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The second edition of Kaplansky contains proofs for some of these results simpler than those given
here. Unfortunately, Kaplansky uses the word “grade” to mean depth, conflicting with Bass’s more
standard use of that word (as indicated below).

Assume throughout that R is a commutative noetherian ring. E(M) denotes the injective
envelope of an R-module M .

Lemma. Let R be a noetherian local ring with maximal ideal m . Let E be the injective envelope
of R/m . Then the functor HomR( , E) restricted to the category of finite-length
R-modules preserves length. (Kaplansky, Second Edition, Theorem 220.) Conversely, if M is an
R-module such that HomR(M, E) has finite length, then M has finite length.

proof: Consider first a module S with length 1 (i. e. a simple module). Then S ≈ R/m (so E is
isomorphic to the injective envelope of S ). Now if ϕ ∈ HomR(S, E), then ϕ(S) is simple (unless
trivial) and ϕ(S) ∩ (R/m) 6= 0 since E is an essential extension of R/m . Thus ϕ(S) = R/m , since
both these modules are simple. From this we see that HomR(S, E) ≈ HomR(R/m, R/m) ≈ R/m , so
that length HomR(S, E) = 1. Since the functor HomR( , E) preserves (or, more precisely, reverses)
short exact sequences, it now follows by induction that for all R-modules M with finite length,
length HomR(M, E) = lengthM .

Now suppose that M is an R-module such that HomR(M, E) has finite length. Consider first the
case where M is finitely generated. M contains submodules N such that M/N has finite length (for
instance, N = M ). By the preceding, for such an N , HomR(M/N, E) has the same length as M/N .
But the surjection M → M/N induces a monomorphism HomR(M/N, E) → HomR(M, E), so
lengthM/N ≤ length HomR(M, E). Thus there is a bound on the length of M/N for those N such
that M/N has finite length. But if M/N has finite length and N 6= 0, then since N is noetherian, it
contains a maximal proper submodule N ′ and lengthM/N ′ = 1 + lengthM/N . Therefore eventually
we must have N = 0, so that M has finite length.
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If M is not finitely generated and HomR(M, E) has finite length, consider a finitely generated
submodule M ′ of M . The inclusion map from M ′ to M induces a surjection
HomR(M, E) → HomR(M ′, E) (because E is injective). Therefore HomR(M ′, E) has finite length
and so M ′ has finite length by the preceding paragraph, and in fact the lengths of the finitely
generated submodules of M are all bounded by length HomR(M, E). Furthermore, if M ′′ is also
finitely generated and M ′  M ′′ then lengthM ′′ > lengthM ′ . It follows that there exists a
maximally finitely generated submodule of M . But clearly this is only possible if this submodule is M

itself. Therefore M is finitely generated and hence, by the preceding paragraph, has finite length. X

Theorem. Let R be a commutative noetherian local ring and let m be its unique maximal prime
ideal. The following conditions are equivalent:

(1) R is artinian.

(2) R has finite length (as an R-module).

(3) m is the only prime ideal in R .

(4) AssR = {m} .

(5) mk = 0 for some positive integer k .

(6) The injective envelope E of R/m is finite generated.

(7) There exists a finitely generated injective R-module.

proof: (2) ⇒ (1): Clear.

(1) ⇒ (4): If R is artinian and p ∈ Ass R , then R contains a copy of R/p . Therefore R/p is
artinian. But R/p is an integral domain, and an artinian integral domain is a field. Therefore p is a
maximal ideal, so p = m .

(4) ⇒ (5): If AssM = {m} then for some k , mk1 = 0 ∈ R so mk = 0.

(5) ⇒ (2): For each i from 0 to k , mi/mi+1 is finitely generated and a vector space over the
field R/m , hence is a finite-length R-module. Thus by induction, R/mi has finite length. If mk = 0,
this shows that R has finite length.

(5) ⇒ (3): If mk = 0 and p is a prime ideal, then mk ⊆ p so m ⊆ p . Since m is maximal, p = m .

(3) ⇒ (4): Clear since AssR 6= {∅} .

(2) ⇔ (6): If E = E(R/m) is finitely generated, then it has finite length, since all its associated
primes are maximal. And conversely, if it has finite length then it is certainly finitely generated.
But E ≈ HomR(R, E). Therefore the preceding lemma implies that E has finite length if and only
if R has finite length.

