Name: _____

Question 1 Suppose that V is a complex (i.e. $\mathbb{F} = \mathbb{C}$) inner-product space. Prove that if $N \in \mathcal{L}(V)$ is normal and nilpotent, then N = 0.

 $Question \ 2$ Give an example of an operator on \mathbb{C}^3 whose minimal polynomial equals $z^2.$

Question 3 Let n be a positive integer. Let $A \in \mathbb{C}^{n,n}$ be a square n-by-n matrix (cf. 3.39 in the book for the notation). Clearly, for any integer m,

 $\dim \operatorname{span}(A, A^2, \dots, A^m) \le n^2 = \dim \mathbb{C}^{n, n}$

Prove that in fact a stronger inequality

 $\dim \operatorname{span}(A, A^2, \dots, A^m) \le n$

takes place for any m > 0.

Question 4 For a complex number $a \in \mathbb{C}$, let $T_a \in \mathcal{L}(\mathbb{C}^4)$ be an operator whose matrix (with respect to some basis) is

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & a & 2 \end{bmatrix}$$

a) Find the characteristic polynomial of T_a .

Answer:

b) Find the minimal polynomial of T_a

Answer:

c) Is it true that $T_0 = T_1$ (with possibly different choices of the basis)? Prove your answer.

$Question \ 5$

Assume that two operators S and T acting on a finite-dimensional vector space V over $\mathbb C$ commute:

$$ST = TS.$$

Prove that they must have a common eigenvector.

Hint. Explain why $E(\lambda, T) \neq \{0\}$ for some $\lambda \in \mathbb{C}$, then prove that this space is invariant with respect to S.

 $\label{eq:Question 6} Question \ 6$ Let A and B be two n-by-n matrices (with n>0), and let

$$p_A(z) = \det(zI - A)$$
 and $p_B(z) = \det(zI - B)$

Prove or give a counterexample for the following statement:

 $det(p_A(B)) = 0$ if an only if $det(p_B(A)) = 0$