A SHORT INTRODUCTION TO CONTINUED FRACTIONS
P. GUERZHOY

ABSTRACT. In this talk we introduce continued fractions, prove their basic properties and
apply these properties to solve a practical problem. We also state without proof some
further properties of continued fractions and provide a brief overview of some facts in this
connection. The talk is elementary; it is aimed at undergraduate mathematics majors and
mathematics graduate students.

1. BAsiC NOTATIONS
In general, a (simple) continued fraction is an expression of the form

1
Gt 71
aq —+ CLQT
where the letters ag, ay, as, ... denote independent variables, and may be interpreted as one
wants (e.g. real or complex numbers, functions, etc.). This expression has precise sense if the
number of terms is finite, and may have no meaning for an infinite number of terms. In this talk
we only discuss the simplest classical setting.
The letters ay, as, ... denote positive integers. The letter ag denotes an integer.

The following standard notation is very convenient.

Notation. We write

1
[ag; ay, ag, . .., an] = ag + 1
@ + a9 + ... 1
ta,
if the number of terms is finite, and
lag; ar,ag,...] =ag+ —T
a1 + as + ...

for an infinite number of terms.

Still, in the case of infinite number of terms a certain amount of work must be carried out in
order to make the above formula meaningful. At the same time, for the finite number of terms
the formula makes sense.

Example 1.
[—2;1,3,5] = —2+1/(1+1/(3+1/5)) = —24+1/(14+5/16) = —2+1/(21/16) = —2+16/21 = —26/21
Notation. For a finite continued fraction [ag;aq,as, ..., a,] and a positive integer k < n,

the k-th remainder is defined as the continued fraction

Te =[Gk} Qpi1, Qs - - - Q).
1
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Similarly, for an infinite continued fraction [ag;aq,as,...] and a positive integer k, the
k-th remainder is defined as the continued fraction

Tr = [Qk; Qhy1, Arra, - - o).
Thus, at least in the case of a finite continued fraction,
a = lag;ar,as,...,a,) =ag+1/(ar +1/(az + ...+ 1/a,))

we have
(1) a=ay+1/(a; +1/(ag+ ...+ 1/(ax_1+ 1/r))) = "]ao; a1, a9, . . ., ag—1,7%]”
for any positive k < n. Quotation signs appear because we consider the expressions of this kind
only with integer entries but the quantity . may be a non-integer.

It is not difficult to expand any rational number « into a continued fraction. Indeed, let
ap = [a] be the greatest integer not exceeding . Thus the difference 6 = o — ap < 1 and,

of course, 6 > 0. If § = 0 then we are done. Otherwise put r; = 1/, find a; = [r;] and
non-negative d = a; — a; < 1. Continue the procedure until you obtain § = 0.

Example 2. Consider the continued fraction expansion for42/31. We obtain ag = [42/31] =
1,0 =42/31—-1=11/31. Nowr; = 1/6 = 31/11 and a1 = [ay] = [31/11] = 2. The new
0 =31/11—-2=9/11. Nowry =1/6 = 11/9 and ay = [ag] = [11/9] = 1. It follows that
0 =11/9—-1=2/9. Nowrs =1/6 = 9/2 and a3 = [as] = [9/2] = 4. 1t follows that
0=9/2—-4=1/2. Nowry=1/0 =2 and as = [ou] = [2] =2. It follows that § =2 —-2=0
and we are done.

Thus we have calculated

42/31 = [ag; a1, as, az, a4 = [1;2,1,4,2].

The above example shows that the algorithm stops after finitely many steps. This is in fact
quite a general phenomenon. In order to practice with the introduced notations let us prove a
simple but important proposition.

Proposition 1. Any rational number can be represented as a finite continued fraction.
Proof. By construction, all remainders are positive rationals. For a positive integer k put

r, = A/B and let a;, = [ry]. Then

A— Bak L C

—5 =5

with C' < B because 1y — a < 1 by construction. If C' = 0, then the algorithm stops at this

point and we are done. Assume now that C' # 0. It follows from (1) that

(2) Ty — Qp =

(3) Ty = a + L
Tk+1
Compare now (2) with (3) to find that
B
Tk+1 = 6

Since C' < B, the rational number 7,1 has a denominator which is smaller than the the denom-
inator of the previous remainder 7. It follows that after a finite number of steps we obtain an
integer (a rational with 1 in the denominator) r,, = a,, and the procedure stops at this point.



