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A category C is skeletally small if there exists a set of objects in C such that every object in C

is isomorphic to one of the objects in this set. (The category of finitely generated modules over a
ring Λ is skeletally small, for instance.)

The main theorem to be proved in this chapter is as follows:

Theorem. Let C be a skeletally small abelian category satisfying the following conditions:

(1) Every object in C has finite length.

(2) C has only finitely many simple objects (up to isomorphism).

(3) The endomorphism ring of an indecomposable object in C is a local ring.

Then there exists only finitely many indecomposable objects in C (up to isomorphism) if and only if
there is a bound on the lengths of indecomposable objects in C .

Note that the category of finitely generated modules over an artinian ring Λ satisfies
conditions (1) through (3) above.

Notation and Terminology. From here on, by “abuse of language,” we will omit the words “up to
isomorphism” as used above. We will use the notation C(X, Y ) to indicate HomC(X, Y ) (also
commonly denoted as MorC(X, Y )). Recall that an additive contravariant functor from C to Ab is
called representable if it is isomorphic to C( , C) for some object C ∈ C . All functors under
consideration here will be additive, although sometimes through absent-mindness or laziness this will
not be explicitly stated.

A Note on Subfunctors. A subfunctor of a functor F is a functor E together with a monic
natural transformation τ : E → F . In the most common case, when the target category for F and G

is a concrete category (i. e. F (X) consists of a set with some sort of additional structure), it is
common to assume, without real loss of generality, that in fact for every object X in the source
category, E(X) ⊆ F (X) and τX is simply the inclusion map. The fact that the inclusion map is
natural simply means that whenever f : X → Y then F (f) restricts to a map E(X) → E(Y ). In this
case, one commonly writes E ⊆ F .

A functor F is simple if it has no subfunctors other than itself and the zero functor. We say
that F has finite length n if there is a chain

0  F1  F2 ⊆ · · ·  Fn = F
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such that F1 and all the quotients Fi/Fi−1 are simple functors. The category of functors from a
category C into the category of abelian groups Ab or any abelian category is abelian, and hence the
Jordan-Hölder Theorem applies, showing that the length of a functor is well defined.

Lemma 1 [Yoneda Lemma]. If F is an additive contravariant functor from C into the category of
abelian groups Ab , then for any object C ∈ C , Nat(C( , C), F ) is naturally isomorphic to F (C),
where the isomorphism is given by τ 7→ τC(1C).

Auslander’s idea is to study C by using the Yoneda embedding from C into the category of
additive contravariant functors from C into Ab , which maps an object C into the contravariant
functor C( , C). This is a full embedding, but is not usually exact (essentially because Hom is not a
right exact functor). In fact, the functor C( , C) corresponding to an object C is always projective.
Furthermore, it has the categorical property which is the analogue of the property of being finitely
generated in the category of modules over a ring.

Corollary 2. Every representable functor C( , C) is projective in the category of contravariant
functors from C into the category of abelian groups.

proof: Consider a diagram

C( , C)yτ

F −−−−→ G −−−−→ 0 .

By the Yoneda Lemma, τ is determined by the element τC(1C) ∈ G(C). Since F (C) → G(C) is an
epimorphism, we can choose a pre-image x ∈ F (C) for τC(1C). By the Yoneda Lemma, x

corresponds to a natural transformation σ : C( , C) → F , and σ makes the resulting diagram
commute, showing that the functor C( , C) is projective. X

Corollary 3. Let F be a contravariant functor from C into the category of abelian groups Ab such
that there exists an epimorphism

ρ :
∐
I

Fi → F

for some be a family of contravariant functors Fi from C into Ab . For some object C ∈ C( , ), let

τ : C( , C) → F

be a natural transformation. Then there exists a finite subject J ⊆ I such that

τ(C( , C)) ⊆ ρ

(∐
J

Fi

)
.

proof: By the Yoneda Lemma, τ is determined by τC(1C) ∈ F (C). The condition that
τ(C( , C)) ⊆ ρ (

∐
I Fi) amounts to the fact that τ(1C) = ρC(

∑
xi) where

∑
xi ∈

∐
Fi(C) But in

this sum, only finitely many terms will be non-zero. Therefore we can choose as J the set of
subscripts correponding to those non-zero terms. X
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This corollary shows that epimorphic images of representable functors are analogous to finitely
generated modules in the category of modules over a ring.

Corollary 4. If C is an indecomposable object in C , then the functor C( , C) is indecomposable
and has at most one maximal subfunctor.

proof: By the Yoneda Lemma, Nat(C( , C), C( , C) ) ≈ C(C, C) = EndC(C), and by
hypothesis on the category C , this is a local ring. Therefore C( , C) is indecomposable. Now if F

and G are distinct maximal subfunctors of C( , C), then the inclusions induce a natural
transformation F ⊕ G → C( , C) whose image is strictly larger than F and G . Therefore
F ⊕ G → C( , C) must be an epimorphism. Since C( , C) is a projective functor by Corollary 2,
this natural transformation must split, contradicting the Krull-Schmidt Theorem. X

One should not assume that C( , C) has finite length in the category of contravariant additive
functors from C into Ab . (With considerable effort, we will prove in Lemma H that this is true in the
case where there is a bound on the lengths of the indecomposable objects in C .) However Corollary 4
shows that if C is indecomposable, then C( , C) has a simple quotient (in module theory, this would
often be called the “cosocle”), and that this simple functor is essentially unique.

Corollary 5. If C and C′ are objects in C , then C( , C) and C( , C′) are naturally isomorphic
if and only if C ≈ C′ .

Lemma 6. Jordan-Hölder Theorem for functors from C into Ab .

Lemma A. If a contravariant functor F from C into Ab has finite length n (in the category of all
contravariant functors from C into Ab), then there exist at most n indecomposable objects X ∈ C

such that F (X) 6= 0.

proof: By induction on the length of F , it suffices to prove that if F is simple then there is a
unique C such that F (C) = 0. Since F 6= 0, there exists an object C ∈ C( , ) such that F (C) 6= 0.
By the Yoneda Lemma, this corresponds to a natural transformation τ : C( , C) → F , which is
necessarily an epimorphism since F is simple. Now suppose that C1 is another object such that
F (C1) 6= 0. Then we get τ1 : C( , C1) → F . Now by Corollary 2 and Corollary 4, C( , C) and
C( , C1) are indecomposable projective functors. But by a standard argument from the theory of
artinian rings, there cannot be epimorphisms from two non-isomorphic indecomposable projective
objects onto a simple object. The remainder of the proof will simply re-iterate this argument.

Since by Corollary 2 the functor C( , C) is projective, there exists a natural transformation
f∗ : C( , C) → C( , C1) such that τ1f∗ = τ .

0 −−−−→ Ker τ −−−−→ C( , C) τ−−−−→ F −−−−→ 0yf∗

∥∥∥
0 −−−−→ Ker τ1 −−−−→ C( , C1)

τ1−−−−→ F −−−−→ 0
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(By the Yoneda Lemma, f∗ is in fact induced by a map f : C → C1 as the notation suggests.) Now
since F is simple, Ker τ1 is a maximal subfunctor of C( , C1). It follows that f∗ must be an
epimorphism, since its image is not contained in Ker τ1 (because τ1f∗ = τ 6= 0). But by Corollary 2,
C( , C1) is projective, so f∗ must split. But by Corollary 4, C( , C) is indecomposable. Thus f∗
must be an isomorphism. But then by Corollary 5, C is isomorphic to C1 . This shows that C is
unique (up to isomorphism). X

Corollary B. If for every simple object S ∈ C , the functor C( , S) has finite length, then C has
only finitely many indecomposable objects.

proof: By assumption, every object C ∈ C has finite length. Therefore there is an epimorphism
from C onto some simple object S . In particular, there is a simple object S such that C(C, S) 6= 0.
But by Corollary A, if C( , S) has finite length, then there can be only finitely many indecomposable
objects C for which C(C, S) 6= 0. Since by assumption the category contains only finitely many
simple objects, this implies that there are only a finite number of indecomposable modules in C . X

Definition. Let F be a covariant [contravariant] additive functor from C into Ab . If A is an object
in C and x ∈ F (A), then the ordered pair (A, x) is called a minimal element for F if x 6= 0 and
F (h)(x) = 0 whenever h is a non-monic morphism from A into some object B [resp. whenever h is a
non-epic morphism from some object B into A ]. (A, x) is called universally minimal for F if
F (h)(x) = 0 whenever h : A → B and h is not split monic [resp. h : B → A and h is not split
epic].

Note that if (A, x) is a minimal element for F , then A must necessarily be indecomposable.

Lemma C. Suppose that the category C satisfies the ascending chain condition on monomoprhisms
between indecomposable objects, i. e. there does not exist an infinite sequence of morphisms

C1 → C2 → C3 → · · ·
where all the objects Ci are indecomposable and the morphisms are monomorphisms and not
isomorphisms. Let F be a non-zero additive covariant functor from C into Ab . Then there exists a
universally minimal element for F .

Likewise, if C satisfies the descending chain condition on epimorphisms between indecomposable
objects, and F is a non-zero contravariant additive functor from C into Ab , then there exists a
universally minimal element for F .

proof: For the covariant case, start with an object A1 such that F (A1) 6= 0 and let x1 6= 0 ∈ A1 .
Consider those epimorphisms from f : A1 → B such that F (f)(x1) 6= 0. Since A1 has finite length
(by hypothesis on C), we can choose such an f so that the kernel is as large as possible. Now replace
the pair (A1, x1) by (f(A1), f(x1)). In this way, we obtain an object A1 and x1 such that that
F (g)(x1) = 0 whenever g is an proper epimorphism from A1 to an object B . And in fact,
F (g)(x1) = 0 whenever g : A1 → B is any morphism which is not a monomorphism, as we see by
considering the factorization of g as an epimorphism followed by a monomorphism. I. e. (A1, x1) is a
minimal element for F . As noted above, A1 must be indecomposable.
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Now consider those monomorphisms g : A1 → A2 such that (A2, F (g)(x1)) is a minimal element
for F . Since by assumption C satisfies the ascending chain condition on proper monomorphisms
between indecomposable objects, there must exist a minimal element (A, x) such that whenever
g : A → A′ is a monomorphism but not an isomorphism, (A′, F (g)(x)) is not minimal.

We now claim that (A, x) is universally minimal. We need to see that F (g)(x) = 0 for all
morphisms g : A → A′ except when g is split monic. By assumption, (A, x) is a minimal element
for F , so F (g)(x) = 0 unless g is monic. Now suppose that g : A → A′ is monic and F (g)(x) 6= 0.
Then repeating the preceding construction for the pair (A′, F (g)(x)) yields a monomorphism
h : A′ → A′′ such that (A′′, F (h)F (g)(x)) is minimal. But by assumption, this is only possible if
hg : A → A′′ is an isomorphism. Therefore g splits. This shows that F (g)(x) = 0 for all g : A → A′

unless g is a split monomorphism. I. e. (A, x) is a universally minimal element for F .

The proof of the contravariant case is analogous. X

Note that if there is a bound on the lengths of indecomposable objects in C , then C certainly
satisfies the ascending and descending chain conditions in the hypothesis of the preceding lemma.

Lemma D. Suppose the hypotheses of Lemma C. Then if C is an indecomposable object in C , there
exists a unique simple functor S which is a quotient of the functor C( , C), and there exists an
exact sequence of functors

C( , B) → C( , C) → S → 0 .

proof: We claim that if G is an additive subfunctor of C( , C) such that for some object X ,
there exists a split epimorphism f ∈ G(X) ⊆ C(X, C), then G = C( , C). In fact, if

s : C → X

is such that fs = 1C , then for every object Y in C and every h ∈ C(Y, C),

h = fs h = (s h)∗(f) ∈ (s h)∗(G(X)) ⊆ G(Y ) .

Thus G(Y ) = C(Y, C) for every object Y , showing that G = C( , C).

Note further that since C is indecomposable, by the hypotheses on the category C , EndC C is a
local ring. If follows that this that for any object X , the set of morphisms h ∈ C(X, C) which are not
split epimorphisms is a subgroup of C( , C). We now see that if we define

F (X) = {h ∈ C(X, C) | h is not a split epimorphism }
for every object X , then F is the unique maximal subfunctor of C( , C).

Now if C is projective as well as indecomposable, then C has a unique maximal subobject B (see
the proof of Corollary 4) and a morphism h : X → C is an epimorphism, necessarily split, if and only
if h(X) 6⊆ B . Thus if F is the functor defined above, F = C( , B), and there is an exact sequence

0 → C( , B) → C( , C) → S → 0

where S is the simple functor C( , C)/F .
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On the other hand, if the indecomposable object C is not projective, then Ext1C(C, ) 6= 0 and by
Lemma C there is a universally minimal element (A, x) for Ext1C(C, ). Let x ∈ Ext1C(C, A) be
represented by the short exact sequence

x : 0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0 .

