Cardinal Exercises

1. Let κ be an infinite cardinal, and κ^{+}its cardinal successor. Show that $\kappa^{+} \backslash \kappa$ (that is, $\left\{\alpha \mid \kappa \leq \alpha<\kappa^{+}\right\}$) has cardinality κ^{+}
2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called upper semicontinuous (USC) provided there is a sequence of continuous functions $\left\{f_{n}\right\}_{n \in \omega}$ such that for all x $f_{0}(x) \geq f_{1}(x) \geq f_{2}(x) \geq \cdots$, and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. What is the cardinality of the set of all USC functions? (You might recall that there are only $2^{\aleph_{0}}$ many continuous functions).
3. Let A and B be fixed sets. Show that there is a one-to-one function f with $\operatorname{dom}(f) \subseteq A$ and $\operatorname{range}(f) \subseteq B$ and such that f cannot be extended to a one-to-one function f^{\prime} with $\operatorname{dom}(f) \subsetneq \operatorname{dom}\left(f^{\prime}\right) \subseteq A$ and $\operatorname{range}\left(f^{\prime}\right) \subseteq B$. Extra points for doing this two ways (ie, using two different versions of AC). (Something to think about: is this problem equivalent to AC?)