(6) ⇒ (7): Clear.

(7) ⇒ (6): Let M be a non-trivial finitely generated injective module and let p ∈ Ass M . Then
M contains a copy of R/p . Since R/p is an essential submodule of Rp/pRp , M therefore contains a
submodule isomorphic to Rp/pRp . Therefore Rp/pRp is finitely generated. Now let x /∈ p . Then
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multiplication by x is an isomorphism on Rp/pRp . If x ∈ m , this contradicts Nakayama’s Lemma.
Therefore x /∈ m and we conclude that p = m . This shows that m ∈ AssM , and so M contains a
submodule isomorphic to R/m . Since M is injective, it thus contains a copy of E = E(R/m).
Therefore E is finitely generated.

(6) ⇒ (4) [Alternate proof]: Since Ass E = {m} , it follows that for each e ∈ E , mke = 0 for
some k . Thus if E is finitely generated, then mkE = 0 for some k . It now suffices to show that E is
faithful in order to conclude that mk = 0. Suppose in fact, by way of contradiction, that rE = 0 for
some r 6= 0 ∈ R . The principal ideal (r) is isomorphic to R/a , where a = ann r . Since a ⊆ m , there
is a surjection (r) → R/m (so ϕ(r) 6= 0). Since E = E(R/m), this extends to a map ϕ : R → E .
Then ϕ(r) = rϕ(1) = 0 since rE = 0. This is a contradiction, showing that no such r exists and
therefore E is faithful. Since mkE = 0, it follows that mk = 0. X

Definition. An submodule N of an R-module M is called irreducible if it is not the intersection of
two submodules which properly contain it.

Recall the following characterization of indecomposable injective modules.

Lemma. If M is an injective module over a commutative noetherian ring R , the following conditions
are equivalent:

(1) M is indecomposable.

(2) M is the injective envelope of every non-trivial submodule.

(3) The zero submodule is irreducible in M .

(4) For some prime ideal p , Ass M = {p} and M is isomorphic to the injective envelope of p ,

Proposition. If E is an injective module, then E has a direct summand isomorphic to R/p if and
only if p ∈ AssE .

proof: Ass E includes p if and only if E contains a submodule isomorphic to R/p . If this is the
case, the it will also contain a submodule isomorphic to the injective envelope of E , which will
necessarily be a direct summand since it is injective. X

Corollary. A local ring R is injective as an R-module if and only if R is artinian and the zero ideal
is irreducible in R . Furthermore, in this case, R ≈ E(R/m).

proof: Since R is a finitely generated R-module, if it is injective then R is artinian by the
Theorem above and AssR = {m} . Thus R contains a submodule (ideal) isomorphic to R/m , and so
if R is injective, it contains a submodule isomorphic to E = E(R/m). But E ≈ HomR(R, E), so by a
lemma above, E and R have the same length. Thus if R is injective, it is isomorphic to E(R/m).
Then by the lemma above, the zero ideal is irreducible in R .

Conversely, if R is artinian then it contains a minimal non-zero ideal I , which must be isomorphic
to R/m . If moreover the zero ideal in R is irreducible, then R is an essential extension of I , so R is
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isomorphic to a submodule of E(I) ≈ E(R/m). But, as in the previous paragraph, we see that
E(R/m) and R have the same length. Thus R = E(I), hence R is injective. X

Definition. If p is a prime ideal in R , we write k(p) to denote Rp/pRp . (This is the quotient field
of R/p .)

Definition. A minimal injective resolution of a module M is a complex

0
d−1−−−−→ M −−−−→ E0

d0−−−−→ E1
d1−−−−→ . . .

such that each Ei is the injective envelope of di−1(Ei−1).

Minimal injective resolutions are unique up to isomorphism. Since R is noetherian, each injective
module Ei is a direct sum (often infinite) of indecomposable injective modules. By the preceding
lemma, each such indecomposable summand is isomorphic to E(R/p), for some prime ideal p .

Notation. If in a given decomposition of Ei as a direct sum of indecomposable modules, k of these
indecomposable modules are isomorphis to E(R/p), we write µi(p, M) = k . We also write µi(p) to
denote µi(p, R).

