4.2 Derivatives of products and quotients—continued.

Review of rules:

Constant rule:diku(x) = ku'(x).
T

Sum/Difference rules: diu(x) +ou(z) =d(x) £ (z).
T

Product rule: %u( Jo(z) = u(x)v'(x) + o' (z)v(x).
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Reciprocal rule: — v(z) .
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Quotient rule: —

Proof of product rule.

If f(z) = u(z)v(x), then f'(z) = }LE% u(z + hv(z +2’) — (u(z)v(z))
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4.8 The Chain Rule.

Composition: (go f)(x) = g(f(z)).

Example: f(r) =2%—1, g(z) = {/z = 2/3;

(fog)(x) = fl9(x)) = (x)* =1 =23 —1 and (go f)(x) = /22 -1
Then (fog)(3) = 3%/3—1 = 1.0801, but (gof)(3) = ¢/32 —1 = /8 =2.
Let f and g be differentiable functions.

Consider variables y = g(z), z = f(y) = f(g(z)), k = g(x+h) — g(z);

note that g(x+h) = y+k and k£ — 0 as h — 0 because g is continuous.
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This is the Chain Rule: (fog) (z) = f'(9(x))g (z).
“The derivative of a composition is the product of the deriva-
tives, but with the derivative of the outer function f evaluated at

the value of the inner function g.”



Chain Rule: (fog)'(z) = f'(9(z))g (2)-

Examples.
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More generally, - (g(x))" = n(g(x))" g/ (z).
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More generally, % (ﬁ) = %g(az)_l = —g(z)72¢(x) = —gggla

which is the Reciprocal Rule.
Instead of memorizing the Quotient Rule, you can derive it

from the Chain Rule and Product Rule:

<M> = (9(z)" f(@)) = g(a)"" f'(z) + (9(z) 1) f(z) =

g(x)

9(@)g(@) > (2) — g(w)2g/ () f(z) = L) = S0/ )



The Chain Rule in Leibniz notation:

Let z = f(y), y = g(x), so z = f(g(x)).
= (@) = e @ = EL.

“If 2 changes a times as fast as y, and y changes b times as fast

as x, then z changes ab times as fast as z.”

Textbooks problem 55, p.233: L = length, w = weight, t = time.
For the African wild dog, L = 2.472w?°"!, (length in mm, weight in
kg). For a dog less then one year old, the weight is estimated by
w = .265 + .21t (linear growth; ¢t in weeks). How fast is the length

of a 25-week-old dog changing?

We want % when t = 25.

At this time, we have w = .265 + .21 - 25 = 5.515.
dL  dL dw
Chain Rule: — = —— =
S T dw dt

(2.472)(2.571)w'57 . 21 = 1.335(5.515)571 = 19.52 mm/wk



