4.1 Techniques for finding derivatives-continued

Notation. $y=f(x)$ The derivative is written: $f^{\prime}(x), \frac{d y}{d x}$ (Leibniz notation), $D_{x} y$ or sometimes: $y^{\prime}, \frac{d}{d x}(f(x))$ or $D_{x}(f(x))$.

Constant rule: $f(x)=k$, a constant, for all x. Then $f^{\prime}(x)=0$
Power Rule: $f(x)=x^{n}$ implies $f^{\prime}(x)=n x^{n-1}$.
We showed this for n positive integers, but in fact it is true for any real power.

Special cases: $n=1$ so $f(x)=x$ and $f^{\prime}(x)=1$
$n=2, f(x)=x^{2} f^{\prime}(x)=2 x$
So $\frac{d}{d x} 5 x^{4}=5 \cdot 4 x^{3}=20 x^{3}$.
Suppose u and v are differentiable functions.
If $f(x)=u(x)+v(x)$, then
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{u(x+h)+v(x+h)-(u(x)+v(x))}{h}=$
$\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)+v(x+h)-v(x))}{h}=u^{\prime}(x)+v^{\prime}(x)$. Sum Rule.
Now we can differentiate any polynomial:
Let $f(x)=3 x^{10}-5 x^{2}+12 x+4 ; f^{\prime}(x)=?$
Answer: $f^{\prime}(x)=30 x^{9}-10 x+12$

As we said, the power rule works for any power n (negative, fraction, even irrational).

$$
\begin{aligned}
& (\sqrt{x})^{\prime}=\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
& \left(\frac{1}{x}\right)^{\prime}=\left(x^{-1}\right)^{\prime}=-1 \cdot x^{-2}=-\frac{1}{x^{2}} \\
& g(x)=(\sqrt{x})^{3}-\frac{1}{x^{2}} ; \text { then } g^{\prime}(x)=?
\end{aligned}
$$

Answer: $g(x)=x^{3 / 2}-x^{-2}$ so

$$
g^{\prime}(x)=\frac{3}{2} x^{1 / 2}+2 x^{-3}=\frac{3}{2} \sqrt{x}+\frac{2}{x^{3}}
$$

$$
h(x)=\frac{6}{x^{1 / 4}} ; h^{\prime}(x)=?
$$

Answer: $h(x)=6 x^{-1 / 4}$ so $h^{\prime}(x)=-\frac{6}{4} x^{-5 / 4}$.
$f(x)=\frac{x^{2}+2 x}{\sqrt{x}} ; f^{\prime}(x)=?$
Answer: $f(x)=x^{2-\frac{1}{2}}+2 x^{1-\frac{1}{2}}=x^{3 / 2}+2 x^{1 / 2}$, so
$f^{\prime}(x)=\frac{3}{2} x^{1 / 2}+x^{-1 / 2}=\frac{3}{2} \sqrt{x}+\frac{1}{\sqrt{x}}$.

Velocity.
$s(t)=$ position of an object at time t.
$v=\frac{d s}{d t}$ is velocity; it can be positive or negative.
$v>0$ means s is increasing (to the right; going up)
$v<0$ means s is decreasing (to the left; going down)

Galileo's Law: An object is dropped or thrown vertically near the surface of the earth. $s=$ height above ground; $s_{0}=$ initial height; $v_{0}=$ initial velocity. Then $s(t)=-16 t^{2}+v_{0} t+s_{0}$ (s measured in feet, t in seconds).

A bullet is shot upward from ground level at 320ft/sec. Find $v(1), v(2)$. When will the bullet reach its maximum height, and what is that max height? When does the bullet hit the ground?

$$
\begin{aligned}
& s(t)=-16 t^{2}+320 t \\
& v(t)=s^{\prime}(t)=-32 t+320 ; v(1)=288, v(2)=256
\end{aligned}
$$

The bullet reaches its max height when $v(t)=0$; so $t=10$.
$s(10)=-1600+3200=1600 \mathrm{ft}$.
The bullet hits the ground when $s(t)=0=-16 t(t-20)$, so at $t=20$.
4.2 Derivatives of products and quotients.

Product rule: $\frac{d}{d x}(u(x) v(x))=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)$.

Examples: $\frac{d}{d x}\left[\left(x^{3}+1\right)\left(x^{-2}+x^{1 / 2}\right)\right]=$
$\left(x^{3}+1\right)\left(-2 x^{-3}+\frac{1}{2} x^{-1 / 2}\right)+\left(3 x^{2}\right)\left(x^{-2}+x^{1 / 2}\right)$
$\frac{d}{d x}\left[\left(x^{3}+1\right)^{2}\right]=$
$\left(x^{3}+1\right) 3 x^{2}+3 x^{2}\left(x^{3}+1\right)=6 x^{2}\left(x^{3}+1\right)$

Reciprocal rule: $\frac{d}{d x}\left(\frac{1}{v(x)}\right)=\frac{-v^{\prime}(x)}{v(x)^{2}}$.
Example: $\frac{d}{d x}\left(\frac{1}{x^{2}+1}\right)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}=$
Quotient rule: $\frac{d}{d x}\left(\frac{u(x)}{v(x)}\right)=\frac{v(x) u^{\prime}(x)-u(x) v^{\prime}(x)}{v(x)^{2}}$.
Example: $\frac{d}{d x}\left(\frac{2 x+1}{3 x-2}\right)=$

$$
\begin{aligned}
& \frac{(3 x-2) 2-(2 x+1) 3}{(3 x-2)^{2}}=\frac{-7}{(3 x-2)^{2}} \\
& \frac{d}{d x}\left(\frac{x}{x^{2}+1}\right)=\frac{\left(x^{2}+1\right) \cdot 1-x(2 x)}{\left(x^{2}+1\right)^{2}} \\
& \frac{d}{d x} \frac{x+1}{\sqrt{x}+1}=\frac{(\sqrt{x}+1) \cdot 1-(x+1)\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+1)^{2}}
\end{aligned}
$$

