Math 671 - Assignment 6 - Due October 16

- 1. (Don't hand in.) If p > 0 and $X \in \mathcal{L}^p$ then $x^p P(X > x) \to 0$ as $x \to \infty$
- 2. If X,Y are independent and $X+Y\in\mathcal{L}^p$ (p>0) then $X\in\mathcal{L}^p$. (Hint: Show that for large enough $\lambda>0$,

$$P(|X|>\lambda) \leq 2P(|X|>\lambda, |Y|<\lambda/2) \leq 2P(|X+Y|>\lambda/2)$$

and then use a result I said in class we wouldn't use very much (if at all).

- 3. Suppose X is a nonnegative random variable with $X \in \mathcal{L}^p$ for all p > 0. Define $g(p) = \ln \mathbb{E}(X^p), 0 . Prove that g is a convex function on <math>(0,\infty)$. (Hint: Let $\alpha, \beta > 0$ with $\alpha + \beta = 1$, let $p = 1/\alpha, q = 1/\beta$, note p, q > 1, and use Hölder's inequality.)
- 4. This problem sketches an alternate proof of Hölder's inequality. Do not hand in part (a).
 - (a) Let $\phi: [0, \infty) \to [0, \infty)$ be continuous and strictly increasing, with $\phi(0) = 0$. Let $\psi = \phi^{-1}$. Prove that for a, b > 0, $ab \leq \int_0^a \phi(x) dx + \int_0^b \psi(y) dy$. (See picture below, sorry about its quality.)
 - (b) Conclude that if p,q>1 are conjugate exponents and a,b>0 then $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$ For the final two parts, assume that $f\in\mathcal{L}^p$ and $g\in\mathcal{L}^q$, where p,q>1 are conjugate exponents.
 - (c) Prove that if $||f||_p = ||g||_q = 1$ then $\mathbb{E}(|fg|) \le ||f||_p ||g||_q$. (Hint: use the previous part.)
 - (d) Finally, prove Hölder's theorem for general $f\in\mathcal{L}^p$, $g\in\mathcal{L}^q$. (Hint: divide f and g by something suitable.)

