MATH 241—THEORY HANDOUT

(Prof. Ross's sections)

THEOREM	HYPOTHESES	CONCLUSION
Bolzano	f continuous on $[a, b]f(a) < 0 < f(b)$	$f(c) = 0$ for some $c \in (a, b)$
Intermediate Value Theorem $(I.V.T.)$	f continuous on $[a, b]$ $f(a) < d < f(b)$	$f(c) = d$ for some $c \in (a, b)$
Extreme Value Theorem	f is continuous on $[a, b]$	f attains a maximum and a minimum on $[a, b]$
Fermat's Theorem	f has a local maximum (or minimum) at $c \in (a,b)$ f differentiable at c	f'(c) = 0
Rolle	f continuous on $[a, b]f$ differentiable on $(a, b)f(a) = f(b)$	$f'(c) = 0$ for some $c \in (a, b)$
$ \begin{aligned} & \mathbf{Mean} \\ & \mathbf{Value} \\ & \mathbf{Theorem} \\ & (M. V. T.) \end{aligned} $	f continuous on $[a, b]f$ differentiable on (a, b)	$f'(c) = \frac{f(b) - f(a)}{b - a}$ for some $c \in (a, b)$

What you'll need to know:

- (1) Statements and geometrical meanings of the results
- (2) Applications, especially of Rolle and MVT
- (3) Counterexamples when hypotheses are dropped (e.g., problems such as $\S4.1~\#53c,55$ and $\S4.2\#~5-9$)
- (4) For an extra credit problem, I might ask you to state and prove one of the following three theorems:

the Mean Value Theorem

Rolle's Theorem

Fermat's Theorem