The Definite Integral

1 Area Function

Let f be a real-valued function defined on a set I; an area function (for f) should assign, to every $a \leq b$ in I, a value $A_{f}(a, b)$ satisfying the properties:

1. If $a<c<b$ then $A_{f}(a, b)=A_{f}(a, c)+A_{f}(c, b)$
2. If $m \leq f(x) \leq M$ for all $x \in(a, b)$ then $m(b-a) \leq A_{f}(a, b) \leq M(b-a)$
(Draw pictures illustrating these properties.)
For nonnegative $f, A_{f}(a, b)$ corresponds to our intuitive notion of the area between the graph of f and the x-axis between $x=a$ and $x=b$. This extends to functions f that take negative values by simply counting area under the axis as negative area.

We will show that for a continuous function f on an interval I, there exists a unique area function for f on I. This easily extends to functions with only finitely many jump discontinuities, since if f has such a discontinuity at $x=c$ then near $c,|f|$ is bounded by some positive number M, and $\left|A_{f}(c-\epsilon, c+\epsilon)\right| \leq$ $2 M \epsilon$ which goes to 0 as $\epsilon \rightarrow 0$.

2 Definition(s) of the definite integral

Let f be a function defined on an interval $[a, b]$. For the time being, let's assume that f as a continuous, positive function. We will define $A_{f}(a, b)$ by approximating the area by rectangles. There are several ways we can do this; it turns out that they are all the same when f is continuous, or even piecewise continuous.

2.1 Riemann sums

Subdivide the interval $[a, b]$ into n pieces, not necessarily the same size:

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
$$

The set $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is called a partition of $[a, b]$.

Let $\|P\|$ be the norm of the partition, that is, the width of the largest subinterval:

$$
\|P\|=\max \left\{x_{1}-x_{0}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{n}-x_{n-1}\right\}
$$

Sometimes we write $\Delta x_{i}=x_{i}-x_{i-1}$, in which case

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right\}
$$

For example, if $P=P_{n}$ is the uniform partition where the subintervals are all the same width, then $\Delta x_{i}=\Delta x=\frac{b-a}{n}$ for all i, and $x_{i}=a+\frac{b-a}{n} i$.

Pick an arbitrary point x_{i}^{*} from each interval $\left[x_{i-1}, x_{i}\right]$
Form the Riemann Sum:

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This is the area of a rectangular approximation: (picture)
There are many ways we can choose x_{i}^{*}. We could, for example, always choose $x_{i}^{*}=x_{i-1}$ (left endpoint), or $x_{i}^{*}=x_{i}$ (right endpoint).

If f is continuous, then it attains its minimum m_{i} and maximum M_{i} on every interval $\left[x_{i-1}, x_{i}\right]$.
If x_{i}^{*} is the point at which $f\left(x_{i}^{*}\right)=m_{i}$, then the sum

$$
L_{f}(P)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

is called the Riemann lower sum corresponding to the partition P, and corresponds to approximating the area from below by rectangles.
If x_{i}^{*} is the point at which $f\left(x_{i}^{*}\right)=M_{i}$, then the sum

$$
U_{f}(P)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\sum_{i=1}^{n} M_{i} \Delta x_{i}
$$

is called the Riemann upper sum corresponding to the partition P, and corresponds to approximating the area from above by rectangles.

Note: If P is any partition, then $L_{f}(P) \leq$ any other Riemann sum w / r to $P \leq U_{f}(P)$.

Example: $f(x)=x^{2}$ on $[a, b], a \geq 0$. Note $L_{f}(P)$ is the same as a left-endpoint sum, while $U_{f}(P)$ is the same as a right-endpoint sum, no matter what the partition is. For simplicity, assume a uniform partition

Definition of $\int_{a}^{b} f(x) d x$: Given $a<b$ and a function $f:[a, b] \rightarrow \mathbb{R}$, suppose $\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$ exists. This means that there is some unique number L such that by taking the partition P fine enough, the Riemann sum can be made arbitrarily close to L regardless of how we choose x_{i}^{*}.
Rigorously, $\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=L$ provided that for every $\epsilon>0$ there is a $\delta>0$ such that for any partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$ with $\|P\|<\delta$ and any choice of $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$, we have

$$
\left|\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}-L\right|<\epsilon
$$

For a given f and $a<b$, if the above limit exists then we call f integrable on $[a, b]$ and write $\int_{a}^{b} f(x) d x=$ "the (definite) integral of f from a to b " for this limit.

This definition makes sense even if f is not continuous or nonnegative, though not every such function will be integrable:

Example: Suppose $f(x)=\left\{\begin{array}{ll}2 & \text { if } x \text { is rational; } \\ 3 & \text { if } x \text { is irrational }\end{array}\right.$. Then $L_{f}(P)=14<21=$ $U_{f}(P)$ for any partition P of $[0,7]$, so f is not integrable on [0,7] (or any other nontrivial interval).

Theorem 2.1 If f is continuous on an interval $[a, b]$, or even has finitely many jump discontinuities, then f is integrable. In the case of such f all the following integrals agree:

1. Riemann integral
2. Integral defined w / r to uniform partitions (Most Calc books)
3. Integral defined w / r to inner and outer rectangular approximations (Darboux)
4. Integral defined w / r to left-endpoints, right endpoints, or midpoints as choice of x_{i}^{*} (eg, left endpoints=Cauchy)

Note: These ways of defining the integral might not agree for functions which are not continuous. For example, if $[a, b]=[0,1]$ and we always assume uniform partitions and use left endpoints, then the function in the last example would be integrable. (Exercise: What would be the integral in this case?)

Example $\int_{a}^{b} k d x, k$ a constant, $a<b$
Example $\int_{0}^{b} x d x, 0<b$
Example $\int_{0}^{b} x^{2} d x=\frac{b^{3}}{3}, 0<b$
Theorem 2.2 The definite integral is an area function.
In fact, $\int_{a}^{b} f(x) d x$ satisfies the following properties:
A. Basic properties. Suppose $a<b$, and $\int_{a}^{b} f(x) d x, \int_{a}^{b} g(x) d x$ exist on $[a, b]$

1) If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
2) If $m \leq f(x) \leq M$ on (a, b) then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$
3) If k is a constant then $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
4) $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$

B. Extensions

1) If $a<b$ define $\int_{b}^{a} f(x) d x$ to be $-\int_{a}^{b} f(x) d x$
2) Define $\int_{a}^{a} f(x) d x:=0$
3) Remark: All 4 properties above still hold if $b<a$ (and $b<c<a$ in \#1)

C. More useful properties

1) If $f(x) \geq 0$ on (a, b) then $\int_{a}^{b} f(x) d x \geq 0$
2) If $f(x) \geq g(x)$ on (a, b) then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
3) $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$
