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Proof of (1)) (4) (of Theorem 4 page 2792 Sun and Wilson). The gap in the

proof (of Sun and Wilson) of this implication is located in the proof of the impli-

cation that (1) implies condition (3) in the definition of isolated line singularity.

We must therefore assume that condition (3) fails and construct two di↵erent

realization of the given 1-jet that cannot be RL-equivalent. Let f(x, y) =P
1i,jn

yiyjfi,j(x, y) (with fi,j = fj,i ) be the germ under consideration. We

assume that condition (3) fails and consequently that Df (x) = det(fi,j(x, 0) 2
m1

1 . Let Sym(n) be the space of symmetric n ⇥ n matrices and let ⇤(n) be

the subset of singular symmetric matrices. Since det is a polynomial on Sym(n)

and det
�1

(0) = ⇤(n)) there is a neighborhood U of (fi,j(0)) 2 Sym(n) and a

constant C > 0 and ↵ > 0 such that detM � Cdist(M,⇤(n))
↵

when M 2 U .

So consequently the function dist((fi,j(x, 0),⇤(n)) must be flat in the sense

o(|x|)m
for every m (since the function is not necessarily di↵erentiable)). We

can therefore find a secquence xm ! 0 in L and matrices Mm = (h
m

i,j
) 2 Sym(n)

such that kMkm = o(|x|)m
and (fi,j(x, 0))+Mm 2 ⇤(n). A standard extension

argument (which I do not give) shows that there exists functions hi,j 2 m1
1

(with hi,j = hj,i) such that hi,j(xm) = h
m

i,j
. Putting

g = f +

X

1i,jn

yiyjhi,j(x) =

X

1i,jn

yiyjgi,j(x, y)

we get a germ with the same 1-jet as f such that (gi,j(x, 0) is singular along

the sequence xn. If we can construct another representative of the 1-jet of f

k(x, y) =
P

1i,jn

yiyjki,j(x, y) such that (ki,j(x, 0) is non-singular when x 6= 0

Lemma 4.1 in Sun and Wilson will show that g and k cannot be RL-equivalent

hence (1) of Theorem 4 fails. So our more di�cult task is the construction of

such a germ k.

Consider a matrix M 2 Sym(n). Let 1  r  n. We say that an r⇥ r-minor

is an essential r ⇥ r-minor of M if it is obtained by removing n � r columns

and lines from M corresponding to the same subset (of cardinality n � r) of

{1, 2, . . . , n} (so the minor is the determinant of a symmetric r ⇥ r submatrix

of M). Since D(x) is flat we can define the integer 0  s < n by

s = max{r | there exists an essential r ⇥ r �minor ofM which is not flat }.

Here s = 0 means that all essential r⇥ r minors are flat for 1  r  n. For each

r > s, let I(r) be an index set with cardinality equal the number of r⇥r essential

1



minors of a n⇥ n matrix ( ]I(r) =
�
n

r

�
). We index the various r ⇥ r minors of

a matrix B by the set I(r) and write D↵(M) for the corresponding r⇥ r-minor

of M for each ↵ 2 I(r). Write D↵(fi,j(x, 0)) = D↵(x) Let l = (

nP
r=s+1

�
n

r

�
)
2

let

h(x) be a flat function such that h(x) > 0 when x 6= 0. Consider the function

⇢(x) = l(

nX

r=s+1

X

↵2I(r)

D↵(x)
2

+ h(x)).

⇢ is a flat function and ⇢(x) > 0 when x 6= 0. Moreover

p
⇢(x) >

nX

r=s+1

X

↵2I(r)

|D↵(x)|

when x 6= 0. (Because

(

nX

r=s+1

X

↵2I(r)

D↵(x)
2

+ h(x))
1
2 > |D�(x)|

for each � 2 I(r), r > s and there is exactly
p

l such essential minors when

s + 1  r  n.) Assume first that s = 0. Let t be an integer. Since ⇢ is flat, we

can find t flat fuctions a1(x), . . . , at(x) such that ⇢(x) = a1(x) · · · at(x). Since

⇢(x) > 0 when x 6= 0, we must have ai(x) 6= 0 for each i when x 6= 0. Let

p(x) =

tP
i=1

ai(x)
2
. p(x) is then flat, p(x) > 0 for x 6= 0 and if t > 4n we must

then have p(x)
n

>

p
⇢(x) when x 6= 0. Put k(x, y) = f(x, y)+

nP
i=1

y
2
i
p(x). Then

Dk(x) = det((fi,j(x, 0) + p(x)I). Expanding this determinant we find that

Dk(x) = p(x)
n

+

nX

r=1

X

↵2I(r)

D↵(x)p(x)
n�r

.

If we are close to 0 then |p(x)
n�r| < 1 and hence

|
nX

r=1

X

↵2I(r)

D↵(x)p(x)
n�r| <

p
⇢(x),

and from estimates above, we get consequently that Dk(x) > 0 when x 6= 0.

Next assume that s > 0. Then we can find an essential s⇥ s-minor of (fi,j(x, 0)

which is not flat. By permuting the coordinates in Rn
, we may assume that

this is the the upper-left s⇥s minor. Denote this minor with H(x). Then there

exists � > 0 such that H(x) � |x|� in a neighborhood of 0. Let ⇢(x) be defined

as above. Now
⇢(x)

H(x)2 is a flat function which is positive when x 6= 0 and we

can for each t, write
⇢(x)

H(x)2 = a1(x) · · · at(x) for some flat functions ai(x)where

ai(x) 6= 0 when x 6= 0. Again let p(x) =

tP
i=1

ai(x)
2
. p(x) is flat, p(x) > 0

when x 6= 0 and if t > 4(n � s) we get that |H(x)|p(x)
n�s

>

p
⇢(x). For each
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r > s let J(r) be the subset of I(r) indexing those essential r⇥ r minors which

corresponds to (essential) submatrices having the upperleft s⇥ s submatrix as

a submatrix. Put k(x, y) = f(x, y) +

nP
i=s+1

y
2
i
p(x). This time we find that

Dk(x) = H(x)p(x)
n�s

+

nX

r=s+1

X

↵2J(r)

D↵(x)p(x)
n�r

.

Again it is clear that

|
nX

r=s+1

X

↵2J(r)

D↵(x)p(x)
n�r| <

p
⇢(x),

and consequently that Dk(x) 6= 0 when x 6= 0. So k(x, y) is our wanted repre-

sentative of the 1-jet of f .
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