The Greatest Common Divisor As a Linear Combination E. L. Lady

Proposition. Let a and b be integers. If t is a linear combination of a and b (i.e. ax + by = t for some x and y) then $a \mod t$ and $b \mod t$ are also linear combinations of a and b.

PROOF: Let q be the quotient and r the remainder when a is divided by t. Then

$$a \bmod t = r = a - qt = a - q(ax + by)$$
$$= a(1 - qx) + b(-qy)$$

showing that $a \mod t$ is a linear combination of a and b.

Likewise for $b \mod t$.

Corollary. If a linear combination of a and b is not also a common divisor of a and b, then there exists a smaller strictly positive linear combination.

PROOF: Suppose that ax + by = t and t does not divide a, for instance. Then $t \mod a \neq 0$ and $t \mod a < t$. But by the Proposition, $t \mod a$ is a linear combination of a and b.

Theorem. The smallest strictly positive linear combination of a and b is the same as the greatest common divisor of a and b.

PROOF: Let t = ax + by and $g = \gcd(a, b)$. Since g divides both a and b, it is clear that g divides ax + by = t. Thus $g \le t$. On the other hand, by the above Corollary, if t is the **smallest** linear combination of a and b, then t must also be a common divisor of a and b, so $t \le \gcd(a, b) = g$. Thus in this case t = g.

The proof of the Proposition above actually provides an algorithm for finding the smallest strictly positive linear combination of a and b, which by the Theorem is the same as gcd(a, b).

We start with any x and y such that $ax + by \neq 0$ and let t = ax + by. Now if t does not divide both a and b then either we let q be the quotient when a is divided by t and replace x, y, and t by 1 - qx, -qy and $a \mod t$, or, in case t divides a, let q be the quotient when b is divided by t and replace x, y, and t by -qx, 1 - qy, and $b \mod t$. Repeat until t divides both a and b. At this point, t will equal $\gcd(a,b)$ and t = ax + by.

The algorithm below accomplishes this.

```
procedure smallest-linear-combination(a, b, x, y)
t := ax + by
while (a mod t \neq 0 and b mod t \neq 0)
if a mod t \neq 0 then
    begin
    q := |a/t|
    x := 1 - qx
    y := -qy
    t:= a mod t
    end
else if b mod t \neq 0
    begin
    q:= |b/t]
    x := -qx
    y := 1 - qy
    t:= b mod t
    end
```

This algorithm works fairly quickly. For hand calculation, the most annoying part, if a and b are large numbers, is the continual need to divide a or b by t.

If we start with the initial values x = 1, y = 0, and t = a, then the following algorithm implements the same idea but with the advantage that the required long divisions involve increasingly small numbers.

After the algorithm, we give a pair of short numerical examples.

```
procedure linear-combination(a, b: strictly positive integers)
            { We will find a sequences of values for x, y, and g such that in each case
        ax + by = g, and the final value for g equals gcd(a,b). }
g_0 := a
x_0 := 1
y_0 := 0
g_1 := b
x_1 := 0
y_1 := 1
          { Note that ax<sub>i</sub>+by<sub>i</sub>=g<sub>i</sub> in each case.}
while g_0 \mod g_1 \neq 0
     begin
     q := |g_0/g_1|
     temp:=g_1
     g_1 := g_0 - qg_1  { g_1 := g_0 \mod g_1 }
     g_0 := temp
            { These four steps do not change gcd(g_0,g_1) since
        gcd(g_0-qg_1, g_1) = gcd(g_1, g_0),
        so we still have gcd(g_1,g_0) = gcd(a,b).
     temp:= x_1
     x_1 := x_0 - qx_1
     x_0 := temp
     temp:=y_1
     y_1 := y_0 - qy_1
     y_0 := temp
            \{ Now \ ax_1 + by_1 = g_1 . \}
     end
            { Now g_1 divides g_0, and x_1 and y_1 are integers such that
        ax_1 + by_1 = g_1 = gcd(g_1, g_0) = gcd(a,b).
```

	292x	+	126y	=	g		393		+	87у	=	g
q	x		У		g	q	3	2		У		g
	1		0	2	92		1	_		0		39
	0		1	1	26		()		1		87
2	1		-2		40	0	1	_		0		39
3	-3		7		6	2	-2	2		1		9
6	19		-44		4	4	9)		-4		3