It is easy to see that µi(p, M) is the largest integer k such that Ei contains a submodule
isomorphic to (R/p)k . In particular, we have the following.

Note. µ0(p, M) = dimk(p) HomRp(k(p), Mp).

Proposition. The injective dimension of an R-module M is the smallest positive integer n such that
Extn+1

R (R/a , M) = 0 for every ideal a of R .

Lemma. For any multiplicative set S , S−1E(M) is the injective envelope of S−1M as an
S−1R-module.

Corollary. Minimal injective resolutions localize. Therefore inj. dimS−1R S−1M ≤ inj. dimR M and
inj. dimM is the supremum of inj. dimRp

Mp over all maximal ideals p of R .

Corollary. If p does not blow up in in S−1R then µi(S−1p, S−1M) = µi(p, M).
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Lemma. µi(p, M) = dimk(p) Exti
Rp

(k(p), Mp) = dimk(p) Exti
R(R/p, M)p .

proof: Localizing, we may suppose that p is maximal. Then k(p) = R/p is a simple module, and
HomR(R/p, E(R/q)) = 0 for q 6= p , since p /∈ Ass R/q = {q} . Furthermore
HomR(R/p, E(R/p) ≈ HomR(R/p, R/p) ≈ R/p , since E(R/p) is an essential extension of the simple
module R/p . It then follows that µi(p, M) = dimk(p) HomR(R/p, Ei) = dimk(p) HomR(k(p), Ei).

Now if ϕ 6= 0 ∈ HomR(k(p), Ei), then ϕ(k(p)) is a simple submodule of Ei and since Ei is an
essential extension of di−1(Ei−1), it follows that ϕ(k(p)) ⊆ di−1(Ei−1). Therefore diϕ(k(p)) = 0.
This shows that the complex

. . .
d∗

i−1−−−−→ HomR(k(p), Ei)
d∗

i−−−−→ HomR(k(p), Ei+1)
d∗

i+1−−−−→ . . .

has trivial differentiation. Therefore Exti
R(k(p), Mp) ≈ HomR(k(p), Ei), and

µi(p, M) = dimk(p) HomR(k(p), Ei) = dimk(p) ExtiR(k(p), Mp)p . X

Corollary. If M is finitely generated, then µi(p, M) < ∞ .

Hauptlemma Let q  p be adjacent primes and let M be finitely generated. If µk(q, M) 6= 0, then
µk+1(p, M) 6= 0. (In other words, if q ∈ AssEk then p ∈ Ass Ek+1 .)

proof: We may suppose that R is local with maximal ideal p . Let k = R/p .

(1) We claim that there exists a finite length R-module C such that Extk+1
R (C, M) 6= 0. In fact,

let B = R/q and C = B/xB = R/(q, x), where x is an element of p not belonging to q . Then x is
regular on B , so we have an exact sequence

0 −−−−→ B
x−−−−→ B −−−−→ C −−−−→ 0,

which induces a long exact sequence, part of which is

. . . −−−−→ Extk
R(B, M) x−−−−→ Extk

R(B, M) −−−−→ Extk+1
R (C, M) −−−−→ . . .

Now Extk
R(B, M) 6= 0 since µk(q, M) 6= 0, and by Nakayama’s Lemma, multiplication by x is not

surjective, so Extk+1
R (C, M) 6= 0.

Now among such C , choose one with smallest possible length. We easily see that in fact, C = k .
Thus Extk+1

R (k, M) 6= 0, so that µk+1(p, M) 6= 0. X

Corollary. Let M be a finitely generated R-module with finite injective dimension r . Let
p ∈ SuppM . Then

(1) heightM p ≤ inj. dim Mp .

(2) If p is a prime ideal such that µr(p, M) 6= 0, then p is maximal.

proof: (1) If q ⊆ p and q is minimal in SuppM , then q ∈ AssMp ⊆ Ass E(Mp), so µ0(q, Mp) 6= 0.
Now use induction and the Hauptlemma to see that if heightM p = n then µn(p, Mp) 6= 0, so that
n ≤ inj. dimMp .

(2) Clear from the Hauptlemma. X
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Remark. In particular, inj. dimR is at least as large as the Krull dimension of R .