Then g∗ : C( , B) → C( , C). We claim that the image of g∗ is the maximal subfunctor

F (X) = {h ∈ C(X, C) | h is not a split epimorphism }
of C( , C) defined above. In fact, g∗(C( , B)) 6= C( , C) since 1C /∈ g∗(C(C, B)). (The identity
map 1C does not factor through g , since g is not a split epimorphism.) On the other hand, if
h ∈ C(X, C) is not a split epimorphism, then the map t : X ⊕ B → C induced by h and g cannot be
split epic, because of the fact that EndC C is a local ring. Now the inclusion B → X ⊕ B induces a
commutative diagram

x : 0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0

u

y y ∥∥∥
u∗(x) : 0 −−−−→ Ker t −−−−→ X ⊕ B

t−−−−→ C −−−−→ 0 .

The fact that t is not split means that u∗(x) 6= 0. But by assumption, (A, x) is universally minimal.
Therefore u must be split monic. An easy diagram chase then shows that h factors through g ,
i. e. h ∈ g∗(C(X, B)) = g∗(C( , B))(X). This shows that for every object X , g∗(C(X, B)) consists of
all morphisms from X to C which are not split epic, so that g∗(C( , B)) is the unique maximal
subfunctor of C( , C). X

The short exact sequence

x : 0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0

constructed in the proof of Lemma D and characterized by the fact that it is not split but that u∗(x)
is split exact for every morphism u : A → Y which is not split monic, will be one of the cornerstones
of Auslander’s later work with Idun Reiten. Auslander calls a sequence of this form an almost split
sequence. (C. f. Maurice Auslander, Representation theory of artin algebras III — almost split
sequences, Communications in Algebra 3(1975), 239-94.)

Lemma E. (1) If a contravariant functor F from C into Ab has a universally minimal element, then
F has a simple subfunctor.

(2) If the hypotheses of Lemma C are valid for C , then for every simple functor F there is an
exact sequence of natural transformations

C( , B) −−−−→ C( , A) −−−−→ F → 0

where A and B are objects in C .

proof: (1) Let (A, x) be a universally minimal element for F . Recall that A is necessarily
indecomposable. By the Yoneda Lemma, x corresponds to a natural transformation
τ : C( , A) → F , where for f ∈ C(X, A), τX(f) = F (f)(x). Now since (A, x) is universally minimal,
if g ∈ C(X, A), then 0 = τX(g) = F (g)(x) if and only if g is not split epic, i. e. if and only if
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g /∈ G(X), where G is the unique maximal subfunctor of C( , A), as constructed in the proof of
Lemma D. (Recall that since (A, x) is minimal, A is necessarily indecomposable.) Thus the sequence

0 −−−−→ G −−−−→ C( , A) τ−−−−→ F

is exact. Since G is a maximal subfunctor of C( , A), the image of τ is thus a simple functor.

(2) Under the hypotheses of Lemma C, there exists a universally minimal element for F , and thus
the preceding paragraph applies. But if F is simple, then the natural transformation
τ : C( , A) → F must be epic. Therefore by Lemma D there is an exact sequence

0 −−−−→ C( , B) −−−−→ C( , A) τ−−−−→ F −−−−→ 0 . X

Corollary F. Suppose the hypotheses of Lemma C hold. Then for every finite length functor F ,
there is a short exact sequence

0 −−−−→ G −−−−→ C( , A) τ−−−−→ F −−−−→ 0 .

proof: Lemma E gives the result for simple functors. Now use induction on the length of F . X

Lemma G. Suppose that the hypotheses of Lemma C hold. Then every representatable
contravariant functor C( , C) is generated by its finite length subfunctors. I. e. if G is a subfunctor
of C( , C) such that every subfunctor of C( , C) having finite length is a subfunctor of G , then
G = C( , C).

proof: Let G be the subfunctor of C( , C) generated by all its finite length subfunctors and
suppose by way of contradiction that G is a proper subfunctor of C( , C). We will then show that
there exists a subfunctor of C( , C) having finite length and not contained in G , a contradiction.

Let F = C( , C)/G , so that there is a short exact sequence

0 → G → C( , C) → F → 0.

