1. Find each of the following limits, if it exists. If the limit does not exist, write DNE.
 a. \(\lim_\limits{x \to 3} \frac{x^3 - x - 2}{x^2 - 2x} \)
 b. \(\lim_\limits{x \to 0} \frac{x^3 - x}{\sin x} \)
 c. \(\lim_\limits{x \to 0} \frac{x}{|x| - 1} \)
 d. \(\lim_\limits{x \to 1^-} \frac{x - 1}{2x^2 - 3} \)
 e. \(\lim_\limits{x \to \infty} x^2 + x + 1 \)
 f. \(\lim_\limits{x \to \infty} \sin x \)
 g. \(\lim_\limits{x \to \infty} e^{-x} \)

2. Consider the graph of \(f(x) = \begin{cases} -1 - x, & \text{for } x < -1 \\ 1, & \text{for } -1 \leq x < 0 \\ 1 - x, & \text{for } 0 \leq x \end{cases} \).
 Find all values of \(x \) at which the following conditions hold.
 a. \(f \) is continuous but not differentiable at \(x = \)
 b. \(f \) has a discontinuity at \(x = \)
 c. State the limits from the left and from the right of \(f \) at the point in part b.

3. Let \(f(x) = \frac{1}{\sqrt{x}} \). Using the definition of derivative, calculate \(f'(x) \). (Some other likely functions: \(x^2, x^3, \sqrt{x}, \sqrt{x}, 1/x \) and \(1/x^2 \))

4. Find the equation of the tangent line to the curve \(y = 1 - x^2 \) at (2,3).

5. Calculate \(\frac{dy}{dx} \) (you do not need to simplify the answer):
 a. \(y = \frac{x^2e^x}{3 - x} \)
 b. \(y = \frac{2 + x}{x} \)
 c. \(y = x \sin x + \tan x \)
 d. \(y = (x^4 + 1)^{1/2} + 17^{100} \)
 e. \(y = \ln(\cos x) \)

6. Let \(f(x) = x^3 - 3x^2 + 1 \).
 a. Find the critical numbers.
 b. Find the largest open intervals where the function is increasing.
 c. Find the relative maximum points (both \(x \) and \(y \) coordinates), if any.
 d. Find the relative minimum points (both \(x \) and \(y \) coordinates), if any.
 e. Answer (a)-(d) for \(g(x) = 3 - (x + 1)^{2/3} \).

7. Sketch the graph of \(f' \) given that the graph of \(f \) looks like this: