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Syzygies, Torsionless Modules, and Reflexive Modules

In this section, modules are usually assumed to be finitely generated.

Definition. A Λ-module A is called an 0th syzygy if it is isomorphic to a submodule of
a projective Λ-module .
We now define the concept of an nth syzygy recursively. A is an nth syzygy if there
exists a projective module P such that A can be embedded in P in such a way that P/A
is a (n − 1)st syzygy.
In other words, A is an nth syzygy if there exists an exact sequence

0 −→ A −→ Pn −→ . . . −→ P1 −→ P0 ,

where the Pi are all projective Λ-modules .

The fascinating thing is that zeroth syzygies and first syzygies have an intrinsic
significance in terms of the duality functor A 7→ A∗ = HomΛ(A, Λ). Namely, a left
Λ-module A is a first syzygy if and only if it is the dual of some right Λ-module, and is a
zeroth syzygy if and only if natural isomorphism A → A∗∗ is monic.

Another interesting fact is that A∗ = 0 if and only if A ≈ Ext1Λ(B, Λ) for some right
Λ-module B . We will now proceed to prove these results.

References. Bass, Trans. Amer. Math Soc. 95(1960), 466-88.
Jans, Trans. Amer. Math. Soc. 106(1963),330-40.
Jans, Rings and Homology.
(Auslander, “Coherent Functors,” in the La Jolla Conference on Categorical Algebra.)

Notation. If A is a left Λ-module, we set A∗ = HomΛ(A, Λ). A∗ is a right Λ-module .
We define δA : A → A∗∗ by

δA(a)(ϕ) = ϕ(a) for ϕ ∈ A∗.

Lemma. δ is a natural transformation. Furthermore, δP is an isomorphism if P is
finitely generated projective.

proof: For the second statement it suffices to prove that δΛ is an isomorphism. X
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Lemma. δA∗ : A∗ → A∗∗∗ is split monic.

proof: We claim that (δA)∗δA∗ = 1A∗ . In fact,

A∗ δA∗−−−−→ A∗∗∗ A∗∗∗ δ∗
A−−−−→ A∗

and for ϕ ∈ A∗ ,

(∀a ∈ A) (δA)∗(δA∗(ϕ))(a) = δA∗(ϕ)(δA(a)) = δA(a)(ϕ) = ϕ(a)

so that (δA)∗(δA∗(ϕ)) = ϕ and so (δA)∗δA∗ = 1A∗ . X

Theorem. Let Λ be a left and right noetherian ring (not necessarily commutative) and
let A be a finitely generated left Λ-module such that A∗ = 0. Then there exists a finitely
generated right Λ-module B such that A ≈ Ext1Λ(B, Λ).

proof: Suppose that A∗ = 0 and consider a projective resolution

P1
∂−→ P0 −→ A −→ 0 .

Let B = Coker ∂∗, so that

0 → A∗ = 0 −→ P ∗
0

∂∗
−→ P ∗

1 −→ B −→ 0

is exact. Since P ∗∗
i ≈ Pi , this yields an exact sequence

0 → B∗ −→ P1
∂−→ P0 −→ Ext1Λ(B, Λ) −→ 0 = Ext1Λ(P ?

1 , Λ) ,

showing that A = Coker ∂ ≈ Ext1Λ(B, Λ). X

Definition. We say that a Λ-module A is torsionless if δA is a monomorphism and
reflexive if δA is an isomorphism.

Theorem. Let Λ be right noetherian and let A be a finitely generated left Λ-module .
Then A is torsionless if and only if A is a 0th syzygy.

proof: To say that δA is monic is to say that for every a ∈ A there exists ϕ ∈ A∗ such
that ϕ(a) 6= 0.

( ⇐ ): Easy. ( ⇒ ): Let F � A be a surjection with F finitely generated and free.
This induces A∗ � F ∗ . Thus A∗ is finitely generated since Λ is right noetherian. Thus
there exists a finitely generated free right Λ-module G and a surjection G � A∗ . Thus if
δA is monic there are monomorphisms

A � A∗∗ � G∗.