Corollary. If R is local with maximal ideal m and M is an R-module with finite injective
dimension, then inj. dimM is the largest integer r such that µr(m, M) 6= 0.

proof: Clearly µi(m, M) = 0 for i > inj. dimM . And if r = inj. dim M , then Er 6= 0 so
µr(p, M) 6= 0 for some prime p . Since R is local, by the preceding corollary p = m . X

At this point, we recall a theorem from the chapter on projective dimension.

Theorem. Let (R, m) be local and x1, . . . , xr a regular M -sequence. Then

proj. dimM/(x1, . . . , xr)M = r + proj. dimM.

In particular, if I is an ideal generated by a regular R-sequence of length s , then proj. dimR/I = s .

Corollary. Let R be local with maximal ideal m . Let M be a finitely generated R-module. Then
either inj. dimM = depthm R or inj. dimM = ∞ .

proof: Assume that M has finite injective dimension. Let I be an ideal generated by a maximal
regular R-sequence in m . By the theorem above, depthm R = depthI R = proj. dimR/I . Therefore it
suffices to prove that inj. dimM = proj. dimR/I . Now since M is finitely generated, it has a
maximal proper submodule M ′ and M/M ′ ≈ k , so there is a surjection M → k . Now if
s = proj. dim R/I , then we have seen previously that ExtsR(R/I, k) 6= 0. Furthermore, the functor
Exts

R(R/I, ) is right exact. Therefore Exts
R(R/I, M) 6= 0 and depthm R = proj. dimR/I can be

characterized as the largest integer s such that Exts
R(R/I, M) 6= 0.

Now let r = inj. dimM . Then Extr
R( , M) is right exact. Now µr(p, M) 6= 0 for some prime

ideal p , and from the Hauptlemma we see that p must be maximal, i. e. p = m . This shows that that
Extr

R(k, M) 6= 0 (see a lemma above). Now since I is generated by a maximal regular R-sequence
in m , m consists of zero divisors on R/I , so m ∈ Ass R/I , and therefore R/I contains a copy
of k = R/m , and it follows from the right exactness of ExtrR( , M) that Extr

R(R/I, M) 6= 0. From
this it follows that inj. dimM can be characterized the largest integer r such that
Extr

R(R/I, M) 6= 0. But comparing this with the characterization of proj. dim R/I in the paragraph
above, we that inj. dimM = proj. dim R/I = depthm R . X

We now recall two more theorems from the chapter on projective dimension.

Theorem. Let R be a noetherian ring and M a finitely generated R-module and a an ideal such
that aM 6= M . If r is the smallest integer such that Extr

R(R/a , M) 6= 0, then every regular
M -sequence in a has length r . Thus deptha M = r .

Theorem. If x1, . . . , xr is a regular M -sequence in a and r = deptha M , then

ExtrR(R/a , M) ≈ HomR(R/a , M/(x1, . . . , xr)M).
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Corollary. If p ∈ SuppM , then depthp M ≤ depthpRp
Mp = depthp Mp . If depthq M > depthp M

for every prime q strictly containing p (for instance if p = m), then depthp M = depthp Mp .

proof: Since ExtrRp
(Rp/pRp, Mp) ≈ Extr

R(R/p, M)p , it follows from the first of the two theorems
above that depthp M ≤ depthpRp

Mp .

Now if s = depthp M and I is an ideal generated by a maximal regular M -sequence in p , then by
the second theorem above, ExtsR(R/p, M)p = HomR(R/p, M/IM)p . By the maximality of I , p

consists of zero divisors on M/IM , so that p is contained in some prime q in Ass M/IM . If
depthq M > depthp M for every prime ideal q strictly containing p , then q /∈ Ass M/IM and it
follows that p ∈ AssM/IM . Then there is a monomorphism ϕ : R/p → M/IM . Then
ϕp 6= 0 ∈ Hom(R/p, M/IM)p (see the second theorem above), so that Exts

R(Rp, M)p 6= 0 and so
s = depthp M ≥ depthpRp

Mp . Thus depthp M = depthp Mp . X

Corollary. For p ∈ SuppM , depthp Mp is the smallest integer r such that µr(p, M) 6= 0.