By Lemma E, F has a simple subfunctor S and there is an exact sequence

C( , B)
g∗−−−−→ C( , A) σ−−−−→ S −−−−→ 0

Let G′ be the inverse image of S in C( , C). Thus G ⊆ G′ and G′/G = S ⊆ F , yielding the
following commutative diagram:

C( , B)
g∗−−−−→ C( , A) σ−−−−→ S −−−−→ 0

ρ

y ∥∥∥
0 −−−−→ G

⊆−−−−→ G′ τ−−−−→ S −−−−→ 0y⊆
y⊆

0 −−−−→ G
⊆−−−−→ C( , C) −−−−→ F −−−−→ 0 .
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The natural transformation ρ : C( , A) → G′ in this diagram exists because C( , A) is projective.
Now let G′′ = ρ(C( , A)). We now have

C( , B)
g∗−−−−→ C( , A) σ−−−−→ S −−−−→ 0y ρ′

y ∥∥∥
0 −−−−→ Ker τ ′ −−−−→ G′′ τ ′−−−−→ S −−−−→ 0y⊆

y⊆
∥∥∥

0 −−−−→ G
⊆−−−−→ G′ −−−−→ S −−−−→ 0 .

The point of this construction is that G′′ , being the image of the representable functor C( , A), is in
some sense reasonably small (Auslander would call it finitely generated), and yet τ(G′′) = S , so in
particular G′′ 6⊆ Ker τ = G . We will show that G′′ has finite length.

Since S is simple, it suffices to prove that Ker τ ′ has finite length. Note that
Ker τ ′ = ρg∗(C( , B)). By assumption, G is generated by its finite length subfunctors. This means
that there is a natural epimorphism ε :

∐
I Fi → G where each functor Fi has finite length. Thus we

have

C( , B)yρg∗∐
I Fi

ε−−−−→ G −−−−→ 0 .

Now apply Corollary 3 to see that the index set I here can be replaced by a finite set J such that

Ker τ ′ = ρg∗(C( , B)) ⊆ ε

(∐
J

Fi

)
.

Then ε (
∐

J Fi) has finite length and it follows that Ker τ ′ has finite length. X

Lemma H. Suppose that the hypotheses of Lemma C hold. Then every representable contravariant
additive functor C( , C) has finite length.

proof: The reasoning duplicates the last paragraph of the proof of Lemma G. Namely, by
Lemma G, C( , C) is generated by its subfunctors with finite length. Thus there is a natural
epimorphism ∐

I

Fi → C( , C)

where each Fi is a subfunctor of C( , C) with finite length. But by Corollary 3, we may replace I

by a finite index set. It follows that C( , C) has finite length. X

Proof of the Main Theorem. It now follows from Corollary B that if the hypotheses of Lemma C
hold, then C has (up to isomorphism) only finitely many indecomposable objects. X
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Another Theorem

We now give the proof by Auslander of another theorem by Roiter.

Theorem. Let Λ be an artinian ring such that there are (up to isomorphism) only finitely many
finitely generated indecomposable Λ-modules. Then every Λ-module is a direct sum of finitely
generated Λ-modules.

proof: (1) If I is an indecomposable injective Λ-module then the submodules of I are
indecomposable (because the 0 submodule of I is irreducible), so there is a bound on the lengths of
the finitely generated submodules of I . Thus there is a maximal finitely generated submodule of I .
But clearly this submodule must be I itself. Thus every indecomposable injective Λ-module is finitely
generated.

(2) Let G be any generator for the category of left Λ-modules and let Γ = EndΛ G . Then
HomΛ(G, ) is a fully faithful functor from the category of left Λ-modules to the category of right
Γ-modules. We claim that if P = HomΛ(G, Λ), then the functor HomΓ(P, ) is a left inverse for
HomΛ(G, ). In fact, since G is a generator for the category of left Λ-modules, there is a surjection
π :
⊕n

1 G → Λ, which is split because Λ is a free Λ-module. Let σ : Λ →⊕
G be a splitting for π

and let σi and πi be the components of σ and π and gi = σi(1). In other words, σ(1) = (g1, . . . , gn),
πi : G → Λ, and

∑n
1 πi(gi) = 1. Note also that πi ∈ P = HomΛ(G, Λ). Define a natural

transformation

θ : HomΓ(P, HomΛ(G, ) ) →
by defining

θ(ϕ) =
n∑
1

ϕ(πi)(gi) .

