MATH 612 Due Wednesday February 10, 1993

1. TWO MORE UNIVERSAL (AND COUNIVERSAL) CONSTRUCTIONS.

LLN

Consider a square l " ¢l .

M—*-pP
Define 60: L - M &N and 7: M & N — P by
o(l) = ('(0), =¢'(£)) and  7(m,n) = (m) + ¥ (n).

a) Prove that the square commutes if and only if 70 = 0.
b) Prove that the following conditions are equivalent:

(1) 0= L5 M@®N 5 P is exact.
(2) The square commutates and

(VmeM,neN) [¢e(m)=1(n) < (FleLl)n=y¢ ), m=1y'L)].
(3) The square commutes and whenever a: X — M and 5: X — N are maps

(for any R-module X) such that pa = ¥ 3, then there exists a unique map
0: X — L such that o ='0 and 8 = ©'6.

X L 25 N
ol
L~ N M_—% . p
ol
M -2 p Y

c) Prove that the following conditions are equivalent:

(1) LSZMaN S P—0 is exact.

(2) The square commutes, P = ¢(M) + ¢ (N) and
(Vm € M, ne N) [@(m)=y(n) <= (3eLl)n=¢(l), m=y(l)]
(Note that in this case ¢ need not be unique.)

(3) The square commutes and whenever v: M — Y and §: N — Y are maps
(for any R-module Y') such that v’ = d¢’, then there exists a unique map
(: P —Y such that v = (p and § = (7.

Definition. If the equivalent conditions in b) are satisfied, we say that the square
above is a pull-back (Hungerford, p.484).
If the conditions in ¢) are satisfied, we say that it is a push-out.



2. a) Prove that if the square in problem 1 is a pull-back, then Ker ¢’ ~ Ker ¢.
b) Prove that if the square in problem 1 is a push-out, then Coker ¢’ ~ Coker ¢.
(NOTE:  Coker¢ = P/p(M).)
c) Show that Noether’s Second Isomorphism Theorem (Hungerford,
Theorem 1.9 (i), p.173) is a special case of part b).

3. Consider the following commutative diagram with exact rows.

0 K L — % N 0
|l
0 K M %2 . p 0

Prove that the right hand square is both a pull-back and a push-out.

4. Let S be a multiplicative set in a commutative noetherian ring R and let M be an
R-module. Prove that

Suppg-1g SIM ={pST'R|pcSuppM & pnNnS=2}

Assg g STIM ={pST'R|pcAssM & pnNnS=a}
Assp ST'M ={p|pcAssM & pnS=0a}.

5. Let M be a module over a commutative noetherian ring R such that Ass M consists
of maximal ideals.

a) Prove that Ass M = Supp M .

b) Prove for every p € Ass M, the canonical map M — M, is a surjection and

M, ~ {m € M | (3k) p"m = 0}.

c) Prove that the family of maps M — M, for p € Ass M induces an isomorphism
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L — % N

Consider a square l » ¢l .
M £ p
Define 0: L - M &N and 7: M & N — P by
a(l) = ('(0), —¢'(£)) and T(m,n)=p(m)+¥(n).

c) (1)L ZMaeN L P —0 is exact.
(3) The square commutes and whenever v: M — Y and §: N — Y are maps
(for any R-module Y') such that v’ = d¢’, then there exists a unique map
(: P —Y such that v = (p and § = (9.

PROOF: (3) = (1): Proof that Kert C o(L):
Note that o(L) = {(¢'(¢), —¢’'(£)) | £ € L}.

Consider the following square:

L —— N

where v(m) = (m,0) + (L) and 6(n) = (0,n) + o(L). Note that

W) = ¢’ () = (¥'(0), —¢'(0)) + o(L) =0 € (M & N)/o(L),

so by hypothesis there exists ( making the diagram commute. Now suppose that
T(m,n) = @(m) + 1 (n) = 0. Then

(m,n) +o(L) =vy(m) +d(n) = (p(m) + (Y(n) = ((p(m) +¥(n)) =0
so (m,n) € o(L).



b)

L %2 N -2, (C 0
vl e
M—*%.,p_%.D 0

Let C = Coker¢’ and D = Coker p. Now (£9)¢" = Epyp’ = 0 so by the Induced
Homomorphism Theorem there exists a unique map pu: C — D making the above
diagram commute.

