Cardinal Exercises

- 1. Let κ be an infinite cardinal, and κ^+ its cardinal successor. Show that $\kappa^+ \smallsetminus \kappa$ (that is, $\{\alpha | \kappa \le \alpha < \kappa^+\}$) has cardinality κ^+
- 2. A function $f : \mathbb{R} \to \mathbb{R}$ is called *upper semicontinuous* (USC) provided there is a sequence of continuous functions $\{f_n\}_{n \in \omega}$ such that for all x $f_0(x) \ge f_1(x) \ge f_2(x) \ge \cdots$, and $f(x) = \lim_{n \to \infty} f_n(x)$. What is the cardinality of the set of all USC functions? (You might recall that there are only 2^{\aleph_0} many continuous functions).
- 3. Let A and B be fixed sets. Show that there is a one-to-one function f with $dom(f) \subseteq A$ and $range(f) \subseteq B$ and such that f cannot be extended to a one-to-one function f' with $dom(f) \subsetneq dom(f') \subseteq A$ and $range(f') \subseteq B$. Extra points for doing this two ways (ie, using two different versions of AC). (Something to think about: is this problem *equivalent* to AC?)