
The Definite Integral

1 Area Function

Let f be a real-valued function defined on a set I; an area function (for f)
should assign, to every a ≤ b in I, a value Af (a, b) satisfying the properties:

1. If a < c < b then Af (a, b) = Af (a, c) +Af (c, b)

2. If m ≤ f(x) ≤M for all x ∈ (a, b) then m(b− a) ≤ Af (a, b) ≤M(b− a)

(Draw pictures illustrating these properties.)
For nonnegative f , Af (a, b) corresponds to our intuitive notion of the area

between the graph of f and the x−axis between x = a and x = b. This extends
to functions f that take negative values by simply counting area under the axis
as negative area.

We will show that for a continuous function f on an interval I, there exists
a unique area function for f on I. This easily extends to functions with only
finitely many jump discontinuities, since if f has such a discontinuity at x = c
then near c, |f | is bounded by some positive number M , and |Af (c− ε, c+ ε)| ≤
2Mε which goes to 0 as ε→ 0.

2 Definition(s) of the definite integral

Let f be a function defined on an interval [a, b]. For the time being, let’s
assume that f as a continuous, positive function. We will define Af (a, b) by
approximating the area by rectangles. There are several ways we can do this;
it turns out that they are all the same when f is continuous, or even piecewise
continuous.

2.1 Riemann sums

Subdivide the interval [a, b] into n pieces, not necessarily the same size:

a = x0 < x1 < x2 < · · · < xn = b

.

The set P = {x0, x1, . . . , xn} is called a partition of [a, b].
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Let ‖P‖ be the norm of the partition, that is, the width of the largest subin-
terval:

‖P‖ = max{x1 − x0, x2 − x1, x3 − x2, . . . , xn − xn−1}

Sometimes we write ∆xi = xi − xi−1, in which case

‖P‖ = max{∆x1,∆x2, . . . ,∆xn}

For example, if P = Pn is the uniform partition where the subintervals are all
the same width, then ∆xi = ∆x = b−a

n for all i, and xi = a+ b−a
n i.

Pick an arbitrary point x∗i from each interval [xi−1, xi]

Form the Riemann Sum:
n∑

i=1

f(x∗i )∆xi

This is the area of a rectangular approximation: (picture)

There are many ways we can choose x∗i . We could, for example, always choose
x∗i = xi−1 (left endpoint), or x∗i = xi (right endpoint).

If f is continuous, then it attains its minimum mi and maximum Mi on every
interval [xi−1, xi].

If x∗i is the point at which f(x∗i ) = mi, then the sum

Lf (P ) =

n∑
i=1

f(x∗i )∆xi =

n∑
i=1

mi∆xi

is called the Riemann lower sum corresponding to the partition P , and
corresponds to approximating the area from below by rectangles.

If x∗i is the point at which f(x∗i ) = Mi, then the sum

Uf (P ) =

n∑
i=1

f(x∗i )∆xi =

n∑
i=1

Mi∆xi

is called the Riemann upper sum corresponding to the partition P , and
corresponds to approximating the area from above by rectangles.
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Note: If P is any partition, then Lf (P ) ≤any other Riemann sum w/r to
P ≤ Uf (P ).

Example: f(x) = x2 on [a, b], a ≥ 0. Note Lf (P ) is the same as a left-endpoint
sum, while Uf (P ) is the same as a right-endpoint sum, no matter what
the partition is. For simplicity, assume a uniform partition

Definition of
∫ b

a
f(x)dx: Given a < b and a function f : [a, b]→ R,

suppose lim
‖P‖→0

∑n
i=1 f(x∗i )∆xi exists. This means that there is some unique

number L such that by taking the partition P fine enough, the Riemann
sum can be made arbitrarily close to L regardless of how we choose x∗i .

Rigorously, lim
‖P‖→0

∑n
i=1 f(x∗i )∆xi = L provided that for every ε > 0 there is a

δ > 0 such that for any partition P = {x0, . . . , xn} of [a, b] with ‖P‖ < δ
and any choice of x∗i ∈ [xi−1, xi], we have

|
n∑

i=1

f(x∗i )∆xi − L| < ε

For a given f and a < b, if the above limit exists then we call f integrable on

[a, b] and write
∫ b

a
f(x)dx =“the (definite) integral of f from a to b” for

this limit.

This definition makes sense even if f is not continuous or nonnegative, though
not every such function will be integrable:

Example: Suppose f(x) =

{
2 if x is rational;

3 if x is irrational
. Then Lf (P ) = 14 < 21 =

Uf (P ) for any partition P of [0, 7], so f is not integrable on [0, 7] (or any
other nontrivial interval).

Theorem 2.1 If f is continuous on an interval [a, b], or even has finitely many
jump discontinuities, then f is integrable. In the case of such f all the following
integrals agree:

1. Riemann integral

2. Integral defined w/r to uniform partitions (Most Calc books)

3. Integral defined w/r to inner and outer rectangular approximations (Dar-
boux)

4. Integral defined w/r to left-endpoints, right endpoints, or midpoints as
choice of x∗i (eg, left endpoints=Cauchy)
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Note: These ways of defining the integral might not agree for functions which
are not continuous. For example, if [a, b] = [0, 1] and we always assume
uniform partitions and use left endpoints, then the function in the last
example would be integrable. (Exercise: What would be the integral in
this case?)

Example
∫ b

a
kdx, k a constant, a < b

Example
∫ b

0
xdx, 0 < b

Example
∫ b

0
x2dx = b3

3 , 0 < b

Theorem 2.2 The definite integral is an area function.

In fact,
∫ b

a
f(x)dx satisfies the following properties:

A. Basic properties. Suppose a < b, and
∫ b

a
f(x)dx,

∫ b

a
g(x)dx exist on [a, b]

1) If a < c < b then
∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

2) If m ≤ f(x) ≤M on (a, b) then m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a)

3) If k is a constant then
∫ b

a
kf(x)dx=k

∫ b

a
f(x)dx

4)
∫ b

a
(f + g)(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

B. Extensions

1) If a < b define
∫ a

b
f(x)dx to be −

∫ b

a
f(x)dx

2) Define
∫ a

a
f(x)dx := 0

3) Remark: All 4 properties above still hold if b < a (and b < c < a in #1)

C. More useful properties

1) If f(x) ≥ 0 on (a, b) then
∫ b

a
f(x)dx ≥ 0

2) If f(x) ≥ g(x) on (a, b) then
∫ b

a
f(x)dx ≥

∫ b

a
g(x)dx

3) |
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx
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