Integral

9:01 AM

1 Area Function

Let f be a real-valued function defined on a set I; an area function (for f) should assign, to every $a \leq b$ in I, a value $A_f(a,b)$ satisfying the properties:

1. If a < c < b then $A_f(a, b) = A_f(a, c) + A_f(c, b)$

2. If
$$m \le f(x) \le M$$
 for all $x \in (a,b)$ then $n(b-a) \le A_f(a,b)$ $M(b-a)$

(Draw pictures illustrating these properties.)

For nonnegative f, $A_f(a,b)$ corresponds to our intuitive notion of the area between the graph of f and the x-axis between x=a and x=b. This extends to functions f that take negative values by simply counting area under the axis as negative area.

We will show that for a continuous function f on an interval I, there exists a unique area function for f on I. This easily extends to functions with only finitely many jump discontinuities, since if f has such a discontinuity at x = c then near c, |f| is bounded by some positive number M, and $|A_f(c - \epsilon, c + \epsilon)| \le 2M\epsilon$ which goes to 0 as $\epsilon \to 0$.

9- (x)

A_f(a,b)

A_f(a,b)

Screen clipping taken: 11/24/2008, 9:02 AM

2 Definition(s) of the definite integral

Let f be a function defined on an interval [a,b]. For the time being, let's assume that f as a continuous, positive function. We will define $A_f(a,b)$ by approximating the area by rectangles. There are several ways we can do this; it turns out that they are all the same when f is continuous, or even piecewise continuous.

2.1 Riemann sums

Subdivide the interval [a, b] into n pieces, not necessarily the same size:

 $a = x_0 < x_1 < x_2 < \dots < x_n = b$

The set $P = \{x_0, x_1, \dots, x_n\}$ is called a partition of [a, b].

Screen clipping taken: 11/24/2008, 9:03 AM

Let ||P|| be the norm of the partition, that is, the width of the largest subin-

$$||P|| = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}$$

Sometimes we write $\Delta x_i = x_i - x_{i-1}$, in which case

$$||P|| = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\}$$

For example, if $P = P_0$ is the <u>uniform partition</u> where the subintervals are all the same width, then $\Delta x_i = \Delta x = \frac{b-a}{lR}$ for all i, and $x_i = a + \frac{b-a}{n}i$.

Pick an arbitrary point (x_i^*) from each interval $[x_{i-1}, x_i]$

Form the Riemann Sum:

This is the area of a rectangular approximation: (picture)

are all

A YI A Y A Y A

YO X E G Y A A

YO X E G Y A A

YO X E G Y A

YO X B A A

YO A A

YO A A

YO A A

YO A

Y

There are many ways we can choose x_i^* . We could, for example, always choose $x_i^* = x_{i-1}$ (left endpoint), or $x_i^* = x_i$ (right endpoint).

If f is continuous, then it attains its minimum m_i and maximum M_i on every interval $[x_{i-1}, x_i]$.

If x_i^* is the point at which $f(x_i^*) = m_i$, then the sum

$$L_f(P) = \sum_{i=1}^n f(x_i^*) \Delta x_i = \sum_{i=1}^n m_i \Delta x_i$$

is called the $\underline{Riemann\ lower\ sum}$ corresponding to the partition P, and corresponds to approximating the area from below by rectangles.

If x_i^* is the point at which $f(x_i^*) = M_i$, then the sum

$$U_f(P) = \sum_{i=1}^n f(x_i^*) \Delta x_i = \sum_{i=1}^n M_i \Delta x_i$$

is called the $Riemann\ upper\ sum\ corresponding$ to the partition P, and corresponds to approximating the area from above by rectangles.

Screen clipping taken: 11/24/2008, 9:04 AM

Note: If P is any partition, then $L_f(P) \le \text{any other Riemann sum w/r}$ to $P \le U_f(P)$.

Example: $f(x) = x^2$ on $[a,b], a \ge 0$. Note $L_f(P)$ is the same as a right-endpoint sum, while $U_f(P)$ is the same as a left-endpoint sum, no matter what the partition is. For simplicity, assume a uniform partition

Screen clipping taken: 11/24/2008, 9:04 AM

Note: If P is any partition, then $L_f(P) \le \!$ any other Riemann sum w/r to $P \le U_f(P).$

Example: $f(x) = x^2$ on $[a,b], a \ge 0$. Note $L_f(P)$ is the same as a right-endpoint sum, while $U_f(P)$ is the same as a left endpoint sum, no matter what the partition is. For simplicity, assume a uniform partition G and $G \ge 0$

$$0x = \frac{1}{2} \frac{1}{2}$$

f increasing on [a,6),

so for a lower sum, x_i^* = left endpoint = x_{i-1} = (i-1)AX

$$L_{f}(P_{n}) = \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i} = \sum_{i=1}^{n} [(i-1)\Delta x]^{2} \Delta x$$

$$= \sum_{i=1}^{n} ((i-1)^{2} \Delta x)^{3} = (\Delta x)^{3} \left(\sum_{i=1}^{n} ((i-1)^{2}) \right) = (\Delta x)^{3} \sum_{i=1}^{n-1} (i-1)^{2} = (\Delta x)^{3} \sum_{i=1}^{n-1} (i-1)^{2} = (\Delta x)^{3} \sum_{i=1}^{n-1} (i-1)^{2} = (\Delta x)^{3} \sum_{i=1}^{n-1} ((i-1)^{2}) = (\Delta x)^{3} \sum_{i=1}^{n-1} ((i$$

$$U_{f}(P) = \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i} = \sum_{i=1}^{n} (i\Delta x) \Delta x = (\Delta x)^{3} \sum_{i=1}^{n} i^{2}$$

$$= (\frac{b^{3}}{h^{3}}) (\frac{n(n+1)(2n+1)}{b}) = \frac{b^{3}}{3} + \frac{qvadration}{h^{3}}$$

$$= a^{(10)} \rightarrow \frac{b^{3}}{3} \quad \text{as } n \rightarrow \infty$$

Definition of $\int_a^b f(x)dx$: Given a < b and a function $f: [a,b] \to \mathbb{R}$,

suppose $\lim_{\|P\|\to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i$ exists. This means that there is some unique number L such that by taking the partition P fine enough, the Riemann sum can be made arbitrarily close to L regardless of how we choose x_i^* .

