The Definite Integral

1 Area Function

Let f be a real-valued function defined on a set I; an area function (for f) should assign, to every $a \leq b$ in I, a value $A_f(a,b)$ satisfying the properties:

- 1. If a < c < b then $A_f(a, b) = A_f(a, c) + A_f(c, b)$
- 2. If $m \le f(x) \le M$ for all $x \in (a,b)$ then $m(b-a) \le A_f(a,b) \le M(b-a)$

(Draw pictures illustrating these properties.)

For nonnegative f, $A_f(a, b)$ corresponds to our intuitive notion of the area between the graph of f and the x-axis between x=a and x=b. This extends to functions f that take negative values by simply counting area under the axis as negative area.

We will show that for a continuous function f on an interval I, there exists a unique area function for f on I. This easily extends to functions with only finitely many jump discontinuities, since if f has such a discontinuity at x=c then near c, |f| is bounded by some positive number M, and $|A_f(c-\epsilon,c+\epsilon)| \leq 2M\epsilon$ which goes to 0 as $\epsilon \to 0$.

2 Definition(s) of the definite integral

Let f be a function defined on an interval [a, b]. For the time being, let's assume that f as a continuous, positive function. We will define $A_f(a, b)$ by approximating the area by rectangles. There are several ways we can do this; it turns out that they are all the same when f is continuous, or even piecewise continuous.

2.1 Riemann sums

Subdivide the interval [a, b] into n pieces, not necessarily the same size:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

The set $P = \{x_0, x_1, \dots, x_n\}$ is called a partition of [a, b].

Let ||P|| be the *norm* of the partition, that is, the width of the largest subinterval:

$$||P|| = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}\$$

Sometimes we write $\Delta x_i = x_i - x_{i-1}$, in which case

$$||P|| = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\}$$

For example, if $P=P_n$ is the uniform partition where the subintervals are all the same width, then $\Delta x_i=\Delta x=\frac{b-a}{n}$ for all i, and $x_i=a+\frac{b-a}{n}i$.

Pick an arbitrary point x_i^* from each interval $[x_{i-1}, x_i]$

Form the Riemann Sum:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

This is the area of a rectangular approximation: (picture)

There are many ways we can choose x_i^* . We could, for example, always choose $x_i^* = x_{i-1}$ (left endpoint), or $x_i^* = x_i$ (right endpoint).

If f is continuous, then it attains its minimum m_i and maximum M_i on every interval $[x_{i-1}, x_i]$.

If x_i^* is the point at which $f(x_i^*) = m_i$, then the sum

$$L_f(P) = \sum_{i=1}^n f(x_i^*) \Delta x_i = \sum_{i=1}^n m_i \Delta x_i$$

is called the $Riemann\ lower\ sum\ corresponding$ to the partition P, and corresponds to approximating the area from below by rectangles.

If x_i^* is the point at which $f(x_i^*) = M_i$, then the sum

$$U_f(P) = \sum_{i=1}^n f(x_i^*) \Delta x_i = \sum_{i=1}^n M_i \Delta x_i$$

is called the $Riemann\ upper\ sum\ corresponding$ to the partition P, and corresponds to approximating the area from above by rectangles.

Note: If P is any partition, then $L_f(P) \le$ any other Riemann sum w/r to $P \le U_f(P)$.

Example: $f(x) = x^2$ on $[a, b], a \ge 0$. Note $L_f(P)$ is the same as a left-endpoint sum, while $U_f(P)$ is the same as a right-endpoint sum, no matter what the partition is. For simplicity, assume a uniform partition

Definition of $\int_a^b f(x)dx$: Given a < b and a function $f: [a,b] \to \mathbb{R}$,

suppose $\lim_{\|P\|\to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i$ exists. This means that there is some unique number L such that by taking the partition P fine enough, the Riemann sum can be made arbitrarily close to L regardless of how we choose x_i^* .

Rigorously, $\lim_{\|P\|\to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i = L$ provided that for every $\epsilon > 0$ there is a $\delta > 0$ such that for any partition $P = \{x_0, \dots, x_n\}$ of [a, b] with $\|P\| < \delta$ and any choice of $x_i^* \in [x_{i-1}, x_i]$, we have

$$\left|\sum_{i=1}^{n} f(x_i^*) \Delta x_i - L\right| < \epsilon$$

For a given f and a < b, if the above limit exists then we call f integrable on [a,b] and write $\int_a^b f(x)dx$ = "the (definite) integral of f from a to b" for this limit.

This definition makes sense even if f is not continuous or nonnegative, though not every such function will be integrable:

Example: Suppose $f(x) = \begin{cases} 2 & \text{if } x \text{ is rational;} \\ 3 & \text{if } x \text{ is irrational} \end{cases}$. Then $L_f(P) = 14 < 21 = U_f(P)$ for any partition P of [0,7], so f is not integrable on [0,7] (or any other nontrivial interval).

Theorem 2.1 If f is continuous on an interval [a, b], or even has finitely many jump discontinuities, then f is integrable. In the case of such f all the following integrals agree:

- 1. Riemann integral
- 2. Integral defined w/r to uniform partitions (Most Calc books)
- 3. Integral defined w/r to inner and outer rectangular approximations (Darboux)
- 4. Integral defined w/r to left-endpoints, right endpoints, or midpoints as choice of x_i^* (eg, left endpoints=Cauchy)

Note: These ways of defining the integral might *not* agree for functions which are not continuous. For example, if [a,b] = [0,1] and we always assume uniform partitions and use left endpoints, then the function in the last example would be integrable. (**Exercise:** What would be the integral in this case?)

Example $\int_a^b k dx$, k a constant, a < b

Example $\int_0^b x dx$, 0 < b

Example $\int_0^b x^2 dx = \frac{b^3}{3}, \ 0 < b$

Theorem 2.2 The definite integral is an area function.

In fact, $\int_a^b f(x)dx$ satisfies the following properties:

A. Basic properties. Suppose a < b, and $\int_a^b f(x) dx$, $\int_a^b g(x) dx$ exist on [a,b]

- 1) If a < c < b then $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
- 2) If $m \le f(x) \le M$ on (a,b) then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
- 3) If k is a constant then $\int_a^b kf(x)dx = k \int_a^b f(x)dx$
- 4) $\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$

B. Extensions

- 1) If a < b define $\int_a^a f(x)dx$ to be $-\int_a^b f(x)dx$
- 2) Define $\int_a^a f(x)dx := 0$
- 3) **Remark:** All 4 properties above still hold if b < a (and b < c < a in #1)

C. More useful properties

- 1) If $f(x) \ge 0$ on (a, b) then $\int_a^b f(x)dx \ge 0$
- 2) If $f(x) \ge g(x)$ on (a,b) then $\int_a^b f(x)dx \ge \int_a^b g(x)dx$
- 3) $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx$