A COURSE IN HOMOLOGICAL ALGEBRA Chapter **: Tor, Flatness, and Purity

E. L. Lady (April 7, 1996)

Proposition. If Λ is a K-algebra and M a Λ -module, then the functor $M \otimes_{\Lambda} _$ is left adjoint to Hom_K(M, $_$).

Corollary. Tensor products preserve colimits.

Definition. Flat modules.

Lemma. Projective modules are flat.

PROOF: Free modules are flat.

Definition. Tor.

Theorem. Tor commutes with (filtered) direct limits and coproducts.

Theorem. [Bourbaki, Commutative Algebra I, Lazard, Bull. Soc. Math. France **97**(1969,81–128]. The following are equivalent:

(1) M is flat.

(2) $X \to Y$ monic implies $X \otimes_{\Lambda} M \to Y \otimes_{\Lambda} M$ monic.

(3) For every ideal I, the multiplication map $I \otimes_{\Lambda} M \to M$ is monic.

(4) $\operatorname{Tor}_1(\Lambda/I, M) = 0$ for all finitely generated right ideals I.

(5) Whenever $a_j \in M$ and $\ell_{ij} \in \Lambda$ are such that $\sum_j \ell_{ij} a_j = 0$ for all *i*, then there exist $y_k \in M$ and $r_{ij} \in \Lambda$ such that

$$m_j = \sum_k r_{ij} y_k$$
$$\sum_j \ell_{ij} r_{jk} = 0 \qquad \forall i, \ k.$$

(6) For every map φ from a finitely generated Λ -module B into M, there exists homomorphism from a finitely generated free Λ -module F into M such that the following diagram commutes:

$$\begin{array}{cccc} B & \longrightarrow & F \\ & & & \downarrow \\ & & & & \\ & & M \end{array}$$
 (Insert diagonal arrow for φ .)
$$M \end{array}$$

(7) M is a direct limit of finitely generated free modules.

Corollary. Finitely presented flat modules are projective.

Theorem. Let M be a flat Λ -module.

- (1) Every regular element of Λ is regular on M.
- (2) If I and J are right ideals, then $IM \cap JM = (I \cap J)M$.

Theorem. If $R \to A$ is a flat morphism of commutative rings and M is a finitely generated R-module, then $\operatorname{ann}(S \otimes_R M) = (\operatorname{ann}_R M)S$.

Proposition. If Λ is a flat K-algebra then

$$\Lambda \otimes_K \operatorname{Tor}_n^K(\underline{\ }, \underline{\ }) \approx \operatorname{Tor}_n^\Lambda(\Lambda \otimes_K \underline{\ }, \Lambda \otimes_K \underline{\ }).$$

Theorem. If R is a commutative ring, then M is flat if and only if $M_{\mathfrak{p}}$ is flat for all maximal ideals \mathfrak{p} .

Theorem. Let Λ be a quasi-local ring with maximal ideal J. Let M be a finitely presented left Λ -module. Then the following are equivalent:

- (1) M is free.
- (2) $\operatorname{Tor}_{1}^{\Lambda}(\Lambda/J, M) = 0.$
- (2) The multiplication map $J \otimes_{\Lambda} M \to JM$ is monic.

SEMI-HEREDITARY RINGS AND PRÜFER DOMAINS

Definition. A ring Λ is **left semi-hereditary** if every finitely generated left ideal is projective.

Theorem. Λ is left semi-hereditary if and only if all finitely generated submodules of projective modules are projective.

For noetherian rings the concept of "hereditary" and "semi-hereditary" coincide.

Theorem. If Λ is left semi-hereditary then $\operatorname{Tor}_n^{\Lambda} = 0$ for $n \geq 2$.

Definition. A **Prüfer domain** is a semi-hereditary integral domain.

A Prüfer domain is the non-noetherian (or not necessarily noetherian) analog of a dedekind domain.

Theorem. An integral domain is a Prüfer domain if and only if all finitely generated torsion free modules are projective.

Theorem. A module over a Prüfer domain is flat if and only if it is torsion free.

Theorem. If M and N are modules over a Prüfer domain R, then

$$\operatorname{Tor}_{1}^{R}(M, N) \approx \operatorname{Tor}_{1}^{R}(\mathbf{t}M, N),$$

where $\mathbf{t}M$ is the torsion submodule of M. Furthermore, $\operatorname{Tor}_1^R(M, N)$ is a torsion module.

VON NEUMANN REGULAR RINGS

Definition. A ring is **von Neumann regular** if for every element a there exists an element x in the ring such that axa = a. In other words,

$$(\forall a \in \Lambda) \quad a \in a\Lambda a.$$

This condition definitely seems to be on the technical side. However it's actually much more natural than it appears, as the following theorem shows. Recall that a left ideal of Λ is generated by an idempotent if and only if it is a summand of Λ (considered as a left Λ -module).

Theorem. The following conditions for a ring Λ are equivalent:

- (1) Λ is von Neumann regular.
- (2) Every principal left idea is generated by an idempotent.
- (3) Every finitely generated left ideal is generated by an idempotent.
- (4) Every right Λ -module is flat.
- (5) Every cyclic right Λ -module is flat.

PROOF: (1) \Rightarrow (2): If axa = a then xa is an idempotent and the principal left ideal Λa is generated by xa.

 $(2) \Rightarrow (3)$: Consider a left ideal I generated by a_1, \ldots, a_n . By induction on the number of generators, we may suppose that there exists an idempotent f such that $\Lambda a_1 + \cdots + \Lambda a_{n-1} = \Lambda f$. Then by the modular law we get

$$\Lambda a_1 + \dots + \Lambda a_n = \Lambda f \oplus (I \cap \Lambda(1 - f))$$

and the rest is easy.

(3) \Rightarrow (4): If suffices to see that $\operatorname{Tor}_{1}^{\Lambda}(M, \Lambda/I) = 0$ for all finitely generated left ideals *I*. But (3) implies that such an *I* is a summand of the ring, so Λ/I is projective.

 $(4) \Rightarrow (5)$: Clear.

(5) \Rightarrow (1): Let *a* be an element of Λ . Then by assumption $\Lambda/\Lambda a$ is flat. This yields an exact sequence

$$\operatorname{Tor}_{1}^{\Lambda}(a\Lambda, \Lambda/a\Lambda) = 0 \longrightarrow a\Lambda \otimes_{\Lambda} \Lambda a \longrightarrow a\Lambda \xrightarrow{\beta} a\Lambda \otimes_{\Lambda} \Lambda/\Lambda a \to 0.$$

Since Ker $\beta = a\Lambda a$, we see that $a\Lambda \otimes_{\Lambda} \Lambda a \approx a\Lambda a$. The inclusion $a\Lambda \hookrightarrow \Lambda$ induces an exact diagram

Since $\Lambda/\Lambda a$ is flat, γ is monic and the left-hand square must be a pull back, in other words $a\Lambda a = \Lambda a \cap a\Lambda$. Thus $a \in a\Lambda a$, as required.

Theorem. A commutative ring is von Neumann regular if and only if it has Krull dimension one and has no non-trivial nilpotent elements.

PROOF: (\Rightarrow) : Easy.

 (\Leftarrow) : It suffices to prove that $R_{\mathfrak{p}}$ is von Neumann regular for every prime ideal \mathfrak{p} . But since $R_{\mathfrak{p}}$ is zero-dimensional, $\mathfrak{p}R_{\mathfrak{p}} = \operatorname{nilrad}(R_{\mathfrak{p}}) = 0$, so $R_{\mathfrak{p}}$ is a field.

FAITHFULLY FLAT MODULES

Definitions. A functor $T: \mathcal{C} \to \mathcal{D}$ is **faithful** if it preserves the distinctness of morphisms, i.e. $T(\varphi) \neq T(\psi)$ whenever φ and ψ are distinct morphisms from an object X to an object Y in \mathcal{C} .

Generator. Cogenerator.

Proposition. An exact functor T from one abelian category to another is faithful if and only if TA is non-zero whenever A is non-zero.

PROOF: (\Rightarrow) : Clear.

