$

$\left\{\right.$ Note that $\mathrm{ax}_{\mathrm{i}}+\mathrm{by}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}}$ in each case. $\}$
while $g_{0} \bmod \mathrm{~g}_{1} \neq 0$
begin
$\mathrm{q}:=\left\lfloor\mathrm{g}_{0} / \mathrm{g}_{1}\right\rfloor$
temp:= g_{1}
$\mathrm{g}_{1}:=\mathrm{g}_{0}-\mathrm{qg}_{1} \quad\left\{\mathrm{~g}_{1}:=\mathrm{g}_{0} \bmod \mathrm{~g}_{1}\right\}$
$\mathrm{g}_{0}:=$ temp
\{ These four steps do not change $\operatorname{gcd}\left(\mathrm{g}_{0}, \mathrm{~g}_{1}\right)$ since
$\operatorname{gcd}\left(\mathrm{g}_{0}-\mathrm{qg} \mathrm{g}_{1}, \mathrm{~g}_{1}\right)=\operatorname{gcd}\left(\mathrm{g}_{1}, \mathrm{~g}_{0}\right)$,
so we still have $\left.\operatorname{gcd}\left(\mathrm{g}_{1}, \mathrm{~g}_{0}\right)=\operatorname{gcd}(\mathrm{a}, \mathrm{b}) . \quad\right\}$
temp: $=\mathrm{x}_{1}$
$\mathrm{x}_{1}:=\mathrm{x}_{0}-\mathrm{qx} \mathrm{x}_{1}$
$\mathrm{x}_{0}:=$ temp
temp:= y_{1}
$\mathrm{y}_{1}:=\mathrm{y}_{0}-\mathrm{qy} \mathrm{y}_{1}$
$\mathrm{y}_{0}:=$ temp
$\left\{\right.$ Now $\left.\mathrm{ax}_{1}+\mathrm{by}_{1}=\mathrm{g}_{1}.\right\}$
end
$\left\{\right.$ Now g_{1} divides g_{0}, and x_{1} and y_{1} are integers such that $\left.\mathrm{ax}_{1}+\mathrm{by}_{1}=\mathrm{g}_{1}=\operatorname{gcd}\left(\mathrm{g}_{1}, \mathrm{~g}_{0}\right)=\operatorname{gcd}(\mathrm{a}, \mathrm{b}).\right\}$

	292 x	+126 y	$=\mathrm{g}$		39 x	$+87 y$	$=$
q	x	y	g	q	x	y	g
	1	0	292		1	0	39
	0	1	126		0	1	87
2	1	-2	40	0	1	0	39
3	-3	7	6	2	-2	1	9
6	19	-44	4	4	9	-4	3