Since G∗ is free, A is a 0th syzygy. X
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Lemma. Let A be a submodule of the left Λ-module P . Define
A′ = {ϕ ∈ P ∗ | ϕ(A) = 0}
A′′ = {p ∈ P | (∀ϕ ∈ A′) ϕ(p) = 0}.

Then there is an exact sequence

0 → A′ → P ∗ ρ−→ A∗ .

Furthermore, if P/A is torsionless then A′′ = A .

proof: A′ is clearly the kernel of the map P ∗ ρ−→ A∗ induced by the inclusion A ↪→ P
(since ρ(ϕ) is the restriction of ϕ to A). This justifies the first assertion.

Now let ϕ′ ∈ (P/A)∗ . Then ϕ′ is induced by a map ϕ ∈ P ∗ such that ϕ(A) = 0,
i. e. ϕ ∈ A′ . Then for p ∈ A′′ ⊆ P ,

δP/A(p + A)(ϕ′) = ϕ′(p + A) = ϕ(p) = 0,

by definition of A′′ . Thus if P/A is torsionless, so that Ker δP/A = 0, then A′′/A = 0 so
that A′′ = A . X

Theorem. Let Λ be both left and right noetherian and let A be a finitely generated left
Λ-module . Then A is a first syzygy if and only if A ≈ C∗ for some right Λ-module C .

proof: ( ⇒ ): Suppose that A is a first syzygy. Then there is an exact sequence

0 → A → P1 → P0 ,

where P0 and P1 are finitely generated projective. Let A′ ⊆ P ∗
1 and A′′ ⊆ P1 be defined

as in the previous lemma. Then

A′′ = {p ∈ P1 | δP1(p)(A′) = 0} ,

so that there is an exact sequence

0 −→ A′′ −→ P1 −→ (A′)∗ ,

where the right hand map is induced by δP1 , so that there is a commutative diagram

0 −−−−→ A′′ −−−−→ P1 −−−−→ (A′)∗

δP1

y≈
∥∥∥

0 −−−−→ (P ∗
1 /A′)∗ −−−−→ P ∗∗

1
ρ−−−−→ (A′)∗ ,

where ρ is induced by the inclusion A′ ↪→ P ∗
1 , so that Ker ρ = (P ∗

1 /A′)∗ , as indicated.
Thus A′′ ≈ (P ∗

1 /A′)∗ . But P1/A is a zeroth syzygy since P1/A ⊆ P0 and is thus
torsionless, so that by the preceding Lemma A′′ = A . Thus A ≈ C∗ with C ≈ P ∗

1 /A′ .

( ⇐ ): Suppose that A = C∗ . Let P1 be a projective which maps onto C , so that we
have

0 −−−−→ K −−−−→ P1 −−−−→ C −−−−→ 0

0 −−−−→ C∗ −−−−→ P ∗
1 −−−−→ K∗ .

But K∗ is a 0th syzygy since δK∗ : K∗ → K∗∗∗ is monic (in fact, split monic). Thus C∗

is a first syzygy. X



4

Theorem. Let Λ be left and right noetherian and let A be a finitely generated
torsionless left Λ-module. Then there exists a torsionless right Λ-module B such that
there are exact sequences

0 −−−−→ A
δA−−−−→ A∗∗ −−−−→ Ext1Λ(B, Λ) −−−−→ 0

0 −−−−→ B
δB−−−−→ B∗∗ −−−−→ Ext1Λ(A, Λ) −−−−→ 0.

proof: Starting with a short exact sequence 0 → K → P → A → 0 with P projective,
one gets

(1) 0 −→ A∗ −→ P ∗ −→ B −→ 0,

with B = P ∗/A∗ . Since A = P/K , this can be written

0 −→ K ′ −→ P ∗ −→ B −→ 0.

Since P ∗ is projective, (1) induces

(2) 0 −→ B∗ −→ P ∗∗ −→ A∗∗ −→ Ext1Λ(B, Λ) −→ 0.

As above, let
K ′′ = {p ∈ P | (∀ϕ ∈ K ′) ϕ(p) = 0}.

Then the image of B∗ in P ∗∗ is δP (K ′′) and K ′′ = K by the Lemma above, since by
hypothesis P/K = A is torsionless. Thus we have

0 −−−−→ K ′′ −−−−→ P −−−−→ A −−−−→ 0

δK

y≈ δP

y≈
yδA

0 −−−−→ B∗ −−−−→ P ∗∗ −−−−→ A∗∗

where δA is monic since A is a zeroth syzygy. Thus A ≈ P ∗∗/B∗ . Combining this
with (2) one has

(3)

0 −−−−→ P ∗∗/B∗ −−−−→ A∗∗ −−−−→ Ext1Λ(B, Λ) −−−−→ 0y≈
∥∥∥

∥∥∥
0 −−−−→ A

δA−−−−→ A∗∗ −−−−→ Ext1Λ(B, Λ) −−−−→ 0 ,

as required.

Applying the same reasoning to (3) we get

0 −→ B −→ B∗∗ −→ Ext1Λ(A, Λ) −→ 0 . X
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Corollary. Λ has the property that every finitely generated Λ-module is reflexive if and
only if Λ is left and right self-injective.

proof: ( ⇐ ): If A is a finitely generated Λ-module, consider a projective resolution
P1 → P0 � A . Now if Λ is injective as a left and a right Λ-module , then the functor
A 7→ A∗∗ is exact, so the rows in the following diagram are exact:

P1 −−−−→ P0 −−−−→ A −−−−→ 0

δP1

y≈ δP0

y≈ δA

y
P ∗∗

1 −−−−→ P ∗∗
0 −−−−→ A∗∗ −−−−→ 0 ,

showing that δA is an isomorphism, so A is reflexive.

( ⇒ ): If every finitely generated Λ-module is reflexive, then a fortiori every finitely
generated A is torsionless. Thus by the Theorem there exists a Λ-module B and an
exact sequence

0 −−−−→ B
δB−−−−→ B∗∗ −−−−→ Ext1Λ(A, Λ) −−−−→ 0 .

Since by hypothesis δB is an isomorphism, Ext1Λ(A, Λ) = 0. Since this is true for all
finitely generated A , Λ is an injective module. X

Corollary. Let Q denote the injective envelope of Λ. Then all finitely generated
torsionless modules are reflexive if and only if Q/Λ is injective (i. e. inj dimΛ ≤ 1).

proof: ( ⇒ ): By the same reasoning as in the proof of the previous corollary, if all
finitely generated torsionless modules are reflexive, then the theorem implies that
Ext1Λ(A, Λ) = 0 whenever A is torsionless, i. e. whenever A is a zeroth syzygy. Now let
M be any finitely generated Λ-module and let P be a projective module which maps
onto M , giving a short exact sequence

0 −→ K −→ P −→ M −→ 0 .

Then K is a zeroth syzygy and thus torsionless, so Ext1Λ(K, Λ) = 0. But then

Ext2Λ(M, Λ) ≈ Ext1Λ(K, Λ) = 0.

On the other hand, from the sequence 0 → Λ → Q → Q/Λ → 0 it follows that

Ext1Λ(M, Q/Λ) ≈ Ext2Λ(M, Λ) = 0 .

Since this is true for every finitely generated M , Q/Λ must be injective. X

Corollary. Let Λ be a commutative noetherian ring and let T be its total quotient ring.
Then Λ has the property that all finitely generated duals A∗ are reflexive if and only if
T/Λ is an injective Λ-module.

proof: T is the injective envelope of Λ, since it is a maximal essential extension
of Λ. X
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Projective Dimension

Schanuel’s Lemma. Let

0 → K → P →M → 0

0 → K1 → P1 →M → 0

be short exact sequences such that P and P1 are projective. Then

K ⊕ P1 ≈ K1 ⊕ P.

Definition. Projective Dimension

Theorem. The projective dimention of a Λ-module A is the smallest n such that
Extn+1

Λ (A, ) = 0, or ∞ if there is no such n .

Theorem. If Λ is left noetherian, then proj. dim A is the smallest n such that
Extn+1

Λ (A, B) = 0 for all finitely generated B .

proof: It suffices to see that K is projective if and only if Ext1Λ(K, B) = 0 for all finitely
generated B . To see this, take B to be a zeroth syzygy for K . X

Theorem. If R is commutative then proj. dimR A = supm proj. dimRm
Am .

Theorem. Let
0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

be an exact sequence. If any two of these modules have finite projective dimension, then
so does the third. Furthermore, either

proj. dim B < proj. dimC = proj. dim A + 1

or

proj. dim B = max{proj. dimA, proj. dim C}.

Regular M -sequences and Depth

Reference. Matsumura, Commutative Algebra.

In the rest of this chapter, R will denote a commutative ring.

Definition. Ass M . Regular M -sequence .

Theorem. If R is noetherian then an R-module M is trivial if and only if AssM = ∅ .
Furthermore, if x is a zero divisor on an R-module M , then there exists a prime ideal
p ∈ Ass M with x ∈ p .
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Proposition. If p is a prime ideal in R , then Ass R/p = {p} .

Theorem. If R is noetherian and M is finitely generated, then AssM is finite.

proof: Since M is noetherian, there is a maximal submodule M ′ of M such that
Ass M ′ is finite. If M ′ 6= M , one easily gets a contradiction. X

Lemma. For N ⊆ M ,
Ass M ⊆ AssN ∪ Ass(M/N).

Definition. The support of an R-module M consists of the set of primes p such that
Mp 6= 0.

Proposition. Every element of AssM belongs to Supp M . Furthermore, the primes
which are minimal in Supp M belong to Ass M .

Lemma. If an ideal is contained in a finite union of prime ideals, then it is contained in
one of those primes.

Corollary. Let R be noetherian and M a finitely generated R-module. If a is an ideal
consisting of zero divisors on M , then a is contained in some associated prime p for M .

Definition. Regular M -sequence . DepthaM .

Theorem. Let R be a noetherian ring and M a finitely generated R-module and a an
ideal such that aM 6= M . If r is the smallest integer such that Extr

R(R/a , M) 6= 0, then
every regular M -sequence in a has length r . Thus r = deptha M .

proof: Clear if r = 0, since if HomR(R/a, M) 6= 0 then no element of a is regular
on M and conversely, if no regular M -sequences exist in a then a consists of zero
divisors on M and consequently a ⊆ p for some p ∈ AssM by the preceding Corollary,
and HomR(R/p, M) 6= 0 (since M contains a submodule isomorphic to R/p), so also
HomR(R/a , M) 6= 0.

Now let r ≥ 1. Then by the preceding paragraph, we can choose x1 ∈ a which is
regular on M . Now use induction, since clearly x2, . . . , xr is a maximal regular sequence
of M/x1M if and only if x1, . . . , xr is a maximal regular M -sequence. X

Lemma. Let (R, m) be local and suppose that depthm R = 0 (i. e. m consists of zero
divisors). Then any R-module M with finite projective dimension is in fact projective.

proof: It suffices to prove that all modules M with proj. dimM ≤ 1 are projective.
If M is such a module, take a projective resolution

0 −−−−→ P1 −−−−→ P0
ε−−−−→ M −−−−→ 0

such that ε induces an isomorphism from P0/mP0 onto M/mM . Then P1 ⊆ mP0 .
Since m consists of zero divisors, m ⊆ p for some p ∈ Ass R . Since m is maximal,
thus m ∈ Ass R . Thus there exists x ∈ R with xm = 0, and consequently xP0 = 0.
Since x can’t be invertible, x ∈ m , so by Nakayama’s Lemma, P1 = 0, so that ε is an
isomorphism and M is projective. X
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Lemma. Let (R, m) be local, let M be an R-module with finite projective dimension,
and let x ∈ M be regular on M . Then proj. dim(M/xM) = 1 + proj. dim M .

proof: Since x is regular on M , the sequence

0 −−−−→ M
x−−−−→ M −−−−→ M/xM −−−−→ 0

is exact. The induced long exact Ext sequence looks like

. . . −→ Extk
R(M, ) x−→ Extk

R(M, ) −→ Extk+1
R (M/xM, ) −→ Extk+1

R (M, ) −→ . . .

Now if Extk
R(M, ) 6= 0, then Extk

R(M, X) 6= 0 for some finitely generated X ,
and in this case Extk

R(M, X) is finitely generated. Since x ∈ m , multiplication by x

cannot be surjective on Extk
R(M, X) by Nakayama’s Lemma. It then follows the

Extk+1
R (M/xM, ) 6= 0.

But conversely, the long exact sequence shows that if Extk
R(M, ) = 0 (and therefore

also Extk+1
R (M, ) = 0), then Extk+1

R (M/xM, ) = 0. X

Theorem. Let (R, m) be local and x1, . . . , xr a regular M -sequence. Then

proj. dim M/(x1, . . . , xr)M = r + proj. dimM.

Theorem. Let (R, m) be local and let M be a finitely generated R-module with finite
projective dimension. Then

proj. dimM = depthm R − depthm M.

proof: A previous lemma covers the case depthm R = 0 (i. e. m ∈ Ass R).

Now use a double induction on depthm R and depthm M by choosing x ∈ m
regular on R and using the Lemma below. The difficult part concerns the case when
depthm M = 0 and depthm R > 0.

Lemma. Let (R, m) be local, M finitely generated, and let x ∈ m be regular on both R

and M . Write R̄ = R/xR and M̄ = M/xM . Then

proj. dimR M = proj. dimR̄ M̄.

proof: Consider a minimal projective resolution for M ,

0 −→ Pn −→ . . . −→ P2
∂2−→ P1

∂1−→ P0 −→ M −→ 0.

(I.e. suppose that the induced maps Pi/mPi −→ ∂i(Pi)/m∂i(Pi) are all isomorphisms.)
Then proj. dim M is the largest n such that Pn 6= 0. Now since x is regular on M ,
TorR

i (R/xR, M) = 0 for all i > 0. Therefore the induced sequence

0 −→ Pn/xPm −→ . . . −→ P2/xP2 −→ P1/xP1 −→ P0/xP0 −→ M̄ −→ 0

is exact. But this is a minimal projective resolution for M̄ over R̄ , so that
proj. dimR̄ M̄ = n = proj. dimR M . X
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Addendum. If x1, . . . , xr is a regular M -sequence in a and r = deptha M , then

Extr
R(R/a , M) ≈ HomR(R/a, M/(x1, . . . , xr)M).

Proposition. Let R be noetherian, M a finitely generated R-module, N a submodule
of M , and a an ideal such that aM 6= M , aN 6= N , and a(M/N) = M/N . Then either

(*) deptha M = min{deptha N, deptha M/N}

or

(**) deptha M > deptha M/N = deptha N − 1 .

proof: If deptha M and deptha M/N are non-zero, choose an element x ∈ a which is
regular on both M and M/N . Since TorR

1 (R/xR, M/N) = 0,

0 −−−−→ N/xN −−−−→ M/xM −−−−→ (M/N)/x(M/N) −−−−→ 0

is exact, making an induction possible.

Now it is easily seen that if deptha M = 0 then either deptha N = 0 or
deptha M/N = 0, so that (∗) holds in this case.

Now if deptha M/N = 0 and deptha M 6= 0, then there exists a coset m + N ∈ M/N
such that a(m + N) = 0. There also exists an element x ∈ a which is regular on M .
Then xm /∈ xN but axm ⊆ xN since a(m + N) = 0 ∈ M/N , so that a consists of zero
divisors on N/xN , and thus deptha N = 1 and (**) holds. X

Lemma. Let (R, m) be local and let k = R/m . Let M be a finitely generated
non-trivial R-module. Then proj. dimM is the smallest n such that TorR

n+1(M, k) = 0.

proof: By considering the nth syzygy in a projective resolution for M , it suffices to see
that a finitely generated R-module N is projective if TorR

1 (N, k) = 0. Consider an short
exact sequence

0 −→ K −→ F
ε−→ N −→ 0

such that the induced map F/mF → N/mN is an isomorphism. If TorR
1 (N, k) = 0, then

