4.2 Derivatives of products and quotients-continued.

Review of rules:

Constant rule: $\frac{d}{d x} k u(x)=k u^{\prime}(x)$.
Sum/Difference rules: $\frac{d}{d x} u(x) \pm v(x)=u^{\prime}(x) \pm v^{\prime}(x)$.
Product rule: $\frac{d}{d x} u(x) v(x)=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)$.
Reciprocal rule: $\frac{d}{d x} \frac{1}{v(x)}=\frac{-v^{\prime}(x)}{v(x)^{2}}$.
Quotient rule: $\frac{d}{d x} \frac{u(x)}{v(x)}=\frac{v(x) u^{\prime}(x)-u(x) v^{\prime}(x)}{v(x)^{2}}$.

Proof of product rule.

If $f(x)=u(x) v(x)$, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-(u(x) v(x))}{h}=$
$\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-u(x+h) v(x)+u(x+h) v(x)-u(x) v(x))}{h}=$
$\lim _{h \rightarrow 0}\left[u(x+h)\left(\frac{v(x+h)-v(x)}{h}\right)+\left(\frac{u(x+h)-u(x)}{h} v(x)\right)\right]=$
$\lim _{h \rightarrow 0} u(x+h) \lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}+\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} v(x)=$
$u(x) v^{\prime}(x)+u^{\prime}(x) v(x)$.
4.3 The Chain Rule.

Composition: $(g \circ f)(x)=g(f(x))$.
Example: $f(x)=x^{2}-1, g(x)=\sqrt[3]{x}=x^{1 / 3}$;
$(f \circ g)(x)=f(g(x))=(\sqrt[3]{x})^{2}-1=x^{2 / 3}-1$ and $(g \circ f)(x)=\sqrt[3]{x^{2}-1}$
Then $(f \circ g)(3)=3^{2 / 3}-1=1.0801$, but $(g \circ f)(3)=\sqrt[3]{3^{2}-1}=\sqrt[3]{8}=2$.
Let f and g be differentiable functions.
Consider variables $y=g(x), z=f(y)=f(g(x)), k=g(x+h)-g(x)$; note that $g(x+h)=y+k$ and $k \rightarrow 0$ as $h \rightarrow 0$ because g is continuous.

$$
\begin{aligned}
(f \circ g)^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(f \circ g)(x+h)-(f \circ g)(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{k \rightarrow 0} \frac{f(y+k)-f(y)}{k} \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

This is the Chain Rule: $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
"The derivative of a composition is the product of the derivatives, but with the derivative of the outer function f evaluated at the value of the inner function $g . "$

Chain Rule: $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.

Examples.

$$
\frac{d}{d x}\left(x^{2}-1\right)^{1 / 3}=\frac{1}{3}\left(x^{2}-1\right)^{-2 / 3} \frac{d}{d x}\left(x^{2}-1\right)=\frac{1}{3}\left(x^{2}-1\right)^{-2 / 3} 2 x
$$

More generally, $\frac{d}{d x}(g(x))^{n}=n(g(x))^{n-1} g^{\prime}(x)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{x^{3}+x+1}\right)=\frac{d}{d x}\left(\left(x^{3}+x+1\right)^{-1}\right)= \\
& -\left(x^{3}+x+1\right)^{-2}\left(3 x^{2}+1\right)=\frac{3 x^{2}+1}{\left(x^{3}+x+1\right)^{2}}
\end{aligned}
$$

More generally, $\frac{d}{d x}\left(\frac{1}{g(x)}\right)=\frac{d}{d x} g(x)^{-1}=-g(x)^{-2} g^{\prime}(x)=-\frac{g^{\prime}(x)}{g(x)^{2}}$, which is the Reciprocal Rule.

Instead of memorizing the Quotient Rule, you can derive it from the Chain Rule and Product Rule:

$$
\begin{aligned}
& \left(\frac{f(x)}{g(x)}\right)^{\prime}=\left(g(x)^{-1} f(x)\right)^{\prime}=g(x)^{-1} f^{\prime}(x)+\left(g(x)^{-1}\right)^{\prime} f(x)= \\
& g(x) g(x)^{-2} f^{\prime}(x)-g(x)^{-2} g^{\prime}(x) f(x)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g(x)^{2}}
\end{aligned}
$$

The Chain Rule in Leibniz notation:

Let $z=f(y), y=g(x)$, so $z=f(g(x))$.
$\frac{d z}{d x}=(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{d z}{d y} \frac{d y}{d x}$.
"If z changes a times as fast as y, and y changes b times as fast as x, then z changes $a b$ times as fast as $x . "$

Textbooks problem 55, p.233: $L=$ length, $w=$ weight, $t=$ time. For the African wild $\operatorname{dog}, L=2.472 w^{2.571}$, (length in mm, weight in kg). For a dog less then one year old, the weight is estimated by $w=.265+.21 t$ (linear growth; t in weeks). How fast is the length of a 25 -week-old dog changing?

We want $\frac{d L}{d t}$ when $t=25$.
At this time, we have $w=.265+.21 \cdot 25=5.515$.
Chain Rule: $\frac{d L}{d t}=\frac{d L}{d w} \frac{d w}{d t}=$
$(2.472)(2.571) w^{1.571} \cdot .21=1.335(5.515)^{1.571}=19.52 \mathrm{~mm} / \mathbf{w k}$

