
MATH 612 Due Wednesday February 10, 1993

1. Two more universal (and couniversal) constructions.

Consider a square

L
ϕ′

−−−−→ Nyψ′ ψ

y
M

ϕ−−−−→ P

.

Define σ : L −→M ⊕N and τ : M ⊕N −→ P by

σ(`) = (ψ′(`), −ϕ′(`)) and τ(m,n) = ϕ(m) + ψ(n).

a) Prove that the square commutes if and only if τσ = 0.
b) Prove that the following conditions are equivalent:

(1) 0 → L
σ−→M ⊕N

τ−→ P is exact.
(2) The square commutates and

(∀m ∈M, n ∈ N) [ ϕ(m) = ψ(n) ⇐⇒ (∃! ` ∈ L) n = ϕ′(`), m = ψ′(`) ].
(3) The square commutes and whenever α : X → M and β : X → N are maps

(for any R-module X ) such that ϕα = ψβ , then there exists a unique map
θ : X → L such that α = ψ′θ and β = ϕ′θ .

X

L
ϕ′

−−−−→ N

ψ′
y ψ

y
M

ϕ−−−−→ P

L
ϕ′

−−−−→ N

ψ′
y ψ

y
M

ϕ−−−−→ P

Y

c) Prove that the following conditions are equivalent:

(1) L
σ−→M ⊕N

τ−→ P → 0 is exact.
(2) The square commutes, P = ϕ(M) + ψ(N) and

(∀m ∈M, n ∈ N) [ ϕ(m) = ψ(n) ⇐⇒ (∃` ∈ L) n = ϕ′(`), m = ψ′(`) ].
(Note that in this case ` need not be unique.)

(3) The square commutes and whenever γ : M → Y and δ : N → Y are maps
(for any R-module Y ) such that γψ′ = δϕ′ , then there exists a unique map
ζ : P → Y such that γ = ζϕ and δ = ζψ .

Definition. If the equivalent conditions in b) are satisfied, we say that the square
above is a pull-back (Hungerford, p. 484).
If the conditions in c) are satisfied, we say that it is a push-out.



2. a) Prove that if the square in problem 1 is a pull-back, then Kerϕ′ ≈ Kerϕ .
b) Prove that if the square in problem 1 is a push-out, then Cokerϕ′ ≈ Cokerϕ .

(note: Cokerϕ = P/ϕ(M) . )
c) Show that Noether’s Second Isomorphism Theorem (Hungerford,

Theorem 1.9 (i), p. 173) is a special case of part b).

3. Consider the following commutative diagram with exact rows.

0 −−−−→ K −−−−→ L
ϕ′

−−−−→ N −−−−→ 0∥∥∥ ψ′
y ψ

y
0 −−−−→ K −−−−→ M

ϕ−−−−→ P −−−−→ 0

Prove that the right hand square is both a pull-back and a push-out.

4. Let S be a multiplicative set in a commutative noetherian ring R and let M be an
R-module. Prove that

SuppS−1R S
−1M = { pS−1R | p ∈ SuppM & p ∩ S = ∅ }

AssS−1R S
−1M = { pS−1R | p ∈ AssM & p ∩ S = ∅ }

AssR S−1M = { p | p ∈ AssM & p ∩ S = ∅ }.

5. Let M be a module over a commutative noetherian ring R such that AssM consists
of maximal ideals.
a) Prove that AssM = SuppM .
b) Prove for every p ∈ AssM , the canonical map M →Mp is a surjection and

Mp ≈ {m ∈M | (∃k) pkm = 0}.

c) Prove that the family of maps M →Mp for p ∈ AssM induces an isomorphism

M
≈−→

⊕
AssM

Mp.



February 10 Answers

1.

Consider a square

L
ϕ′

−−−−→ Nyψ′ ψ

y
M

ϕ−−−−→ P

.

Define σ : L −→M ⊕N and τ : M ⊕N −→ P by

σ(`) = (ψ′(`), −ϕ′(`)) and τ(m,n) = ϕ(m) + ψ(n).

c) (1) L σ−→M ⊕N
τ−→ P → 0 is exact.

(3) The square commutes and whenever γ : M → Y and δ : N → Y are maps
(for any R-module Y ) such that γψ′ = δϕ′ , then there exists a unique map
ζ : P → Y such that γ = ζϕ and δ = ζψ .

proof: (3) ⇒ (1): Proof that Ker τ ⊆ σ(L) :

Note that σ(L) = {(ψ′(`), −ϕ′(`)) | ` ∈ L} .