0 −→ K/mK −→ F/mF −→ N/mN −→ 0

is exact, so that K/mK = 0. Therefore K = 0 by Nakayama’s Lemma, so that N is
free. X
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Theorem. Let Λ be a ring which need not be either commutative nor noetherian. The
following conditions are equivalent:

(1) proj. dimM ≤ n for all left Λ-modules M .
(2) proj. dimM ≤ n for all finitely generated left Λ-modules M .
(3) inj. dim M ≤ n for all finitely generated left Λ-modules M .
(4) ExtΛ( , ) = 0.

Definitions. Left global dimension.

A commutative local ring (R, m) is regular if m is generated by a regular
R-sequence.

A commutative ring is regular if Rm is regular for every maximal ideal m .

heightM p .

The Krull dimension of M is the supremum of heightM p for all maximal ideals p .

Definition. Let M be a finitely generated R-module and let a be its annihilator. Then
the grade of M is defined to be deptha R , in other words grade M is the length of the
longest R-sequence consisting completely of elements that annihilate M .

Warning. Unfortunately, the words depth and grade have been used inconsistently
in the literature. Kaplansky uses grade to mean what we have defined as depth. I guess
some people feel rather strongly about this issue, or at least such was true many years
ago. The definitions given are the ones that seemed to be most prevalent at the time
these notes were written.

Theorem. If M is finitely generated, then grade M is the smallest integer n such that
Extn

R(M, R) 6= 0.

proof: If gradeM = 0, then a = ann M consists of zero-divisors in R , and so there
must exist p ∈ Ass R such that p ⊃ a = ann M . Since R then contains a submodule
isomorphic to R/p , in order to prove that HomR(M, R) 6= 0 it suffices to prove that
HomR(M, R/p) 6= 0. Now pM 6= M , otherwise Mp = 0 by Nakayama’s Lemma,
contrary to the fact that p ∈ Supp M since p ⊃ a . It thus suffices to show that
HomR(M/pM, R/p) 6= 0. Therefore there is no loss of generality in supposing that M is
an integral domain and p = 0 ∈ Supp M . With this assumption, let K be the quotient
field of R and choose a basis u1, . . . , ur for Mp . Let α : M → Mp be the canonical map
and let s ∈ R be such that sα(M) ⊆ Ru1 ⊕ · · · ⊕ Rur . Then the composition of one
of the projection mappings from Ru1 ⊕ · · · ⊕ Rur into R with sα yields a non-trivial
homomorphism in HomR(M, R) .

Conversely, if there exists ϕ 6= 0 ∈ HomR(M, R) then for every a ∈ ann M ,
aϕ(M) = 0 so that annM consists of zero divisors and grade M = 0.

Now suppose that gradeM ≥ 1 and let x ∈ a = ann M be regular in R . It is easily
seen that gradeR M = 1 + gradeR/xR M/xM . The theorem is therefore a consequence of
the following lemma:
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Lemma. Let x be a regular element in R such that xM = 0. Let C be the category of
R/xR-modules, identified as the full subcategory of the category of R-modules consisting
of those modules M such that xM = 0. Then for i ≥ 1, the restriction of Exti

R( , R) to
C is naturally isomorphic to Exti−1

R/xR( , R/xR) .

proof: {Exti+1
R }i≥0 is clearly an exact co-connected sequence of functors on C .

(1) From the fact that HomR( , R) = 0 on C we get

0 = HomR( , R) −→ HomR( , R/xR) −→ Ext1R( , R) x−→
0

Ext1( , R) −→ . . .

for modules in C , so that

HomR/xR( , R/xR) ≈ HomR( , R/xR) ≈ Ext1R( , R)

for modules in C .

(2) Since proj. dim R/xR ≤ 1, Exti+1
R (R/xR, R) = 0 for i > 0. Thus Exti+1

R ( , R)
vanishes on free R/xR-modules. The theorem now follows from the characterization of
derived functors in terms of universal properties. X

Corollary. If a is an idea such that gradeR/a ≥ 2, then any map ϕ : a → R is given by
mujltiplication by a unique element of R .

proof: This follows from the exact sequence

0 → HomR(R/a , R) = 0 → HomR(R, R) → HomR(a , R) → Ext1R(R/a, R) = 0. X

Auslander-Buchsbaum, Annals 68(1958), pp. 625–57.