There appear several natural questions in the connection with Proposition 1.
Is such a continued fraction representation unique? The immediate answer is "no". Here are
two "different” continued fraction representations for 1/2:

1
5 =10:2] =[0;1,1].
However, we require that a,, > 1, where a,, is the last element of a finite continued fraction.

Then the answer is "yes".

Exercise 1. Prove that under the assumption a, > 1 the continued fraction representation
given in Proposition 1 is unique. In other words, the correspondence between

e finite continued fractions [ag;ay, as,...a,| with an integer ay, positive integers ay for
k>0anda, >1

and

e rational numbers

1S one-to-one.

Hint. Make use of the formulas (5) below.

From now on we assume that a,, > 1.

Another natural question is about infinite continued fractions and (as one can easily guess)
real numbers. The proof of the corresponding result is slightly more involved, and we do not
give it here. In this brief introduction we just formulate the result and refer to the literature (|2,
Theorem 14]) for a complete proof. We, however, provide some remarks concerning this result
below. In particular, we will explain at some point, what the convergence means.

Theorem 1. An infinite continued fraction converges and defines a real number. There is
a one-to-one correspondence between

e all (finite and infinite) continued fractions |ag; a1, as, . ..] with an integer ag and positive
integers ay for k >0 (and the last term a,, > 1 in the case of finite continued fractions)

and

e real numbers.

Note that the algorithm we developed above can be applied to any real number and provides
the corresponding continued fraction.

Theorem 1 has certain theoretical significance. L.Kronecker (1823-1891) said, " God created
the integers; the rest is work of man”. Several ways to represent real numbers out of integers
are well-known. Theorem 1 provides yet another way to fulfill this task. This way is constructive
and at the same time is not tied to any particular base (say to decimal or binary decomposition).

We will discuss some examples later.

2. MAIN TECHNICAL TOOL

Truncate finite (or infinite) continued fraction a = [ag; ay, as, ..., a,] at the k-th place (with
k < n in the finite case). The rational number s, = [ag;ai,aq,...,ax] is called the k-th
convergent of a.. Define the integers p, and ¢, by
Pk
1 o
( ) qk

written in the reduced form with ¢, > 0.
The following recursive transformation law takes place.
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Theorem 2. Fork > 2
(5) Dk = QxPr—1 + Dk—2
k= apqr—1 + qr—2.

Remark. It does not matter here whether we deal with finite or infinite continued fractions:
the convergents are finite anyway.
Proof. We use the induction argument on k. For k = 2 the statement is true.

Exercise 2. Check the assertion of Theorem 2 for k = 2.

Now, assume (5) for 2 < k < [. Let
_ b
Q

be an arbitrary continued fraction of length [ + 1. We denote by p,/q. the r-th convergent «.
Consider also the continued fraction

a = [ag; ay, az, ... q]

B =lai;as,...,q]
and denote by p/./q. its r-th convergent. We have o = ay + 1/3 which translates as
(6) D= aopf_l + ql/_l

Q=D

Also, by the induction assumption,

Pl = @pj_y + i3
(7) R

G = @+ q3
Combining (6) and (7) we obtain the formulas

= aolap_y +11_3) + @iy + q_3 = aaop;_o + q_5) + (aop)_s + q_3) = api—1 + prs
and
Q= ap_s + Py = g1+ g,
which complete the induction step. We have thus proved that
Pk
S = —,
dk

where p;. and g are defined by the recursive formulas (5). We still have to check that these are
the quantities defined by (4), namely that g, > 0 and that g and pj are coprime. The former
assertion follows from (5) since a; > 0 for £ > 0. To prove the latter assertion, multiply the
equations (5) by gx—1 and py_; respectively and subtract them. We obtain

(8) Pr@r—1 — qkPr—1 = —(Pk-1Gk—2 — Q—1Pk—2)-
Exercise 3. Check that for k = 2
DP2g1 — @2p1 = —1.

Hint. Introduce formally p_; = 1 and ¢q_; = 0, check that then formulas 5 are true also for
k=1.



Exercise 4. Combine the previous exercises with (8) to obtain
GPr—1 — P = (=1)"
for k > 1. Derive from this that q, and py are coprime.

This concludes the proof of Theorem 5.
3. SOME INEQUALITIES.
As an immediate consequence of (5) we find that

(9) Pt pe_ (CL)

qrk—1 qk qrqr—1
and
Pr—2 _ Pk _ (=) oy

k-2 4k dkqk—2
Since all the numbers ¢, and a; are positive, the above formulas imply the following.

Proposition 2. The subsequence of convergents py./qy for even indices k is increasing.
The subsequence of convergents py/qr for odd indices k is decreasing.
FEvery convergent with an odd index is bigger than every convergent with an even indez.

Exercise 5. Prove Proposition 2

Remark. Proposition 2 implies that both subsequences of convergents (those with odd indices
and those with even indices) have limits. This is a step towards making sense out of an infinite
continued fraction: this should be common limit of these two subsequences. It is somehow more
technically involved (although still fairly elementary!) to prove that these two limits coincide.

Theorem 3. Let a = [ag; a1, a9, ...,a,]. For k <n we have
1 1
- - <la- Pk <
@ (qre1 + qx) p qrr+1
Proof.
Exercise 6. Combine (9) with Proposition 2 to prove the inequality
3 P
4k Akqk+1

Another inequality, which provides the lower bound for the distance between the number «
and k-th convergent is slightly more involved. To prove it we first consider the following way to
add fractions which students sometimes prefer.

Definition. The number
a—+c

b+d
is called the mediant of the two fractions a/b and c/d. (The quantities a,b,c and d are
integers.)
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Lemma 1. If
a _c¢
< Z
b~ d
then
g<a+c<g
b~ b+d~ d

Exercise 7. Prove Lemma 1

Consider now the sequence of fractions

Pk Pkt Prt1 Pkt 2Pkg1 Pkt QkPri1 P2
G Gt Gt Gt 201 G kGt Qer2
where the last equality follows from (5).

(10)

Exercise 8. Use (5) to show that the sign of the difference between two consecutive fractions
in (10) depends only on the parity of k.
It follows that the sequence (10) is increasing if k is even and is decreasing if k is odd. Thus,
in particular, the fraction
(11) Pk _'_ pk-i—l
Gk + Qe+t

is between the quantities pi/qx and «. Therefore the distance between py/qr and the fraction
(11) is smaller than the distance between py /gy and a:

o P >pk+pk+1: 1 ‘

G| @+ Q1 (@ + Qes1)
The second (right) inequality in Theorem 3 is now proved. This finishes the proof of Theorem 3.
4. VERY GOOD APPROXIMATION.

Continued fractions provide a representation of numbers which is, in a sense, generic and
canonical. It does not depend on an arbitrary choice of a base. Such a representation should be
the best in a sense. In this section we quantify this naive idea.

Definition. A rational number a/b is refered to as a "good” approximation to a number «
if
c ,a
—#—- and 0<d<b
d 7 b -
imply
|dov — ¢| > |bar — al.

Remarks. 1. Our "good approximation” is "the best approximation of the second kind” in a
more usual terminology.
2. Although we use this definition only for rational «, it may be used for any real « as well.
Neither the results of this section nor the proofs alter.
3. Naively, this definition means that a/b approximates « better then any other rational number
whose denominator does not exceed b. There is another, more common, definition of "the best
approximation” . A rational number x/y is refered to as "the best approximation of the first kind”
if ¢/d # x/y and 0 < d <y imply | — ¢/d| > |a — x/y|. In other words, =/y is closer to «
than any rational number whose denominator does not exceed y. In our definition we consider
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a slightly different measure of approximation, which takes into the account the denominator,
namely bl — a/b| = |bae — a| instead of taking just the distance |aw — a/b|.

Theorem 4. Any “good” approximation is a convergent.

Proof. Let a/b be a "good" approximation to a = [ag; a1, as, . . ., a,|. We have to prove that
a/b = pr/q for some k.

Exercise 9. Prove that if a/b is a "good” approzimation then a/b > ay.