Consider the following square:

L
ϕ′

−−−−→ N

ψ′
y ψ

y
M

ϕ−−−−→ P

M ⊕N

σ(L)
,

where γ(m) = (m, 0) + σ(L) and δ(n) = (0, n) + σ(L) . Note that

γψ′(`) − δϕ′(`) = (ψ′(`), −ϕ′(`)) + σ(L) = 0 ∈ (M ⊕N)/σ(L) ,

so by hypothesis there exists ζ making the diagram commute. Now suppose that
τ(m,n) = ϕ(m) + ψ(n) = 0. Then

(m,n) + σ(L) = γ(m) + δ(n) = ζϕ(m) + ζψ(n) = ζ(ϕ(m) + ψ(n)) = 0

so (m,n) ∈ σ(L) . X



2. b)

L
ϕ′

−−−−→ N
γ′

−−−−→ C −−−−→ 0

ψ′
y ψ

y µ

y
M

ϕ−−−−→ P
ξ−−−−→ D −−−−→ 0

Let C = Cokerϕ′ and D = Cokerϕ . Now (ξψ)ϕ′ = ξϕψ′ = 0 so by the Induced
Homomorphism Theorem there exists a unique map µ : C → D making the above
diagram commute.
On the other hand, since γ′ϕ′ = 0 = 0ψ′ , by the categorical definition of a push-out
there exists a unique map ζ : P → C with ζψ = γ′ and ζϕ = 0. Again by the Induced
Homomorphism Theorem ζ induces a map η : D → C such that ηξψ = ζψ = γ′ . Then
(µηξ)ψ = µζψ = µγ′ = ξψ and (µηξ)ϕ = 0 = ξϕ , so by the definition of a push-out
it follows that µηξ = ξ , and thus µη = 1D because ξ is an epimorphism. Also
(ηµ)γ′ = ηξψ = ζψ = γ′ so ηµ = 1C because γ′ is an epimorphism. Thus C ≈ D . X

3.

0 −−−−→ K
η′−−−−→ L

ϕ′
−−−−→ N −−−−→ 0∥∥∥ ψ′

y ψ

y
0 −−−−→ K

η−−−−→ M
ϕ−−−−→ P −−−−→ 0

Proof that the square is a push-out: Let γ : M → Y and δ : N → Y
be such that γψ′ = δϕ′ . Then γη = γψ′η′ = δϕ′η′ = 0, so by the Induced
Homomorphism Theorem there exists a unique ζ : P → Y with ζϕ = γ . Furthermore
(ζψ)ϕ′ = ζϕψ′ = γψ′ = δϕ′ . Since ϕ′ is an epimorphism, we conclude that ζψ = δ .
Thus the square in question satisfies the categorical definition of a push-out.
Proof that the square is a pull-back: (Actually, knowing that the square is a
push-out, we are already half-way to proving it is a pull-back. But we will start from
scratch.) Suppose m ∈M and n ∈ N with ϕ(m) = ψ(n) . Since ϕ′ is epic,

(∃` ∈ L) n = ϕ′(`).

Then ϕ(m−ψ′(`)) = ϕ(m)−ϕψ′(`) = ψ(n)− ψϕ′(`) = 0. Therefore m−ψ′(`) ∈ Kerϕ
so by exactness there exists a unique k ∈ K with m− ψ′(`) = η(k) = ψ′η′(k) . Thus

m = ψ′(η′(k) + `) and n = ϕ′(η′(k) + `).

Furthermore, η′(k) + ` is the unique element in L that works. In fact if m = ψ′(`′)
and n = ϕ′(`′) , then ϕ′(η′(k) + `− `′) = 0 so by exactness

(∃k′ ∈ K) η′(k) + `− `′ = η′(k′)



and so 0 = ψ′(η′(k) + `− `′) = ψ′η′(k′) = η(k′) and so k′ = 0 because η is monic, so
`′ = η′(k) + ` .

4. There are three relevant observations:
(1) The primes of S−1R are precisely the ideals of the form S−1p , where p is a prime
ideal of R such that p ∩ S = ∅ . (If p ∩ S 6= ∅ then S−1p = R .)
(2) If p is a prime in R then S−1p ⊆ S−1R and in fact S−1p = pS−1R .
(3) If S ∩ p = ∅ then S ⊆ R r p and so S−1Mp ≈ Mp ≈ S−1MS−1p (where the LHS
can be interpreted in two ways and these two interpretations agree).
We now see immediately that if p ∩ S = ∅ then S−1MS−1p 6= 0 and if only if Mp 6= 0.

Another observation: If m ∈ M , then the annihilator in S−1R of m/1 is
S−1(annm) ⊆ S−1R . In fact, if r ∈ annm then rm = 0 and for any s ∈ S ,
(r/s)(m/1) = rm/s = 0, so r/s ∈ annS−1R(m/1). Conversely, if (r/s)(m/1) = 0 then
s′rm = 0 for some s′ ∈ S . Then s′r ∈ annm and r/s = s′r/s′s ∈ S−1(annm) .
Now let p ∈ AssM and p ∩ S = ∅ . Then p = annm for some m ∈ M and so
S−1p = ann(m/1) ∈ AssS−1R S

−1M .
Conversely, a prime P = annS−1R(m/s) in AssS−1R S

−1M must have the form S−1p ,
where p = θ−1

R (P) . Thus for each p ∈ p there exists s′ ∈ S with s′pm = 0. Since p is
finitely generated, there exists s′′ ∈ S with s′′pm = ps′′m = 0. Thus p ⊆ ann s′′m . On

the other hand, if r ∈ ann s′′m then rs′′m = 0 and so
rs′′

s′′
m

s
= 0 so r/1 ∈ S−1p and

thus r ∈ θ−1
R (S−1p) = p . Therefore p = ann s′′m .