Lemma. If
0 → Fn → · · · → F1 → F0 → F−1 → 0

is an exact sequence of finitely generated free R-modules, then

n∑
−1

rank Fi = 0.

Proposition 6.2. If M has a finite resolution

0 → Fn → · · · → F1 → F0 → M → 0

where the Fi are finitely generated free R-modules, then M is faithful if and only if
gradeM = 0.
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(In other words, if M has a finite free resolution then the annihilator of M is non-trivial
if and only if it contains a regular element.)

proof: ( ⇒ ): Trivial.

( ⇐ ): Let p ∈ Ass R . Localizing the above resolution at p , we see that Mp has finite
projective dimension over Rp . But depth Rp = 0, so that Mp is free over Rp . Thus

rankRp Mp =
n∑
0

rank Fi,

so that rankRp Mp is the same for all p ∈ Ass R . But if M has grade 0 then annM
consists of zero divisors, so there exists p ∈ AssR with annM ⊆ p , so that Mp 6= 0.
Thus Mp 6= 0 for all p ∈ Ass R , i. e.

Ass R ⊆ Supp M.

For any p ∈ AssR , then, Mp is a non-zero free Rp-module. Thus if a = ann M , we
conclude that ap = 0 for all p ∈ Ass R , i. e.

Supp a ∩ Ass R = ∅.

But Ass a ⊆ Ass R , so this implies that Ass a = ∅ . Thus a = 0, so M is faithful. X

The Koszul Complex

Reference. Matsumura, Commutative Algebra, §18.D, p. 132.

Construction. Let R be a commutative noetherian ring and a1, . . . , an ∈ R . Let E
be the free exterian algebra over R on the symbols T1, . . . , Tn . Thus E0 = R ,
E1 = RT1 ⊕ · · · ⊕ RTn , Ei ≈ R(n

i) , x2 = 0 for x ∈ E1 , and for x ∈ Ei , y ∈ Ej ,
xy = (−1)ijyx .

Define a graded R-linear map d : E → E with degree 1 by defining d(Ti) = ai ,
d(xy) = (dx)y + (−1)ix(dy) for x ∈ Ei , y ∈ Ej . Note that d(R) = d(E0) = 0 and

d(Ti1 · · ·Tik
) =

k∑
r=1

(−1)r−1air
Ti1 · · · T̂ir

· · ·Tik
.

We define the Koszul Ring or Koszul Complex for R with respect to a1, . . . , an to be this
graded ring E , and denote it by R<Ti; dTi = ai > .

Lemma. (E, d) is a chain complex.

proof: Use induction on i to show that d2(Di) = 0. X
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Lemma. Let Z = Ker d and B = d(E) . Then Z is a ring and B an ideal in Z , so that
H(E) = Z/B is a graded ring.

Lemma. Let a = (a1, . . . , an) .
(1) H0(E) = R/a
(2) Hn(E) ≈ annR a
(3) Hq(E) = 0 for q < 0 or q > n .
(4) aH(E) = 0.

proof: (4) Since a = d(E1) ⊆ B and BZ ⊆ B , this is clear. X

Theorem. Let R be noetherian, let a = (a1, . . . , an) , and let
r = deptha R = grade R/a . Let E = R<Ti; dTi = ai > . Then Hn−r(E) 6= 0
and Hq(E) = 0 for q > n − r .

proof: By induction on r . If r = deptha R = 0 then Hn(E) = ann a 6= 0, and by
construction Hq = 0 for q > n .

If deptha R > 0, let x1 be a regular element in a . Let R̄ = R/(x1) , Ē = E/x1E .
Since x1 is regular on E there is an exact sequence of complexes

0 −−−−→ E
x1−−−−→ E −−−−→ E/x1E −−−−→ 0 .

