Chapter 3 The derivative
3.1 Limits

lim f(z) = | means roughly “as z approaches a (but not neces-
sarily when = = a), f(x) is approaching [”. We don’t require f to
be defined at a. 3 | £
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We can define one-sided limits in which we only consider z

approaching a from one side; this is written lim f(z) if we let z

T—a~

approach a from the left (only considering numbers z < a) and

lim f(z) if we let z approach a from the left (only considering

r—a

numbers z > a).
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lim — =1, lim I——l- = —1, but lim — does not exist.
z—0t & r—0— T z—0 T

It is also correct for any of these limits to say “does not exist”,
but the co is more informative, because there are various ways for

a limit not to exist.
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lim sin i does not exist:
z—0+t z
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0, for z rational

Let f(xz) = .
f(=) { 1, for z irrational
The limit does not exist anywhere.
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Formal definition: Suppose a, L are constants and f is a function
defined near a. Suppose for every ¢ > 0 there corresponds a § >0

such that 0 < |z — a| < § implies |f(z) — 1] < e.l
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We won’t ever use this, but it can be used to prove the following
important properties of limits (see p140 of the text):

Suppose a and k are constants, and f and g are functions defined
near a. Assume :11_1_}‘11 f(z) = A and il_rg f(z) = A. Then:

1) (constant property) lgr‘lz kf(x) = kA;

2) (sum property) Lim f (z) + g(z) = A+ B;

3) (difference property) :11_1_31 f(x) —g(x) = A— B;

4) (product property) 31_1’1‘11 f(x)-g(x)=A- B;

5) (quotient property) Jim f(x)/g(x) =A/B if B#0.

It is easy from the definition to see that lim x = a.
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Then from the product property lim 22 = a2.
Tr—a

Similarly lim z3 = lim 22 - lim z = a%a = a3.
r—a r—a r—a

In general for any positive integer n, lim z" = a™.
r—a

Using properties 1)-4), lim 322 + 4z — 5 = 3a% + 4a — 5.

r—a .

In this way we can find all limits of any polynomial.



Limits of rational functions:

i 2 =420
=2 z+1 3
z2+4 8

= — = oo (or: “does not exist”)
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The method of these three examples works for all rational func-

tions.

“Pieced together functions”. Let

z+1 r<1
22—1 z>1

@)= {

lim f(z) =a+1ifa<1and lim f(z) =a®> -1 if a > 1;
T—a

r—a

lim f(z)=limz+1=2, lim, flz) = lini;r:2 —-1=0;

x—1-

since the left- and right-hand limits are unequal, lin% f(x) does

not exist.




Limits at co
lim f(z) =1 means that f(z) approaches | as z gets arbitrarily
T—00

large.

In this case the graph of f has a horizontal asymptote y = l.

The calculations of these limits for rational functions is fairly
easy:
1 1
Note that lim — = 0, so lim — = 0 for any positive integer

T—o00 I r—oo T

(actually this holds for any real n > 0.
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Try this one: xll’ngo P it

Answer = oo.