Now suppose p ∩ S = ∅ and p ∈ AssR and p = annm . We claim that p = ann(m/1).
In fact, for r ∈ R , r ∈ ann(m/1) if and only if srm = 0 for some s ∈ S , and this holds
if and only if sr ∈ annm = p for some s ∈ S , but this is true if and only if r ∈ p since
p is prime and s /∈ p . Thus p ∈ AssR S−1M .
Conversely, suppose p is a prime in R and p ∈ AssS−1M . Then p = ann(m/1) for
m/1 ∈ S−1M . Since m/1 6= 0 (otherwise ann(m/1) = R), it follows that sm 6= 0
for all s ∈ S and thus p ∩ S = ∅ . Furthermore for each p ∈ p , pm/1 = 0 so
spm = 0 for some s ∈ S . Since p is finitely generated it follows that there exists
s ∈ S such that spm = psm = 0. Therefore p ⊆ ann(sm) . On the other hand, clearly

ann(sm) ⊆ ann
(sm
s

)
= p . So p = ann sm ∈ AssM . X

5. b) To see that M → Mp is a surjection it suffices to see that for all prime ideals q ,
the induced map Mq → (Mp)q is a surjection. This is clear if p 6⊆ q since in that case
by problem 4, p /∈ AssMq = SuppMq and so (Mp)q = (Mq)p = 0. Since p is maximal,
this leaves only the case q = p , which is trivial.
A More Straightforward Proof: Let m/s ∈ Mp , where s /∈ p . By Problem 3,
AssMp = {p} , i. e. Mp is p-primary, so by a previous homework problem pk(m/1) = 0



for some k ≥ 1. Now since p is maximal, the only prime containing pk is p . It follows
that R/pk is a local ring with maximal ideal p/pk . Since s /∈ p , thus the image of s
in R/pk is invertible. Hence there exists s′ /∈ p such that ss′ ≡ 1 (mod pk) . Then
(ss′ − 1)m = 0 so that in Mp ,

m

s
=
s′m
1

= θ(s′m),

showing that θ : M →Mp is surjective.

Now let M(p) = {m ∈ M | (∃k) pkm = 0} . As seen in the previous paragraph, if s /∈ p

then s is invertible modulo pk for all k , so if m ∈M(p) then sm 6= 0 for all s /∈ p and
therefore m/1 6= 0 ∈ Mp . This shows that θ : M →Mp restricts to a monomorphism
from M(p) into Mp .
Now let m/1 ∈ Mp . As previously noted, there exists k ≥ 1 such that pk(m/1) = 0.
Thus for each r ∈ pk , rm/1 = 0 so there exists s /∈ S such that srm = 0. Since p is
finitely generated, it follows that there exists s /∈ p with spkm = pksm = 0, showing
that sm ∈ M(p) . . Furthermore, as previously seen, there exists s′ /∈ p such that
ss′ ≡ 1 (mod pk) . Then ss′m ∈M(p) and

m

1
=
ss′m

1
.

Therefore θ(M(p)) = Mp and so Mp ≈M(p) .

c) The family of maps M →Mp induces

ζ : M →
∏

AssM

Mp

(where each coordinate of ζ(m) is given by m/1 ∈ Mp ). Now note that for any
m ∈ M , SuppRm = AssRm is finite, i. e. there are only finitely many prime ideals
p such that m/1 6= 0 ∈ Mp . This shows that the image of ζ is in fact contained in⊕

AssM Mp. It now suffices to see that for every prime ideal q , the induced map

Mq →
⊕

AssM

(Mp)q

is an isomorphism. But as seen in part b), this reduces to the identity map Mq →Mq .

A more conventional proof: It is easy to see that the family of submodules M(p)
of M is independent, so

⊕
AssM M(p) ⊆M . Now let m ∈M . For each of the finitely

many primes pi such that m/1 6= 0 ∈Mpi
then exists ki such that pki

i m/1 = 0 ∈Mpi
.

Then pk11 · · · pkn
n m = 0. Now since pi + pj = R for i 6= j , no maximal ideal can contain

all the ideals a1, . . . , an , where

a i = pk11 · · · p̂ki
i · · · pkn

n ,

so a1 + · · · + an = R and there exist elements ai ∈ a i with
a1 + · · · + an = 1. Furthermore, pkia im = 0 so aim ∈ a im ⊆ M(pi) .
Thus m = a1m+ · · · + anM ∈ ⊕

AssM M(p) , showing that M =
⊕
M(p) . X