Now let q be the largest integer such that Hq(E) 6= 0. Then we get

0 = Hq+1(E) −→ Hq+1(Ē) −→ Hq(E) x1−→ Hq(E) −→ · · · .

Now aHq(E) = 0 so, since x1 ∈ a , this implies

Hq+1(Ē) ≈ Hq(E).

On the other hand, for p > q + 1, we have

Hp(E) = 0 −→ Hp(Ē) −→ Hp−1(E) = 0.

Thus Hq+1(Ē) 6= 0 and Hp(Ē) = 0 for p > q + 1. Since depthā R̄ = r − 1, it now follows
by induction that q + 1 = n − (r − 1) so that q = n − r . X

Theorem. Let R be noetherian, and suppose that a = (a1, . . . , an) ⊆ J(R) . Let
E = R<Ti; dTi = ai > . Then the following are equivalent:

(1) a1, . . . , an is a regular R-sequence.

(2) Hi(E) = 0 for i ≥ 1.

(3) H1(E) = 0.

(4) Any sequence of n elements generating a is a regular R-sequence .
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(5) gradeR/a = 1.

proof: By the previous theorem, (1) ⇒ (5) ⇒ (2) ⇒ (3).

(4) ⇒ (1): Easy from the previous theorem and from (3) ⇒ (1).

(3) ⇒ (1): By induction on n . Let E′ = R <T1, . . . , Tn−1; d Ti = ai > . Consider the
“chain maps” i : E′ ↪→ E and j : E → E′ , where j is defined by the conditions j(E′) = 0,
j(Tk1 . . . Tks

Tn) = Tk1 . . . Tks
. This gives a short exact sequences of chain complexes

0 −−−−→ E′ −−−−→ E −−−−→ E′ −−−−→ 0 .

Since j has degree −1, we get a long exact sequence

· · · −→ H1(E′) δ1−→ H1(E′) i∗−→ H1(E)
j∗−→ H0(E′) δ0−→ H0(E) −→ · · · .

We now compute δ1 . An element in Hq(E′) has the form [z] , where z ∈ E′
q and dz = 0.

Now z = j(zTn) and δq[z] = [d(zTn)] . But

d(zTn) = dz Tn + (−1)qz dTn = (−1)qanz ∈ E′,

so that, up to sign, δq is just multiplication by an : δq[z] = (−1)qan[z] .

Now H1(E) = 0 by hypothesis, so δ1 is surjective and δ0 monic. In other words
anH1(E′) = H1(E′) , and multiplication by an is monic on H0(E′) . Therefore
H1(E′) = 0 by Nakayama’s Lemma. Therefore by the induction hypothesis, a1, . . . , an−1

is a regular R-sequence . Since H0(E′) = R/(a1, . . . , an−1) and an is regular on H0(E′) ,
it follows that a1, . . . , an is a regular R-sequence. X

Corollary. Suppose that R is noetherian and let a1, . . . , an ∈ J(R) . If a1, . . . , an is a
regular R-sequence, then every permutation of it is also a regular R-sequence.

This corollary may seem not very surprising. However it is not valid without the
hypothesis that the sequence be contained in J(R) .

Example [Kaplansky, Commutative Rings, §3.1, Exercise 7, p. 102]. Let R = K[X, Y, Z] ,
where K is a field. The elements X , Y − XY , Z − XZ form a regular R-sequence, but
in the order Y − XY , Z − XZ , X they do not.

Corollary. Suppose that R is noetherian. Let a = (a1, . . . , an) ⊆ J(R) and suppose
that gradeR/a = n . Then E is a projective resolution for R/a . In consequence,

TorR
i (R/a, R/a) ≈ (R/a)(

n
i) ≈ Exti

R(R/a , R/a).

proof: By construction, Eq is a free R-module for each q . And by the theorem, if
gradeR/a = n then E is exact in degrees larger than 0 and H0(E) = R/a . Thus
E is a projective resolution for R/a . Therefore TorR(R/a, R/a) is the homology of
E/aE = E ⊗R R/a . But since d(D) ⊆ aE , the differentiation on this complex is
trivial. X


