M632 Non-text problems on uniform stuff

- 1. Let f_n be a sequence of continuous functions from a metric space X to a metric space Y which converges to a function f uniformly on compact sets. Show that f is continuous. (Warning: closed balls in metric spaces need not be compact!)
- 2. For $1 \leq p < \infty$, let (as usual) ℓ^p be the space of all sequences x_n such that $\sum_{n=1}^{\infty} |x_n^p| < \infty$ with the $\|\|_p$ norm. Show that the closed unit ball of ℓ^p is not compact.
- 3. Let λ be Lebesgue measure on the line, Let $g \in L^1([0,1],\lambda)$, and let \mathcal{F} be the set of all absolutely continuous functions f on [0,1] such that f(0) = 0 and |f'| < |g| almost everywhere. Show that the closure of \mathcal{F} is compact (in the uniform metric on C([0,1])).