(This makes sense because πi ∈ P and if ϕ : P → HomΛ(G, M) then θM (ϕ) =
∑

ϕ(πi)(gi) ∈ M .)
Now for a given left Λ-module M and m ∈ M , let µ ∈ HomΛ(Λ, M) be the map such that µ(1) = m .
Then µ∗ ∈ HomΓ(HomΛ(G, Λ), HomΛ(G, M) ) = HomΓ(P, HomΛ(G, M)) and

θM (µ∗) =
∑

µ∗(πi)(gi) =
∑

µπiσi(1) = µ(1) = m .

Thus θM : HomΓ(P, HomΛ(G, M) ) → M is an epimorphism. We will now show that it is monic. Let
α ∈ Ker θM ⊆ HomΓ(P, HomΛ(G, M)). Then

0 = θM (α) =
∑

α(πi)(gi) =
∑

α(πi)(σi(1)) ∈ M .

We claim that α = 0. To show this, we must show that α(β) = 0 for every β ∈ P = HomΛ(G, Λ). In
fact, let g′ ∈ G . Note that σiβ ∈ Γ = EndΛ G and α(πi) ∈ HomΛ(G, M) and remember that α is
Γ-linear on the right. Then

α(β)(g′) =
∑

α(πiσiβ)(g′) =
∑

α(πi)σiβ(g′)

=
∑

β(g′)α(πi)σi(1) = β(g′)θM (α) = 0,

using the fact that β(g′) ∈ Λ and σi and α(πi) are Λ-linear. Since this is true for all β ∈ P , we see
that α = 0, showing that θ is monic and thus an isomorphism.
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(3) Now suppose further that G is finitely generated. Since Λ is a summand of a finite direct sum
of copies of G , P = HomΛ(G, Λ) is a finitely generated projective right Γ-module. On the other
hand, by step (2), HomΓ(P, Γ) = G . Since both HomΛ(G, ) and HomΓ(P, ) commute with
coproducts (because P and G are finitely generated), they thus take summands of coproducts of
copies of G to Γ-projective modules and vice-versa.

(4) By hypothesis there are, up to isomorphism, only finitely many finitely generated
indecomposable Λ-modules. Now choose the finitely generated generator G so that every finitely
generated indecomposable Λ-module is isomorphic to a summand of G . With this assumption, if M

is a finitely generated Λ-module then M is isomorphic to a summand of Gr for some finite r and the
Γ-module HomΛ(G, M), is projective. We now claim that Γ has global dimension at most 2. It
suffices to prove that if N is finitely generated and P1 → P0 → N → 0 is exact, then Ker(P1 → P0) is
projective. Suppose first that P1 and P0 are finitely generated projective Λ-modules. By steps (2)
and (3), Pi ≈ HomΛ(G, Mi) for some finitely generated Λ-modules Mi , and any morphism P1 → P0

is induced by a map δ : M1 → M0 . Let M3 = Ker δ . Then we get an exact sequence

0 → HomΛ(G, M3) → P1 → P0 ,

showing that the kernel of the map P1 → P0 is projective when P1 and P0 are both finitely generated
projective Γ-modules.

(5) Now it was shown in the proof of the previous theorem that the functor HomΛ( , G) has finite
length. It then follows easily that Γ = EndΛ G is right artinian. (In most cases, EndΛ G would be an
artinian ring in any case for any finitely generated Λ-module G .) Hence all finitely generated right
Γ-modules are finitely presented. This completes the proof that Γ has global dimension at most 2.

(6) Now let M be any Λ-module, not necessarily finitely generated, and form an injective
resolution

0 −−−−→ M −−−−→ I0 −−−−→ I1

By step (1), I0 and I1 are direct sums of finitely generated indecomposable Λ-modules, hence, by the
assumption on G , are isomorphic to direct summands of coproducts of copies of G . Thus in the
sequence

0 −−−−→ HomΛ(G, M) −−−−→ HomΛ(G, I0) −−−−→ HomΛ(G, I1)

the second and third Γ-modules are projective. Since Γ has global dimension at most 2, HomΛ(G, M)
must also be a projective Γ-module. But by Step (2),

M ≈ HomΓ(P, HomΛ(G, M)) .

Thus by step (3) M is a coproduct of direct summands of G , hence a coproduct of finitely generated
modules. X