 (\Leftarrow) : Let $\alpha: X \to Y$ be a non-zero morphism and let A be the image, so that α factors as $X \twoheadrightarrow A \rightarrowtail Y$. Since T is exact, $T\alpha$ factors as $TX \twoheadrightarrow TA \rightarrowtail TY$. Since $A \neq 0$, by hypothesis $TA \neq 0$. Thus $T\alpha$ is not zero.

Proposition. An additive functor between abelian categories is faithful if and only if it **reflects exactness**, i. e. if $X \to Y \to Z$ is not exact in the source category, then $TX \to TY \to TZ$ will not be exact.

PROOF: (\Leftarrow): Let $0 \neq \beta \colon B \to C$ be a non-zero morphism in the source category. Then the sequence $B \xrightarrow{1_B} B \xrightarrow{\beta} C$ is not exact. Thus

$$TB \xrightarrow{1_{TB}} TB \xrightarrow{T\beta} C$$

is not exact, so $T\beta \neq 0$.

 (\Rightarrow) : Let T be faithful and consider a sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ in the source category. Now if $\beta \alpha \neq 0$, then $T(\beta \alpha) \neq 0$ since T is faithful, so clearly $TA \xrightarrow{T\alpha} TB \xrightarrow{T\beta} TC$ is not exact.

Suppose therefore that $\beta \alpha = 0$ but that $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is not exact. Thus (thinking in terms of modules), $\alpha(A) \subsetneq \operatorname{Ker} \beta$.

In more categorial terms, let $K \xrightarrow{\sigma} B$ be the kernel of β and $B \xrightarrow{\tau} L$ be the cokernel of α . Intuitively, $L = B/\alpha(A)$ and the fact that $\alpha(A) \subsetneq \text{Ker }\beta$ can be expressed in categorical terms by saying that $\tau \sigma \neq 0$. Then since T is faithful, $T(\tau \sigma) \neq 0$. Now $\beta \sigma = 0$ so $T(\beta)T(\sigma) = 0$ (since T is additive), which says that the image of $T(\sigma)$ is contained in Ker $T\beta$. Also, $T(\tau \alpha) = 0$, so Image $(T\alpha) \subseteq \text{Ker}(T\tau)$. **** Thus to show that $TA \xrightarrow{T\alpha} TB \xrightarrow{T\beta} TC$ is not exact, it will certainly suffice to show that

$$\operatorname{Image}(T\alpha) \varsubsetneq \operatorname{Image}(T\sigma) \subseteq \operatorname{Ker} T\beta.$$

Theorem. Let T be a faithful additive functor from Λ -modules to Λ' -modules.

(1) Suppose that T preserves direct limits. Let me be M a Λ -module such that TM is finitely generated. Then M is finitely generated.

(2) Suppose that T preserves all colimits and that $T\Lambda$ is a finitely presented Λ' -module. Then M is finitely presented.

Definition. A left Λ -module M is **faithfully flat** if $_ \otimes_{\Lambda} M$ is a faithful and exact functor.

Theorem. The following conditions are equivalent for a left Λ -module M.

(1) M is faithfully flat.

(2) A sequence $0 \to A \to B \to C \to 0$ of right Λ -modules is exact if and only if the induced sequence

 $0 \to A \otimes_{\Lambda} M \xrightarrow{} B \otimes_{\Lambda} M \xrightarrow{} C \otimes_{\Lambda} M \to 0$

is exact.

(3) M is flat and for every non-trivial right Λ -module $A, A \otimes_{\Lambda} M \neq 0$.

(4) M is flat and for all [maximal] right ideals $I, IM \neq 0$.

FAITHFULLY FLAT RING EXTENSIONS

Definitions. Faithfully flat algebra. Faithfully flat morphism of rings.

Theorem. Let $\gamma: K \to \Lambda$ be a K-algebra. The following conditions are equivalent.

(1) Λ is a faithfully flat K-algebra.

(2) Λ is flat, γ is monic, and $\Lambda/\gamma(K)$ is a flat K-module.

(3) Λ is flat and for every K-module G, the standard map $G \to \Lambda \otimes_K G$ is monic.

(4) Λ is flat and every ideal \mathfrak{a} of K is the contraction of its extension to Λ , i.e. $\mathfrak{a} = \gamma^{-1}(\mathfrak{a}\Lambda)$ (or, more informally, $\mathfrak{a} = K \cap \mathfrak{a}\Lambda$).

