Chapter 7 Integration
7.1 Antiderivatives—continued.
If F'(z) = f(x), then F(z) is called an antiderivative of f(z).
[ f(z) dz = F(z)+C, where F is any one antiderivative of f, and C
varies over all real numbers (we say “C is an arbitrary constant”).

This is called and “indefinite integral”.
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+C,
[etdr=e"+C,

[ coszdz =sinz + C,

[sinzdx = —cosz + C.

[z7ldz =Inz + C — this only holds for z > 0, more general is:

Jz7ldz =In|z| +C
Rules: [ftgdx= [fdr+ [gdz and [kfdz =k [ fdz.
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Motion problems again. y(t) = position at time ¢, v = 2’ =
velocity, a = v/ = acceleration.
Newton’s law: Force = mass times acceleration: F' = ma
Assume force F' and hence a are constant: a = —g
Then v=—gt+C and vp =v(0)=—¢-0+C =C, so
v=—gt+ v
Then y = —gt%/2 + vot + C, and yo = y(0) = C, so

y = —gt? /2 + vot + 0. Galileo’s law.

Suppose an object moves with acceleration a(t) = 3 — 2t, and
with starting position s(0) = 2 and starting velocity v(0) = 5. Find

the position function s(t).

o(t)= [a(t)dt= [3—2tdt=3t—t2+C =3t —t2+5

s(t)= [v(t)dt= [3t—t2+5dt = 3t2/2 — 3t3+ 5t + 2.



7.2. Substitution

%((aﬂ +1)190) = 100(z2 + 1)%9 - 2z chain rule

Thus [100(z2 + 1)% - 2z dx = (2? + 1)1 + C.

If we didn’t already know the answer, we could find this anti-
derivative using a “u-substitution”. In this case we would let
w=2z2+1, du=2zdz,

[100(22 + 1)%9 - 2z dz = [ 1004 du

=yl + C = (2% + 1)1 + C.

In general, we look for a composition g(f(z)) in our “integrand”.
f(z) is the “inside function” of the composition.
We let v = f(z) and du = f'(x) dz.
Using this we convert the original integral into a new one involving

u and du (we must entirely remove the original variable z and dz).



Examples

[ e dr = (let u = 5z and du = 5dz, so dr = § du)

fettdu=1e*+C =2e" +C.

More generally, for any nonzero constant k, [ e dr = %e’“ +C.

[ z2e= dx = (let v = 23, du = 3x2dz, so dr = du/(3z2))
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7.8. Area and the Definite Integral

Suppose we want to compute the area bounded above by the

graph y = f(z), below by the z-axis, and on the sides by the

vertical lines x = a and = = b.
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We can approximate this region by a polygonal region:
Choose an integer n, and we “partition” |[a,b| into n equal subin-
tervals of length Az = (b—a)/n;
the first subinterval is [a,a + Az|, the second is [a + Az, a + 2Ax],
etc., the nth subtinterval is [b — Az, D).
In each subinterval choose one point: z; in the first subinterval,
x9 in the second, etc., z,, in the last.

On each subinterval construct a rectangle whose base is the subin-

terval; for the ith subinterval the height of the rectangle is f(z;).

The area of this polygon is Z flx)Ax = f(x1)Az+-- -+ f(z,)Az.
1

This sum 1is called a “Riemann sum”.



There are many ways of choosing the points z;;
The “left-endpoint method” says to use left-endpoints of each
subinterval: 21 =a, o =a+ Az, ..., z, =b— Ax
The “right-endpoint method” says to use right-endpoints of each
subinterval: 1 =a+ Az, x2 =a+2Az, ... , 2 =0b
The “midpoint method” says to use midpoints of each subinter-

val: 21 =a+ 3Az, T2 =a+ 3Az, ..., T, =b— Az
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Approximate the area bounded between y = f(z) = 22, the z-
axis and z = 2 using n = 4 subintervals and the left endpoint
method:

Az =(2—-0)/4=.5.

The left endpoints are 0, .5, 1, 1.5; the Riemann sum is

(02 + (.52 +124+(1.5)%) - 5=(.25+14+225).5=35..5=1.75.

The true answer is 8/3=2.666..., so the approximation is not very
good. The midpoint method gives better approximations, and we

can always improve our approximations by increasing n.



