Fundamental Theorem of Arithmetic. If a is an integer larger than 1, then a can be written as a product of primes. Furthermore, this factorization is unique except for the order of the factors.

PROOF: There are two things to be proved. Both parts of the proof will use the Well-ordering Principle for the set of natural numbers.

(1) We first prove that every $a > 1$ can be written as a product of prime factors. (This includes the possibility of there being only one factor in case a is prime.) Suppose bwoc that there exists a integer $a > 1$ such that a cannot be written as a product of primes. By the Well-ordering Principle, there is a smallest such a. Then by assumption a is not prime so $a = bc$ where $1 < b, c < a$. So b and c can be written as products of prime factors (since a is the smallest positive integer than cannot be.) But since $a = bc$, this makes a a product of prime factors, a CONTRADICTION.

(2) Now suppose bwoc that there exists an integer $a > 1$ that has two different prime factorizations, say $a = p_1 \cdots p_s = q_1 \cdots q_t$, where the p_i and q_j are all primes. (We allow repetitions among the p_i and q_j. That way, we don’t have to use exponents.) Then $p_1 | a = q_1 \cdots q_t$. Since p_1 is prime, by the Lemma above, $p_1 | q_j$ for some j. Since q_j is prime and $p_1 > 1$, this means that $p_1 = q_j$. For convenience, we may renumber the q_j so that $p_1 = q_1$. We can now cancel p_1 from both sides of the equation above to get $p_2 \cdots p_s = q_2 \cdots q_t$. But $p_2 \cdots p_s < a$ and by assumption a is the smallest positive integer with a non–unique prime factorization. It follows that $s = t$ and that p_2, \ldots, p_s are the same as q_2, \ldots, q_t, except possibly in a different order. But since $p_1 = q_1$ as well, this is a CONTRADICTION to the assumption that these were two different factorizations. Thus there cannot exist such an integer a with two different factorizations. √