Chapter 3 The derivative

3.1 Limits

 $\lim_{x\to a} f(x) = l$ means roughly "as x approaches a (but not necessarily when x = a), f(x) is approaching l". We don't require f to be defined at a.

Let
$$f(x) = \frac{x^2 - 4}{x - 2}$$
, domain $x \neq 2$. Table:
$$\lim_{x \to 2} f(x) = 4$$

$$\frac{\cancel{x} + f(x)}{\cancel{x} + \cancel{x}}$$

$$\frac{\cancel{x} + f(x)}{\cancel{x} + f(x)}$$

$$\frac{\cancel{x} + f(x)}{\cancel{x$$

We can define one-sided limits in which we only consider x approaching a from one side; this is written $\lim_{x\to a^-} f(x)$ if we let x approach a from the left (only considering numbers x < a) and $\lim_{x\to a^+} f(x)$ if we let x approach a from the left (only considering numbers x > a).

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1, \ \lim_{x \to 0^-} \frac{|x|}{x} = -1, \ \text{but} \ \lim_{x \to 0} \frac{|x|}{x} \ \text{does not exist.}$$

$$\frac{|Y|}{x} = \frac{x}{x} = 1$$
 $\frac{1}{4}$ $\frac{x}{x} = 0$, $\frac{|x|}{x} = \frac{x}{x} = -1$ $\frac{1}{4}$ $\frac{x}{x} < 0$

$$\lim_{x \to 2^{+}} \frac{1}{x-2} = \infty, \lim_{x \to 2^{-}} \frac{1}{x-2} = -\infty, \text{ and } \lim_{x \to \mathbf{1}} \frac{1}{x-2} = \pm \infty.$$
2.1 10 1.99 -100
2.01 1000 1.999 -1000
2.001 1000 1.999 -1000

It is also correct for any of these limits to say "does not exist", but the ∞ is more informative, because there are various ways for a limit not to exist.

 $\lim_{x\to 0^+} \sin \frac{1}{x}$ does not exist:

Let $f(x) = \begin{cases} 0, & \text{for } x \text{ rational} \\ 1, & \text{for } x \text{ irrational} \end{cases}$. The limit does not exist anywhere.

Formal definition: Suppose a, L are constants and f is a function defined near a. Suppose for every $\epsilon > 0$ there corresponds a $\delta > 0$ such that $0 < |x-a| < \delta$ implies $|f(x)-l| < \epsilon$.

We won't ever use this, but it can be used to prove the following important properties of limits (see p140 of the text):

Suppose a and k are constants, and f and g are functions defined near a. Assume $\lim_{x\to a} f(x) = A$ and $\lim_{x\to a} f(x) = A$. Then:

- 1) (constant property) $\lim_{x\to a} kf(x) = kA;$
- 2) (sum property) $\lim_{x\to a} f(x) + g(x) = A + B$;
- 3) (difference property) $\lim_{x\to a} f(x) g(x) = A B;$
- 4) (product property) $\lim_{x\to a} f(x) \cdot g(x) = A \cdot B;$
- 5) (quotient property) $\lim_{x\to a} f(x)/g(x) = A/B$ if $B \neq 0$.

It is easy from the definition to see that $\lim x = a$. Then from the product property $\lim_{x\to a} x^2 = a^2$. Similarly $\lim_{x\to a} x^3 = \lim_{x\to a} x^2 \cdot \lim_{x\to a} x = a^2a = a^3$.

In general for any positive integer n, $\lim_{n\to a} x^n = a^n$.

Using properties 1)-4), $\lim_{x\to a} 3x^2 + 4x - 5 = 3a^2 + 4a - 5$. In this way we can find all limits of any polynomial.

Limits of rational functions:

$$\lim_{x \to 2} \frac{x^2 - 4}{x + 1} = \frac{0}{3} = 0.$$

$$\lim_{x\to 2}\frac{x^2+4}{x-2}=\frac{8}{0}=\infty \text{ (or: "does not exist")}$$

$$\lim_{x\to 2}\frac{x^2-4}{x-2}=\frac{0}{0}=?$$

$$= \lim_{x \to 2} \frac{(x+2)(x-2)}{x-2} = \lim_{x \to 2} x + 2 = 4.$$

The method of these three examples works for all rational functions.

"Pieced together functions". Let

$$f(x) = \begin{cases} x+1 & x < 1 \\ x^2 - 1 & x > 1 \end{cases}$$

$$\lim_{x\to a} f(x) = a+1$$
 if $a < 1$ and $\lim_{x\to a} f(x) = a^2 - 1$ if $a > 1$;

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x + 1 = 2, \ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} x^{2} - 1 = 0;$$

since the left- and right-hand limits are unequal, $\lim_{x\to 1} f(x)$ does not exist.

Limits at ∞

 $\lim_{x \to \infty} f(x) = l$ means that f(x) approaches l as x gets arbitrarily large.

In this case the graph of f has a horizontal asymptote y = l.

The calculations of these limits for rational functions is fairly easy:

Note that $\lim_{x\to\infty}\frac{1}{x}=0$, so $\lim_{x\to\infty}\frac{1}{x^n}=0$ for any positive integer (actually this holds for any real n>0.

$$\lim_{x \to \infty} \frac{2x^2 + x + 1}{3x^2 + 4} = \lim_{x \to \infty} \frac{2 + 1/x + 1/x^2}{3 + 4/x^2} = \frac{2}{3}$$

$$\lim_{x \to \infty} \frac{x+7}{2x^2+1} = \lim_{x \to \infty} \frac{1/x^2 + 7/x^3}{2+1/x^3} = \frac{0+0}{2+0} = 0$$

Try this one:
$$\lim_{x\to\infty} \frac{x^3}{2x^2+1} = ?$$

 $\mathbf{Answer} = \infty.$