Name:

Question 1
Suppose that V is a complex (i.e. $\mathbb{F}=\mathbb{C}$) inner-product space. Prove that if $N \in \mathcal{L}(V)$ is normal and nilpotent, then $N=0$.

Question 2
Give an example of an operator on \mathbb{C}^{3} whose minimal polynomial equals z^{2}.

Let n be a positive integer. Let $A \in \mathbb{C}^{n, n}$ be a square n-by- n matrix (cf. 3.39 in the book for the notation). Clearly, for any integer m,

$$
\operatorname{dim} \operatorname{span}\left(A, A^{2}, \ldots, A^{m}\right) \leq n^{2}=\operatorname{dim} \mathbb{C}^{n, n}
$$

Prove that in fact a stronger inequality

$$
\operatorname{dim} \operatorname{span}\left(A, A^{2}, \ldots, A^{m}\right) \leq n
$$

takes place for any $m>0$.

Question 4
For a complex number $a \in \mathbb{C}$, let $T_{a} \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ be an operator whose matrix (with respect to some basis) is

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & a & 2
\end{array}\right]
$$

a) Find the characteristic polynomial of T_{a}.

Answer:
b) Find the minimal polynomial of T_{a}

Answer:
c) Is it true that $T_{0}=T_{1}$ (with possibly different choices of the basis)? Prove your answer.

Question 5

Assume that two operators S and T acting on a finite-dimensional vector space V over \mathbb{C} commute:

$$
S T=T S .
$$

Prove that they must have a common eigenvector.
Hint. Explain why $E(\lambda, T) \neq\{0\}$ for some $\lambda \in \mathbb{C}$, then prove that this space is invariant with respect to S.

Question 6
Let A and B be two n-by- n matrices (with $n>0$), and let

$$
p_{A}(z)=\operatorname{det}(z I-A) \quad \text { and } \quad p_{B}(z)=\operatorname{det}(z I-B)
$$

Prove or give a counterexample for the following statement:

$$
\operatorname{det}\left(p_{A}(B)\right)=0 \quad \text { if an only if } \quad \operatorname{det}\left(p_{B}(A)\right)=0
$$