(5) Λ is flat and every maximal ideal \mathfrak{m} in K is the contraction of an ideal in Λ , i.e. there exists an ideal I in Λ such that $\mathfrak{m} = \gamma^{-1}(I)$.

Lemma. Let Λ be a flat K-algebra. Then the standard map $\Lambda_K \operatorname{Hom}_K(A, B) \to \operatorname{Hom}_{\Lambda}(\Lambda \otimes_K A, \Lambda \otimes_K B)$ is a monomorphism when A is finitely generated and an isomorphicm when A if finitely presented.

Theorem. Let Λ be a faithfully flat K-algebra and let G be a K-module.

(1) G is flat if and only if $\Lambda \otimes_K G$ is flat.

(2) G is finitely generated [presented] if and only if $\Lambda \otimes_K G$ is finitely generated [presented].

(3) G is a finitely generated projective K-module if and only if $\Lambda \otimes_K G$ is a finitely generated projective Λ -module.

Proposition. Let Λ be a K-algebra. If there exists a faithfully flat Λ -module M which is flat as a K-module, then Λ is a flat K-algebra.

PURE SUBMODULES

We were led to the idea of flat modules by looking for those modules M such that whenever A is a submodule of a right Λ -module B, the induced map $A \otimes_{\Lambda} M \to B \otimes_{\Lambda} M$ is monic.

Another natural line of investigation is to look for pairs $A \subseteq B$ such that for every possible left Λ -module M, the induced map $A \otimes_{\Lambda} M \to B \otimes_{\Lambda} M$ is monic. When this is the case, we say that A is a **pure submodule** of B.

Proposition. \mathbb{Q}/\mathbb{Z} is an injective cogenerator for the category of abelian groups.

Proposition. Let $T = \text{Hom}_{\mathbb{Z}}(_, \mathbb{Q}/\mathbb{Z})$ taking right Λ -modules to left Λ -modules. A right Λ -module A is flat if and only if T(A) is an injective Λ -module.

Definition. A sequence $0 \to A \to B \to C \to 0$ of right Λ -modules is called **pure exact** if for every left Λ -module M the induced sequence

$$0 \to A \otimes_{\Lambda} M \xrightarrow{} B \otimes_{\Lambda} M \xrightarrow{} C \otimes_{\Lambda} M \to 0$$

is exact. (Since the tensor product is right exact, if the original sequence is exact, the only issue in doubt is that $A \otimes_{\Lambda} M \to B \otimes_{\Lambda} M$ be monic.)

A is called a **pure submodule** of B if the natural sequence

$$0 \to A \xrightarrow{\subseteq} B \longrightarrow B/A \to 0$$

is a pure exact sequence.

Clearly every split exact sequence is pure exact. Also, since the tensor product preserves direct limits, it is not hard to see that a direct limit of pure exact sequences is pure exact.

The following theorem says that all pure exact sequences can be obtained as direct limits of split exact sequences.

Theorem. Let $0 \xrightarrow{\alpha} A \xrightarrow{\beta} B \to C \to 0$ be a sequence of right Λ -modules. The following are equivalent.

- (1) The sequence is pure exact.
- (2) The sequence is exact and the morphism $T(A) \otimes_{\Lambda} \alpha$ is monic.
- (3) The sequence of Λ -modules $0 \to TC \to TB \to TA \to 0$ is split exact.
- (4) The sequence $0 \to TC \to TB \to TA \to 0$ is pure exact.

(5) For every finitely presented right Λ -module F, the induced map $\operatorname{Hom}_{\Lambda}(F, B) \to \operatorname{Hom}_{\Lambda}(F, C)$ is surjective.

(6) The sequence $0 \to A \to B \to C \to 0$ can be obtained as a direct limit of split exact sequences.

PROOF: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 6 \Rightarrow 1$.

To prove 4) \Rightarrow 5) consider the map $\sigma: TA \otimes_{\Lambda} F \to T(\operatorname{Hom}_{\Lambda}(F, A))$ given by $\sigma(\theta \otimes f)(\varphi) = \theta(\varphi(f))$. This map σ is an isomorphism if F is finitely presented.