On the other hand, since 7v'¢’ = 0 = 0¢’, by the categorical definition of a push-out
there exists a unique map (: P — C with (¢ =+" and (p = 0. Again by the Induced
Homomorphism Theorem ¢ induces a map n: D — C such that n&y = (¢ =~'. Then
(uné) = puC = py' = &Y and (un&)e = 0 = v, so by the definition of a push-out

it follows that uné = £, and thus un = 1p because £ is an epimorphism. Also

(mp)y' =n& = ¢ =" so nu = 1¢ because 7' is an epimorphism. Thus C = D.

’ ’

0 K L %2 N 0
| el
0 K" .M _-*.p 0

PROOF THAT THE SQUARE IS A PUSH-OUT: Let v: M — Y and §: N — Y

be such that vy’ = d¢’. Then yn = y'n’ = d6¢'n’ = 0, so by the Induced
Homomorphism Theorem there exists a unique (: P — Y with (¢ = ~. Furthermore
() = Cpp' = 49" = §¢’. Since ¢’ is an epimorphism, we conclude that (i = 4.
Thus the square in question satisfies the categorical definition of a push-out.

PROOF THAT THE SQUARE IS A PULL-BACK: (Actually, knowing that the square is a
push-out, we are already half-way to proving it is a pull-back. But we will start from
scratch.) Suppose m € M and n € N with ¢(m) = (n). Since ¢’ is epic,

(IHel) n=¢ ).

Then o(m — ' (€)) = @(m) — ey’ (£) = Y (n) — ' (¢) = 0. Therefore m — ' (¢) € Ker ¢
so by exactness there exists a unique k € K with m —¢’(¢) = n(k) = ¢'n’(k). Thus

m =" (1'(k) + ) and n=¢' (' (k) +0).

Furthermore, n’(k) + ¢ is the unique element in L that works. In fact if m = ¢/(¢')
and n = ¢’ ('), then ¢'(n'(k) + ¢ —¢') = 0 so by exactness

Gk e K) n'(k)+¢—10 =n'(K)



and so 0 =¢'(n'(k) +£—0") =¢'n' (k') = n(k’) and so k' = 0 because n is monic, so
¢ =1 (k) + L.

There are three relevant observations:

(1) The primes of S~!R are precisely the ideals of the form S~'p, where p is a prime
ideal of R such that pNS=2. (If pNS # @ then S~'p=R.)

(2) If p is a prime in R then S™'p C S7'R and in fact S~'p = pS~'R.

(3)If SNp = then SC R~ p and so S™'M, ~ M, ~ S~ 'Mg-1, (where the LHS
can be interpreted in two ways and these two interpretations agree).

We now see immediately that if p .S =@ then S™'Mg-1, # 0 and if only if M, # 0.

Another observation: If m € M, then the annihilator in ST'R of m/1 is

S~l(annm) C STIR. In fact, if r € annm then rm = 0 and for any s € S,

(r/s)(m/1) =rm/s =0, so r/s € anng-1z(m/1). Conversely, if (r/s)(m/1) =0 then

s'rm =0 for some s’ € S. Then s'r € annm and r/s = s'r/s's € S~ (annm).

Now let p € Ass M and pNS = &. Then p = annm for some m € M and so

S~lp =ann(m/1) € Assg-1rp S™IM .

Conversely, a prime 8 = anng-1z(m/s) in Assg-1r S™'M must have the form S~!p,

where p = 05" (). Thus for each p € p there exists s’ € S with s’pm = 0. Since p is

finitely generated, there exists s’ € S with s”pm = ps’m = 0. Thus p C anns”m. On
1

the other hand, if r € ann s”m then rs”m = 0 and so % % =0 sor/l€ S 1p and

thus r € 05" (S~!p) = p. Therefore p = ann s"m.