Rigorously $\lim_{\|P\|\to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i = L$ provided that for every $\epsilon > 0$ there is a $\delta > 0$ such that for any partition $P = \{x_0, \dots, x_n\}$ of [a, b] with $\|P\| < \delta$ and any choice of $x_i^* \in [x_{i-1}, x_i]$, we have

$$|\sum_{i=1}^{n} f(x_i^*) \Delta x_i - L| < \epsilon$$

f Riemann hyleynble

For a given f and a < bc if the above limit exists then we call f integrable on [a,b] and write $\int_a^b f(x) dx =$ "the (definite) integral of f from a to b" for this limit.

Screen clipping taken: 11/24/2008, 9:05 AM

This definition makes sense even if f is not continuous or nonnegative, though not every such function will be integrable:

Example: Suppose $f(x) = \begin{cases} 2 & \text{if } x \text{ is rational;} \\ 3 & \text{if } x \text{ is irrational.} \end{cases}$ Then $L_f(P) = 14 < 21 = 16$ $U_f(P)$ for any partition P of [0,7], so f is not integrable on [0,7] (or any other nontrivial interval).

Screen clipping taken: 11/24/2008, 9:05 AM

an Integral,

Theorem 2.1 If f is continuous on an interval [a,b], or even has finitely many jump discontinuities, then f is integrable. In the case of such f all the following integrals agree:

- 1. Riemann integral .
- 2. Integral defined w/r to uniform partitions (Most Calc books)
- 3. Integral defined w/r to inner and outer rectangular approximations (Dar-
- 4. Integral defined w/r to left-endpoints, right endpoints, or midpoints as choice of x_i^* (eq. left endpoints=Cauchy)

$$U_{f}(P) - L_{f}(P) = \sum_{i \geq 1} \dot{m}_{i} \Delta x_{i} - \sum_{i \geq 1} \dot{m}_{i} \Delta x_{i}$$

$$= \sum_{i \geq 1} (\dot{m}_{i} - \dot{m}_{i}) \Delta x_{i} < \sum_{i \geq 1} \mathcal{E} \Delta x_{i} = \mathcal{E} \left[\sum_{i \geq 1} \Delta x_{i} = \mathcal{E}(b - a) \right]$$

$$= \sum_{i \geq 1} (\dot{m}_{i} - \dot{m}_{i}) \Delta x_{i} < \sum_{i \geq 1} \mathcal{E} \Delta x_{i} = \mathcal{E}(b - a)$$

Note: These ways of defining the integral might *not* agree for functions which are not continuous. For example, if [a,b]=[0,1] and we always assume uniform partitions and use left endpoints, then the function in the last example would be integrable. (Exercise: What would be the integral in this case?)

Screen clipping taken: 11/26/2008, 8:56 AM

Screen clipping taken: 11/26/2008, 8:56 AM

- m - ?

Example $\int_{0}^{b} x^{2} dx = \frac{b^{3}}{3}, 0 < b$

Theorem 2.2 The definite integral is an area function.

In fact, $\int_{a}^{b} f(x)dx$ satisfies the following properties:

A. Basic properties. Suppose a < b, and $\int_a^b f(x)dx$, $\int_a^b g(x)dx$ exist on [a,b]

1) If
$$a < c < b$$
 then $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

(2) If $m \le f(x) \le M$ on (a,b) then $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$

3) If k is a constant then $\int_a^b kf(x)dx - k \int_a^b f(x)dx$

4) $\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx$

B. Extensions

C. More useful properties

3)
$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx$$

xi e [x. xi) arbitrary 1) If a < b define $\int_{a}^{a} f(x)dx$ to be $-\int_{a}^{b} f(x)dx$ 2) Define $\int_{a}^{a} f(x)dx := 0$ 3) Remark: All 4 properties above still hold if b < a (and b < c < a in #1)

More useful properties

1) If $f(x) \ge 0$ on (a, b) then $\int_{a}^{b} f(x)dx \ge 0$ 2) If $f(x) \ge g(x)$ on (a, b) then $\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$ 3) $|\int_{a}^{b} f(x)dx| \le \int_{a}^{b} |f(x)|dx$ $|\int_{a}^{b} f(x)dx| \le \int_{a}^{b} |f(x)|dx$ $|\int_{a}^{b} f(x)dx| \le \int_{a}^{b} |f(x)|dx$

Screen clipping taken: 11/26/2008, 8:57 AM

C1 ff 30,
$$\sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i} \geq \sum_{i=1}^{n} \Delta x_{i} = 0$$

C2 $\int_{a}^{b} f(x_{i}) dx \geq 0$

$$\int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}) dx \geq 0$$

$$\int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}) dx$$

$$\int_{a}^{b} f(x_{i}) dx = \int_{a}^{b} f(x_{i}$$