Thus we have a/b > pi/q: or a/b lies between two consecutive convergents py_1/qx—1 and
Pr+1/qr+1 for some k. Assume the latter. Then

@ Perfy 1
b qr-1| bgr
and
‘g_pk_l P D)1
b qr @ 1| @1
It follows that
(12) b> qy.
Also
1
P [ g
b qk+1 b b1
which implies
1
lbae — a| > —.
qr+1
At the same time Theorem 3 (it right inequality multiplied by g;) reads
1
gk — pi| < —.
qk+1

It follows that
lgror — pi| < [ba — al

and the latter inequality together with (12) show that a/b is not a "good" approximation of «
in this case.

Exercise 10. Show that if a/b > p1/q1 then a/b is not a "good” approximation to c.

This finishes the proof of Theorem 4.
5. AN APPLICATION.

Consider the following problem which may be of certain practical interest. Assume that we
calculate certain quantity using a computer. Also assume that we know in advance that the
quantity in question is a rational number. The computer returns a decimal which has high
accuracy and is pretty close to our desired answer. How to guess the exact answer?

To be more specific consider an example.
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Example 3. Assume that the desired answer is
123456
121169
and the result of computer calculation with a modest error of 1071 is
a = 123456/121169 + 1071 =
1.01887446459077916933374047817511079566555802226642127937013592

5855623137931319066757999158200529838490042832737746453300761745
9911363467553582186862976503891259315501489654944746593600673439576129207

with some two hundred digits of accuracy which, of course come short to help in guessing the
period and the exact denominator of 121169.

Solution. Since 123456/121169 is a good (just in a naive sense) approximation to «, it should
be among its convergents. This is not an exact statement, but it offers a hope! We have

a =[1;52,1,53,2,4,1,2,1,68110,4,1,2,106,22,3,1,1,10,2,1,3,1,3,4, 2, 11].

We are not going to check all convergents, because we notice the irregularity: one element,
68110 is far mor than the others. In order to explain this we use the left inequality from Theorem
3 together with the formula (5). Indeed, we have an approximation of o which is unexpectedly
good: | — pi./qx| is very small (it is around 107'%) and with a modest g; too. We have

(@1 + @) = (@1 qr + G1) = G4 (ars1 + Ge1/qx)
and

-2

ar |~ qelarsr + qr-1/ar)
It follows that 1/¢Z(ars1 + qe_1/qx) is small (smaller than 107'°) and therefore, a1 should be
big. This is exactly what we see. Of course, our guess is correct:

123456

121169
In this way we conclude that in general an unexpectedly big element allows to cut the continued
fraction (right before this element) and to guess the exact rational quantity. There is probably
no need (although this is, of course, possible) to quantify this procedure. | prefer to use it just
for guessing the correct quantities on the spot from the first glance.

6. FURTHER OVERVIEW.

Being a very natural object, continued fractions appear in many areas of Mathematics, some-
times in an unexpected way. The Dutch mathematician and astronomer, Christian Huygens
(1629-1695), made the first practical application of the theory of "anthyphaeiretic ratios” (the
old name of continued fractions) in 1687. He wrote a paper explaining how to use conver-
gents to find the best rational approximations for gear ratios. These approximations enabled
him to pick the gears with the best numbers of teeth. His work was motivated by his desire to
build a mechanical planetarium. Further continued fractions attracted attention of most promi-
nent mathematicians. Euler, Jacobi, Cauchy, Gauss and many others worked with the subject.
Continued fractions find their applications in some areas of contemporary Mathematics. There
are mathematicians who continue to develop the theory of continued fractions nowadays, The
Australian mathematician A.J. van der Poorten is, probably, the most prominent among them.

[1,52,1,53,2,4,1,2,1].
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In conclusion of this brief overview let me formulate some facts which will make the picture of
the elementary theory slightly more complete.

First of all, | would like to return to the infinite continued fractions now. We know that decimal
fractions which represent rational numbers may be finite or periodic. Theorem 1 establishes a one-
to-one correspondence between rational numbers and finite continued fractions. The following
result answers in a very elegant way the question about the periodic continued fractions (see [2,
Theorem 28] for the proof which is still elementary).

Theorem 5. (Lagrange) There is a one-to one correspondence between quadratic irrational-
ities and periodic continued fractions.

Example 4. The Golden Ratio
1++5
2

=[1;1,1,1,1,1,1,.. ],

which suggests an intimate connection between the continued fractions and Fibonacci num-
bers.

Exercise 11. Formulate and prove the connection, mentioned above, with Fibonacci num-
bers.