proof: It was shown above that µi(p, M) = dimk(p) Exti
R(R/p, M)p . and also that depthp Mp is

the smallest i such that Exti
R(R/p, M)p 6= 0. Thus depthp Mp is the smallest i such that

µi(p, M) 6= 0. X

In an earlier corollary it was shown that if Mp has finite injective dimension, then inj. dim Mp is
the largest r such that µr(p, M) 6= 0. Another corollary stated that if M has finite injective
dimension, then inj. dimMp = depthp Mp . Combining these observations with the corollary above
and the standard fact that depthp Mp ≤ heightM p and the fact that heightM p ≤ inj. dim Mp

(because of the Hauptlemma), we get the following result.

Corollary. If p is a prime in Supp M then depthp Mp ≤ heightM p ≤ inj. dimMp , with equality if
Mp has finite injective dimension.

Definition. An R-module M is a Gorenstein module if depthp M = inj. dimMp for all primes p

in SuppM . Equivalently (see the preceding corollary), M is Gorenstein if and only if M has finite
injective dimension. If R is a Gorenstein module, then we call R a Gorenstein ring.

Lemma. For M to be a Gorenstein module, it suffices that depthp M = inj. dimMp for all maximal
ideals p in SuppM .

Theorem. If R is a ring with finite Krull dimension (for instance if R is local [and noetherian]),
then R is a Gorenstein ring if and only if R has finite injective dimension. Furthermore, in this case
the injective dimension of R is the same as its Krull dimension.

proof: If R is a Gorenstein ring, then inj. dimRm = depthm R = heightm < ∞ for all maximal
ideals m . Since the injective dimension of R is the supremum of inj. dimRm for all maximal
ideals m , it follows that if R has finite Krull dimension then it also has finite injective dimension.
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Conversely, if R has finite injective dimension, then so does Rp for all prime ideals p . By a result
above, inj. dimRp = depthp R = height p . Thus R is a Gorenstein ring and since inj. dimR is the
maximum of inj. dimRp over all prime ideals p , thus inj. dimR = Krull dimR . X

Corollary. If p and q are prime ideals with q ⊆ p and if Rp is a Gorenstein ring, then so is Rq .

proof: Since injective resolutions localize, if Rp has finite injective dimension than so does Rq . X

Note. A not necessarily commutative noetherian ring Λ has finite injective dimension if and only all
Λ-modules with finite projective dimension also have finite injective dimension.

proof: If Λ-modules with finite projective dimension also have finite injective dimension, then in
particular Λ, which is projective, has finite injective dimension. On the other hand, suppose that Λ
has finite injective dimension. Then all projective Λ-modules have finite injective dimension, and it
follows by induction that all Λ-modules with finite projective dimension have finite injective
dimension. X

Theorem. Let p be a prime in Supp M . The following conditions are equivalent:

(1) depthpRp
Mp = inj. dimMp .

(2) µi(p, M) 6= 0 only when i = heightM p .

(3) Mp is a Gorenstein module.

proof: As seen previously, depthp M is the smallest integer r such that µr(p, M) 6= 0 and
inj. dimM is the largest r such that µr(p, M) 6= 0 and depthp Mp ≤ heightM p ≤ inj. dimMp . This
shows that (1) and (2) are equivalent. Furthermore, the lemma above asserts that Mp is a Gorenstein
module if and only if depthp Mp = inj. dimMp , i. e. (1) and (3) are equivalent. X

Definition. An R-module M is Cohen-Macauley if depthp M = heightM p for all primes p in
SuppM .

Proposition. Gorenstein modules are Cohen-Macauley.

proof: See the previous theorem. X

Proposition. If M is Cohen-Macauley then Ass M consists of the minimal primes in Supp M .

proof: A prime ideal p ∈ Supp M belongs to AssM if and only if it consists of zero divisors on M ,
i. e. if and only if depthp M = 0. If M is Cohen-Macauley, then these are precisely the prime ideals
with height 0, i. e. the minimal primes in SuppM . X

Proposition. M is Cohen-Macauley if and only if for all p ∈ Supp M , µi(p, M) = 0 for
i < heightM p .

proof: As seen previously, depthp M is the smallest i such that µi(p, M) 6= 0. X
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Corollary. For M to be Cohen-Macauley, it suffices that depthm M = heightM m for all maximal
ideals m ∈ SuppM .