Corollary [P. M. Cohn]. Let N be a submodule of the left Λ -module M. Then N is a pure submodule of M if and only if the following condition is satisfied.

Whenever there exist elements $n_1, \ldots, n_r \in N$, $m_1, \ldots, m_s \in M$, and $\ell_{ij} \in \Lambda$ such that for all i, $\sum_j \ell_{ij} m_j = n_i$, then there exist $m'_1, \ldots, m'_s \in N$ satisfying the same equations, i.e.

$$(\forall i) \quad \sum_{j} \ell_{ij} m'_{j} = n_i.$$

Corollary. If N is a pure submodule of M and I if a right ideal in Λ , then $IM = M \cap IN$.

Corollary. A pure subring of a noetherian [artinian] ring is noetherian [artinian].

Theorem. If K is a pure subring of the center of Λ , then $\Lambda \otimes_K _$ is a faithful functor from K-modules to Λ -modules.

Lemma. If K is a pure subring of the center of Λ and \mathfrak{a} is an ideal in K, then \mathfrak{a} is a pure K-submodule of $\mathfrak{a}\Lambda$.

PROOF: Suppose that there exist $a_i \in \mathfrak{a}$, $b_j \in \mathfrak{a}\Lambda$ and $k_{ij} \in K$ such that for all i,

$$\sum_{j} b_j k_{ij} = a_i$$

Since $b_j \in \mathfrak{a}\Lambda$, we can write $b_j = \sum_m c_m \ell_{jm}$, for $c_m \in \mathfrak{a}$. Then

$$\sum \sum_{j,m} c_m \ell_{jm} k_{ij} = a_i$$

Since K is pure in Λ , there exist $\ell'_{jm} \in K$ such that $\sum \sum_{i,m} c_m \ell'_{jm} k_{ij} = a_i$. Now let

$$b'_j = \sum_m c_m \ell'_{jm} \in \mathfrak{a} \; .$$

Theorem. Let K be a pure subring of the center of Λ and let G be a K-module.

(1) G is flat if and only if $\Lambda \otimes_K G$ is a flat Λ -module.

(2) G is finitely generated [finitely presented] if and only if $\Lambda \otimes_K G$ is a finitely generated [finitely presented] Λ -module.

(3) G is a finitely generated projective module if and only if $\Lambda \otimes_K G$ is a finitely generated projective Λ -module.

PROOF: (1)(\Leftarrow): Suppose that $\Lambda \otimes_K G$ is a flat Λ -module. Let \mathfrak{a} be an ideal in K and consider the diagram

$$\mathfrak{a} \otimes_{K} G \xrightarrow{} G$$

$$\downarrow^{\text{monic}} \qquad \text{monic} \downarrow \qquad (\text{Insert diagonal arrow.})$$

$$\mathfrak{a} \Lambda \otimes_{K} G \xrightarrow{\approx} \mathfrak{a} \Lambda \otimes_{\Lambda} \Lambda \otimes_{K} G \xrightarrow{} \Lambda \otimes_{K} M.$$

Theorem. Let N be a submodule of a flat Λ -module M. The following are equivalent.

- (1) N is a pure submodule of M.
- (2) $IN = N \cap IM$ for all finitely generated right ideals I of Λ .
- (3) M/N is flat.

Corollary. A pure submodule of a flat module is flat.

Theorem. If Λ is left noetherian, then pure submodules of injective left Λ -modules are injective.

Theorem. A push-out or pull-back of a pure exact sequence is pure exact, as is the Baer sum of two pure exact sequences. Thus there is a subfunctor $\operatorname{Pext}^{1}_{\Lambda}(_,_)$ of $\operatorname{Ext}^{1}_{\Lambda}(_,_)$ corresponding to the pure exact sequences.

Theorem. If R is a commutative ring, then a sequence $0 \to A \to B \to C \to 0$ of R-modules is pure exact if and only if for every maximal ideal \mathfrak{p} , the induced sequence

 $0 \xrightarrow{} A_{\mathfrak{p}} \xrightarrow{} B_{\mathfrak{p}} \xrightarrow{} C_{\mathfrak{p}} \xrightarrow{} 0$

is pure exact.