Hint. The ratios of consecutive Fibonacci numbers are rational approximations of the Golden
Ratio.

Example 5.
V29 =1[5;2,1,1,2,10,2,1,1,2,10,2,1, 1,2, 10, .. .

Amazingly, in contrast to the perfect result of Theorem 5, not much is known about the
continued fraction decomposition of other algebraic numbers.

Even more surprisingly, we know something about the continued fractions decompositions of
some transcendental numbers (see [3] for an elegant proof of the identity below and further
development in this direction)

Example 6.
(13) e—1=1[1;1,2,1,1,4,1,1,6,...] = [1, 1, 2h]211,
where e = 2.71828 . . ..

7. A FORMULA OF GAUSS, A THEOREM OF KUZMIN AND LEVI AND A PROBLEM OF
ARNOLD.

Although Theorem 5 and formula (13) provide certain regular expressions, it is intuitively
clear that for an arbitrary chosen irrational number the elements of its continued fraction appear
without any regularity. In this connection Gauss asked about a probability ¢, for a number &
to appear as an element of a continued fraction. Such a probability is defined in a natural way:
as a limit when N — oo of the number of occurences of k£ among the first NV elements of
the continued fraction expension. Moreover, Gauss provided an answer, but never published the
proof. Two different proofs were found independetly by R.O.Kuzmin (1928) and P. Lévy (1929)
(see [2] for a detailed exposition of the R.O.Kuzmin's proof).
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Theorem 6. For almost every real o the probability for a number k to appear as an element
in the continued fraction expansion of « is

(14) ck:ﬁln (1+m).

Remarks. 1. The words "for almost every " mean that the measure of the set of exceptions
is zero.
2. Even the existence of p;, (defined as a limit) is highly non-trivial.

Exercise 12. Prove that ¢ really define a probability distribution, namely that

ch: 1.

k=1

Theorem 6 may (and probably should) be considered as a result from ergodic theory rather
than number theory. This constructs a bridge between these two areas of Mathematics and
explains the recent attention to continued fractions of the mathematicians who study dynamical
systems. In particular, V.I.Arnold formulated the following open problem. Consider the set of
pairs of integers (a, b) such that the corresponding points on the plane are contained in a quarter
of a circle of radii IV:

a> +1? < N2
Expand the numbers p/q into continued fractions and compute the frequences s, for the ap-
pearence of k in these fractions. Do these frequences have limits as N — oo? If so, do these
limits have anything to do with the probabilities, given by (14)? These questions demand noth-
ing but experimental computer investigation, and such an experiment may be undertaken by a
student. Of course, it would be extremely challenging to find a phenomena experimentally in this
way and to prove it after that theoretically.

8. CONCLUDING REMARK.

Of course, one can consider more general kinds of continued fractions. In particular, one may
ease the assumption that the elements are positive integers and consider, allowing arbitrary reals
as the elements (the question of convergence may usually be solved). The following identities
were discovered independently by three prominent mathematicians. The English mathematician
R.J. Rogers found and proved these identities in 1894, Ramanujan found the identities (without
proof) and formulated them in his letter to Hardy from India in 1913. Independently, being
separated from England by the war, I. J. Schur found the identities and published two different
proofs in 1917. We refer an interested reader to [1] for a detailed discussion and just state the
amazing identities here.

057%™, e e e ] = |/ ° +2\/5 - \/5; L)
[17 e—ﬂ’€—27r’€—37r’€—47r’ N ] _ / 5 _2\/5 . \/52_ 1 €7r/5




11

REFERENCES

[1] Andrews, George E., The theory of partitions. Reprint of the 1976 original., Cambridge Mathematical
Library. Cambridge University Press, Cambridge, 1998

[2] Khinchin, A. Ya., Continued fractions. With a preface by B. V. Gnedenko. Translated from the third
(1961) Russian edition. Reprint of the 1964 translation. Dover Publications, Inc., Mineola, NY, 1997

[3] van der Poorten, A. J., Continued fraction expansions of values of the exponential function and related
fun with continued fractions, Nieuw Arch. Wisk. (4) 14 (1996), no. 2, 221-230.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, 1805 N. BROAD STR., PHILADELPHIA, PA
19122
E-mail address: pasha@math.temple.edu