Corollary. If M is Cohen-Macauley then SuppM is catenary.

Lemma. If Rp does not have finite injective dimension then µi(p, M) 6= 0 for all i ≥ height p .

proof: If there exists a prime q properly contained in p such that inj. dimRq = ∞ , then this
follows by induction from the Hauptlemma. On the other hand, if inj. dimRq < ∞ for all q < p , then
inj. dimRq = height q . So if i ≥ height p and Ei is the ith term in the injective resolution of R , then
(Ei)q = 0 for all q  p , i. e. µi(q) = 0. But (Ei)p 6= 0, so we conclude that µi(p) 6= 0. X

Lemma. Suppose that x1 . . . , xn is both a regular R-sequence and a regular M -sequence. Let I be
the idea generated by x1, . . . , xn . Let E be a minimal injective resolution of M and let
E′

i = HomR(R/I, Ei+n). Then E′ is a minimal injective resolution for the R/I-module M/IM .

proof: E′
i is injective since if X is an R/I-module, then there is a natural isomorphism

HomR/I(X, E′
i) = HomR/I(X, HomR(R/I, Ei+n)) ≈ HomR(X, Ei+n),

showing that HomR/I( , E′
i) is an exact functor.

By induction, it suffices to consider the case where n = 1 and x1 is regular on both R and M .
Then proj. dimR/(x) = 1, so Exti

R(R/(x), M) = 0 for i > 1. Also Ext1R(R/(x), M) = M/xM . Thus

0 → M/xM → E′
1 → . . .

is exact. X

Corollary. If I is the ideal generated by a regular R-sequence contained in p which is also a regular
M -sequence, then µi(p/I, M/IM) = µi+s(p, M). In particular, if M is a Gorenstein
[Cohen-Macauley] R-module, then M/IM is a Gorenstein [Cohen-Macauley] R/I-module.
Conversely, if M/IM is a Gorenstein module then so is Mp .

Theorem. For any prime ideal p of R , the following statements are equivalent:

(1) Rp is a Gorenstein ring.

(2) height p = depthpRp
Rp = inj. dimRp .

(3) Rp has finite injective dimension.

(4) µi(p) = 0 for all i > height p .

(5) µi(p) = 0 for at least one i > height p .

(6) µi(p) = 0 for all i < height p and µh(p) = 1 for h = height p .

(7) For all primes q ⊆ p , µi(q) = 0 for i 6= height q and µi(q) = 1 for i = height q .

proof: We have seen the equivalence of (1), (2), and (3) above. Furthermore, a lemma above shows
that if Rp is not Gorenstein (i. e. inj. dimRp = ∞), then µi(p) 6= 0 for all i > height p . On the other
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hand, if Rp is Gorenstein then inj. dimRp = height p , so µi(p) = 0 for all i > height p . Thus (1), (4)
and (5) are equivalent.

(1) ⇒ (6): Suppose that R is Gorenstein, and without loss of generality suppose that p is
maximal. Let h = depthp R = height p . Then µi(p) = 0 for i < h . Let I be an ideal generated by a
maximal regular R-sequence (necessarily of length h) in I . Then by the corollary above, R/I is a
Gorenstein ring of dimension 0 and µh(p) = µ0(p/I, R/I). But this says that R/I is an injective
R/I-module. By a corollary near the beginning of the chapter, this implies that
R/I = E((R/I)/(p/I)) = E(R/p), so that µh(p) = µ0(p/I, R/I) = 1.

(6) ⇒ (1): By an earlier proposition, the statement that µi(p) = 0 for i < height p is equivalent
to the fact that Rp is Cohen-Macauley. Assuming this to be true, the exists a regular R-sequence in
Rp with length equal to height p . Let I be the ideal in Rp generated by this R-sequence. Then by
the previous Corollary, µ0(pRp/I) = µh(p), where h = height p . If µh(p) = 1, this says that I is an
irreducible ideal in Rp , and so by a result at the beginning of the Chapter, Rp/I is self-injective.
Thus in particular Rp/I is a Gorenstein ring. It then follows from the previous corollary that Rp is a
Gorenstein ring.

