4.4 The exponential function.

 a^r base a exponent (or power) r

Meaning? if r is a positive integer, a is multiplied by itself r times: $a^3 = a \cdot a \cdot a$.

Main properties: $a^m a^n = a^{m+n}$ and $a^{mn} = a^{mn}$

$$a^{-n} = \frac{1}{a^n}, \ 3^{-2} = \frac{1}{x^2} = \frac{1}{9}.$$

Define $a^0 = 1$.

Fractional r: $a^{1/3}$ = cube root of a; so $(a^{1/3})^3 = a$.

 $4^{1/2}=2$, not -2; $a^{1/\text{even}}$ is only defined for a>0.

$$8^{5/3} = (8^{1/3})^5 = 2^5 = 32$$

Using limits it is possible to define a^r for r an irrational number:

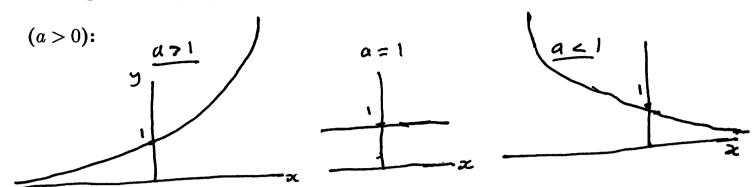
 $\pi = 3.1416...$ so 3, 3.1, 3.14, 3.141, 3.1416 etc. approach π

 $2^3, 2^{3.1}, 2^{3.14}, 2^{3.141}, 2^{3.1416}$ etc. approach 2^{π}

If we vary the base and fix the power, eg $f(x) = x^2$ we get a "power function"

If we vary the power and fix the base, eg $f(x) = 2^x$ we get an "exponential function"

Graphs and properties of an exponential functions $f(x) = a^x$,



f(0) = 1; if T is a number so that f(T) = 2, so f doubles in time T, then $f(nT) = a^{nT} = (a^T)^n = 2^n$, so f keeps doubling every time interval T.

"exponential growth" if a > 1; "exponential decay" if 0 < a < 1The most important base is e (Euler's number)

$$(1+\frac{1}{m})^m \to e$$
 as $m \to \infty$; compute for $m=1,2,3,10,100,1000$:

$$2, 1.5^2 = 2.25, 1.33^3 = 2.37, 1.1^{10} = 2.593, 1.01^{100} = 2.7048, 1.001^{1000} =$$

2.7169

if you keep calculating you get e = 2.718...

Derivative of exponential functions

Let $f(x) = e^x = \exp(x)$, the "natural exponential function".

Let
$$f(x) = e^x = \exp(x)$$
, the "natural exponential function".

$$f'(0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (e^h - 1)/h |$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$| (0) = \lim_{h \to 0} \frac{e^h - 1}{h} = ?$$

$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x e^h - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

Practice:
$$\frac{d}{dx}e^{x^2} =$$

$$e^{x^2}\frac{d}{dx}x^2 = e^{x^2}2x$$

$$\frac{d}{dx}xe^x =$$

$$xe^x + 1 \cdot e^x = (x+1)e^x.$$

Law of Exponential Growth.

Let P(t) = pop. at time t; $P_0 = P(0) = initial pop.$

Assume the rate of growth of the pop. is proportional to the size of the pop.; so P'=kP for some constant k>0. $P(0)=P_0=$ the initial population

Find a function P(t) which has this property.

Let $P(t) = Ce^{kt}$. Then $P'(t) = Ce^{kt}k = kP(t)$ as desired.

P(0) = C, so $P(t) = P_0 e^{kt}$ is a formula for such a population.

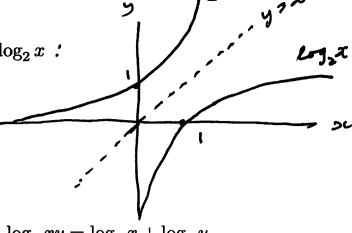
Radioactive decay: k < 0.

4.5 Logarithms.

If a > 0, $a \neq 1$, x > 0, then $y = \log_a x$ means $a^y = x$.

So $\log_3 9 = 2$, $\log_2(\frac{1}{8}) = -3$, $\log_a 1 = 0$ for any base a.

compare the graphs of 2^x and $\log_2 x$:



properties: $a^{x+y} = a^x a^y$ implies $\log_a xy = \log_a x + \log_a y$

Similarly
$$\log_a x/y = \log_a x - \log_a y$$
, $\log_a(x^r) = r \log_a x$

$$\log_a(a^r) = r$$
 and $a^{\log_a r} = r$ (a^r and $\log_a r$ are inverse functions).

The natural logarithm $\ln x = \log_e x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

Recall that $\ln(e^x) = x$ and $e^{\ln x} = x$.

So
$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x = 1$$
.

But
$$\frac{d}{dx}e^{\ln x} = e^{\ln x}\frac{d}{dx}\ln x = x\frac{d}{dx}\ln x$$
.

Thus
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
.

$$\frac{d}{dx}\ln(x^2+1) = \frac{2x}{x^2+1}.$$

More generally, $\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$.

$$\frac{d}{dx}x\ln x = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1.$$

$$\frac{d}{dx}\frac{\ln x}{e^x} = \frac{e^x \frac{1}{x} - \ln x e^x}{(e^x)^2} = \frac{1}{xe^x} - \frac{\ln x}{e^x}.$$