Now suppose pNS = and p € AssR and p = annm. We claim that p = ann(m/1).
In fact, for r € R, r € ann(m/1) if and only if srm = 0 for some s € S, and this holds
if and only if sr € annm = p for some s € S, but this is true if and only if r € p since
p is prime and s ¢ p. Thus p € Assp S™IM.

Conversely, suppose p is a prime in R and p € AssS™IM. Then p = ann(m/1) for
m/1 € STIM . Since m/1 # 0 (otherwise ann(m/1) = R), it follows that sm # 0

for all s € S and thus p NS = @. Furthermore for each p € p, pm/1 = 0 so

spm = 0 for some s € S. Since p is finitely generated it follows that there exists

s € S such that spm = psm = 0. Therefore p C ann(sm). On the other hand, clearly

ann(sm) C ann<@> =p. So p=annsm € Ass M.
s

b) To see that M — M, is a surjection it suffices to see that for all prime ideals q,
the induced map My — (M,;)q is a surjection. This is clear if p Z q since in that case
by problem 4, p ¢ Ass My = Supp My and so (M,)q = (My), = 0. Since p is maximal,
this leaves only the case q = p, which is trivial.

A More Straightforward Proof: Let m/s € M, , where s ¢ p. By Problem 3,

Ass M, = {p}, i.e. M, is p-primary, so by a previous homework problem p*(m/1) =0



for some k > 1. Now since p is maximal, the only prime containing p* is p. It follows
that R/p” is a local ring with maximal ideal p/p*. Since s ¢ p, thus the image of s
in R/p¥ is invertible. Hence there exists s’ ¢ p such that ss’ =1 (mod p*). Then
(ss" —1)m =0 so that in M,,

showing that 60: M — M, is surjective.

Now let M(p) = {m € M | (3k)p*m = 0}. As seen in the previous paragraph, if s ¢ p
then s is invertible modulo p* for all k, so if m € M(p) then sm # 0 for all s ¢ p and
therefore m/1 # 0 € M, . This shows that 6: M — M, restricts to a monomorphism
from M(p) into M,.

Now let m/1 € M,. As previously noted, there exists k > 1 such that p¥(m/1) = 0.
Thus for each r € p¥, rm/1 = 0 so there exists s ¢ S such that srm = 0. Since p is
finitely generated, it follows that there exists s ¢ p with sp*m = p¥sm = 0, showing
that sm € M(p). . Furthermore, as previously seen, there exists s’ ¢ p such that

ss' =1 (mod p*). Then ss'm € M(p) and

m  ss'm

11
Therefore 6(M (p)) = M, and so M, ~ M(p).
c) The family of maps M — M, induces

¢:M— [ M,

Ass M

(where each coordinate of ((m) is given by m/1 € M, ). Now note that for any
m € M, Supp Rm = Ass Rm is finite, i. e. there are only finitely many prime ideals
p such that m/1 # 0 € M, . This shows that the image of ¢ is in fact contained in
D A s Mp- It now suffices to see that for every prime ideal g, the induced map

Mg — @ (Mp)q
Ass M
is an isomorphism. But as seen in part b), this reduces to the identity map My — M,.
A more conventional proof: It is easy to see that the family of submodules M(p)
of M is independent, so @,y M(p) € M. Now let m € M. For each of the finitely
many primes p; such that m/1 # 0 € M, then exists k; such that pf"m/l =0¢€ M,,.

Then p’fl - -pknm = 0. Now since p; +p; = R for i # j, no maximal ideal can contain

all the ideals aq,...,a,, where

a; =Py P pan,
soa; + ---+ a, = R and there exist elements a; € a; with
aj + ---+ a, = 1. Furthermore, p¥a;m = 0 so a;m € a;m C M(p;).
Thus m =am+ -+ anM € @ 1y M(p), showing that M = M(p).