(6) ⇔ (7): This is now clear from the equivalent of (1), (4), and (6) plus the fact that a
localization of a Gorenstein ring is a Gorenstein ring. X

Definition. A system of parameters for a local ring R is a sequence x1, . . . , xn contained in the
maximal ideal m such that n = heightm and m is the only prime ideal containing x1, . . . , xn (or,
equivalently, AssR/(x1, . . . , xn) = {m}).

Proposition. Every noetherian local ring has a system of parameters.

Proposition. A noetherian local ring R is Cohen-Macauley if and only if every system of parameters
is a regular R-sequence.

Lemma. Let R be a local ring of dimension n . Then µn(m) = 1 if and only if some [every] system of
parameters generates an irreducible ideal in R .

proof: Let I be generated by a system of parameters. Then Ass R/I = {m} and so
E(R/I) ≈ E(R/m)t , where t = µ0(R/I). Now µn(I) = 1 if and only if µ0(R/I) = 1, i. e. if and only
if E(R/I) is indecomposable. As shown by a proposition in the beginning of the chapter, this is true
if and only if I is irreducible. X

Theorem. Let R be a Cohen-Macauley ring with maximal ideal m . The following are equivalent.

(1) R is Gorenstein.

(2) R is Cohen-Macauley and some system of parameters generates an irreducible ideal.

(3) Every system of parameters in R generates an irreducible ideal.

(4) µi(m) = 0 for i < n and µ1(m) = 1.

(5) For every prime ideal q in R , µi(q) = 0 for i < height q and µh(q) = 1 for h = height q .
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(6) If Ei is the ith term of a minimal injective resolution for R , then Ei is the direct sum of the
injective envelopes of R/q for all primes q with height i .

(7) R is Cohen-Macauley and for all finite length modules M , there is a natural isomorphism

Extn
R(M, R) ≈ HomR(M, E(k)).

proof: As shown earlier, R is Cohen-Macauley if and only if µi(m) = 0 for i < heightm . Thus the
equivalence of (1), (2), (3), and (4) follows from the preceding Lemma and the Theorem before it.

Lemma. Let M be a Cohen-Macauley module and I an ideal such that IM 6= M . Then depthI M

is the minimum of heightM q for all primes q in SuppM which do not contain I .

Theorem. Let M be a finitely generated module over a local ring R . Then M is Gorenstein if and
only if it has finite injective dimension and every regular R-sequence is also a regular M -sequence. In
this case, M is also Cohen-Macauley.

Definition. If M is an R-module then Cousin Complex C∗(M) is defined inductively as follows:
Cn = 0 for n < 0. We write M0 = M and C0 =

∐{M0
p | heightM p = 0} . Let β0 : M0 → C0 be the

canonical map.

Now if Mn−1 , Cn−1 and βn−1 have been defined, let Mn = Cokerβn−1 ,
Cn =

∐{Mn
p | heightM p = n} and let βn : Mn → Cn be the canonical map. Let dn be the composite

of βn with the canonical map from Cn+1 to Mn+1 = Cokerβn+1 :

Cn −−−−→ Mn+1 βn+1

−−−−→ Cn+1.

Theorem. (1) {C∗(M), d∗} is a cochain complex.

(2) If Mn
p 6= 0 then heightM p ≥ n .

(3) If heightM p = n − 1 then every element of (Mn−1)p is annihilated by some power of p .

(4) Hn(C) ≈ Kerβn+1 and heightM p ≥ n + 2 for all p ∈ Supp Hn(C).

(5) If x is an element of R which annihilates M or annihilates Cn(M), then x annihilates Ct(M)
for all t ≥ n .

(6) If x is an element of R such that xM = M or xCn(M) = Cn(M), then xCt(M) = Ct(M) for
all t ≥ n .

(7) If M is non-zero and finitely generated and if x ∈ R is regular on M , then xCn = Cn for
all n .

(8) If n > dimM then Cn = 0.

proof: (1) is clear.

(2) By induction. The map Cn−1 → Mn is surjective so if Mn
p 6= 0 then Cn−1

p 6= 0. By the
constuction of Cn−1 , it follows that there exist primes q with height q = n − 1 such that
(Mn−1

q )p 6= 0. Then height p ≥ n − 1 by induction. Now if height p = n − 1 then
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∅ 6= Ass(Mn−1
p )q ⊆ {q} ∪ {p} so q = p , since the primes in AssMn−1 have height at least n − 1.

Thus if height p = n − 1 then the only non-zero term Mn−1
q in the coproduct defining Cn−1 is

Mn−1
p . This means that βn−1 : Mn−1

p → Cn−1
p is the identity map and so Mn

p = 0.

(3) If heightM p = n and p ∈ SuppMn−1
p , then p must be minimal in Supp Mn−1

p , so that Mn−1
p

is p-primary.

(4) Hn(C) = (Ker dn)/dn−1(Cn−1) = (Ker dn)/βn(Mn) ≈ Kerβn+1 ⊆ Mn+1 . Now as shown in
the proof of (2), if heightp = n + 1 then localizing the map βn+1 : Mn+1 → Cn+1 at p yields the
identity map, so that Hn(C)p = 0 for all p with height p ≤ n + 1.

(5) Easy.

(6) Clear.

(7) If x is regular on M and heightM p = 0 then p ∈ AssM , so x /∈ p and thus xMp = Mp . Thus
xC0 = C0 . Now apply (6).

(8) Trivial. X

Theorem. For any multiplicative set S , the identity map on S−1M induces an isomorphism of
complexes from S−1(C(M)) to C(S−1M).

proof: Construct the isomorphism recursively. X

Remark. If p has height n in SuppM then Ci
p(M) = 0 for i > n and Cn

p (M) ≈ Mp .

Lemma. Let B be a finitely generated modules such that heightM p 6= n for all p ∈ SuppB . Then
Exti

R(B, Cn(M)) = 0 for all i .

proof: Since Cn(M) =
∐{Mn

p | heightM p = n} and B is finitely generated, it follows that
Exti

R(B, Cn(M)) =
∐{Exti

R(B, Mn
p ) | heightm p = n} =

∐{Exti(Bp, M
n
p ) | heightM p = n} = 0. X

Theorem. Suppose that β0 induces an isomorphism M ≈ H0(C(M)), and that H i(C(M)) = 0 for
all i ≤ n − 2. Let B be a finitely generated R-module such that heightm p ≥ n for all p ∈ Supp B .
Then
Exti

R(B, M) = 0 for i ≤ n − 1,
Extrn(B, M) ≈ HomR(B, Mn),
Extj

R(B, M) ≈ Extj−n(B, Mn) for j ≥ n .

proof: By item (4) of the previous theorem, the sequence 0 → M i → Ci → M i+1 → 0 is exact for
i ≤ n − 1. Furthermore Exti

R(B, Cr) = 0 for all i whenever r ≤ n − 1. X
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Theorem. The following statements are equivalent:

(1) C(M) is acyclic and β0 induces an isomorphism from M to H0(C).

(2) Exti
R(R/p, M) = 0 for all p ∈ Supp M with heightM p > i .

(3) M is Cohen-Macauley.

(4) If B is a finitely generated module such that heightM p ≥ n for all p ∈ Supp B , then
Exti

R(B, M) = 0 for all i < n .

proof: It is easy to see that (1) implies (4), and (4) implies (2), and (2) is equivalent to (3).

(2) ⇒ (1): We will show by complete induction that the maps βi are all monic. Suppose now
that β1, . . . , βn−1 are monic and suppose x 6= 0 ∈ Kerβn = Hn−1(C). Choose p ∈ Ass Rx . Now if
Hn+1(C)p 6= 0 then heightm p ≥ n + 1, so that Extn

R(R/p, M) ≈ HomR(R/p, Mn) 6= 0, a
contradition. Thus Kerβn = 0. X

Lemma. For all n , Cn is an essential extension of βn(Mn).

Theorem. Let M be a finitely generated R-module. The following assertions are equivalent:

(1) C∗(M) is an injective resolution for M .

(2) For all finitely generated R-modules B and 0 ≤ i < j , ExtiR(Extj
R(B, M), M) = 0.

(3) M is a Gorenstein module.

(4) For all primes p ∈ SuppM , C(M)p is an injective resolution for the Rp-module Mp .

(5) M is Cohen-Macauley and if n = dimM then Cn(M) is injective.


