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Abstract. In the late 1930s Phillip Whitman gave an algorithm for deciding for lattice terms u and u 
if u < u in the free lattice on the variables in u and u. He also showed that each element of the free 
lattice has a shortest term representing it and this term is unique up to commutivity and associativi- 
ty. He gave an algorithm for finding this term. Almost all the work on free lattices uses these algo- 
rithms. Building on the work of Ralph McKenzie, J. B. Nation and the author have developed very 
efficient algorithms for deciding if a lattice term u has a lower cover (i.e., if there is a u’ with ~1 
covered by u, which is denoted by w-~u) and for finding them if it does. This paper studies the 
efficiency of both Whitman’s algorithm and the algorithms of Freese and Nation. It is shown that 
although it is often quite fast, the straightforward implementation of Whitman’s algorithm for 
testing u < u is exponential in time in the worst case. A modification of Whitman’s algorithm is 
given which is polynomial and has constant minimum time. The algorithms of Freese and Nation 
are then shown to be polynomial. 
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0. Introduction 

In the late 1930s Phillip Whitman gave an algorithm for deciding for lattice 
terms u and u if u < u in the free lattice on the variables in u and U. He also 
showed that each element of the free lattice has a shortest term representing 
it and this term is unique up to commutivity and associativity. He gave an 
algorithm for finding this term. Almost all the work on free lattices uses these 
algorithms. Building on the work of Ralph McKenzie, J. B. Nation and the 
author have developed very efficient algorithms for deciding if a lattice term 
u has a lower cover (i.e., if there is a w with w covered by D, which is denoted by 
W-CO) and for finding them if it does. We have been able to implement Whit- 
man’s algorithms and our own algorithms on a microcomputer using muLISP, 
a fast version of LISP for microcomputers well suited to manipulating symboli- 
cal mathematical expressions. This program has proved useful in studying 
certain problems associated with free lattices, see [8]. 

This paper studies the efficiency of these algorithms. In the second section 
we study the time complexity of Whitman’s algorithm itselc since all of the 
other algorithms depend on it. This problem has been studied by computer 



332 RALPH FREESE 

scientists who were able to show that there is a polynomial time algorithm for 
deciding if u < u [13]. We show that the straightforward implementation of 
Whitman’s algorithm is exponential. The algorithm of Hunt, Rosenkrantz, and 
Bloniardz [ 131 has the disadvantage that its minimum time is rather long, and thus 
it is often slower that Whitman’s algorithm. We show how to modify Whitman’s 
algorithm so as to have the advantages of both algorithms. Somewhat surprising- 
ly there is a simple modification of Whitman’s condition (W) which greatly 
improves the speed of Whitman’s algorithm. 

In the third section we give an overview of the results about covers in free 
lattices and show that the algorithms of [ 1 OJ have polynomial time complexity. 

In fourth section we give a brief introduction to the programming language 
LISP and how our lattice theory program is written in LISP. In the last section 
we make a few remarks about the expected time of Whitman’s algorithm. 

1. Preliminaries 

A lattice term is either a generator (i.e., a variable) or formally a join or meet 
of simpler terms called respectively -MUX& and meeta&. We allow the join 
and meet operation to have an arbitrary finite number of arguments, so that 
xv yv z is a valid term. We defme the type of a term u, denoted type(u), to be 
either v or A or ‘gen’ depending on whether D is formally join or a meet or a 
generator. For terms u and u we define the due of (0, u), denoted val(u, u), to 
be true if u < u and false otherwise. Whitman’s algorithm for determining 
val(u, u) is recursively defined as follows, where u1 and nj denote typical sub- 
terms of u and u: 

(1) If type(u) = gen, 
(i) if type(u) = gen, then val(u, u) = true iff u = u. 

(ii) else if type(u) = A, then val(u, u)= true iff val(u, u,)= true for each 
meetand u, of u. 

(iii) [otherwise type(u) = v] val(u, u) = true iff val(u, u,) = true for some 
joinand uj of u. 

(2) else if type(u) = v, val(u, u) = true iff Vd(Ui, u) = true for all i. 
(3) else if type(u) = gen, val(u, u) = true iff val(uZ, u) = true for some i. 
(4) else if type(u) = A, val(u, u) = true iff val(u, uJ) = true for all j. 
(5) [otherwise type(u) =A and type(u) = v] val(u, u) = true iff for some i 

val(uZ, u) = true or for somej val(u, Uj) = true. 

The condition of case (5) is known as Whitman’s condition and is denoted 
W). 

For the purposes of analyzing the algorithm, we will represent lattice terms 
as follows. If NJ is a variable we represent it with itself Otherwise we represent 
w as a list whose first element is type(w) and whose other elements are the 
representations of the joinands (or meetands) of w, i.e., Polish notation. Thus 
x v y v (z A l) is represented as (v x y (A z Z)). 
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2. The Complexity of Whitman’s Algorithm 
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In this section we discuss the efficiency of Whitman’s algorithm, i.e., the time 
it takes as function of the input length. This problem has been studied by 
computer scientists. Hunt, Rosenkrantz, and Bloniarz, using dynamic program- 
ming techniques, have shown that there is a polynomial time algorithm for 
deciding if TV < u in the free lattice, where v and u are lattice terms, [13]. They 
have also proved the remarkable result that the problem of deciding if 0 < u in 
the free lattice in a variety generated by a fmite lattice is co-NP complete. 
We will show that, at least in the worst cases, the straight-forward implementa- 
tion of Whitman’s algorithm (for example, as in the last section) is exponential. 
On the other hand, Whitman’s algorithm is often faster than the polynomial 
algorithm. We present an algorithm which is polynomial but retains the advan- 
tages of Whitman. 

As in the last section, we represent lattice terms as either a variable or a list 
whose In-st element is either v or A and the remaining elements are representa- 
tions of lattice terms. The input length is total number of v’s, A’S, and variables 
(counting repeats) at all levels. To see that Whitman’s algorithm is exponential, 
let xi and yi be variables and defme lattice terms V~ and ufi inductively as 
follows. Let ~~ = ~1 and til = ~1. Inductively define 

V n+l =%I+1 /Y xn /I bl v vnh %+I =Yn+l “YnVb~“%z)- 

(The representation of v~+ i is (A x~+, X~ (v & En)), where I& is the representa- 
tion of vn .) 

Notice that the input length of v~+~ is a constant amount more than that of 
V fi, and similarly for Us+, and Us. In testing if V~ < u,, , we first break down 
u” to see if any of its meetants is less than or equal to Us. Continuing, we even- 
tually test if vnwl < Us- 1. Later we see if V~ is less than or equal to any joinand 
of Us. This again leads to testing if v,+ 1 < u,+- 1. Thus, to test v,, < Us we must 
test v+ i < Us- I twice. This proves the following theorem. 

THEOREM 2.1. Whitman’s algorithm is exponential. 0 

In order to study Whitman’s algorithm, we need to defme the term tree, T(t), 
associated with a term t. The term tree for a variable x has one node labelled 
x. The tree for a term t = tl v t2 v ... v t,, has the root, labelled with v, and n 
nodes connected to the root with the trees for the tl’s attached to them. We view 
trees as partially ordered sets with the root as the greatest element. The tree for 
x A JJ A (r v s) is shown in Figure 1. 

r s 
Fig. I. 
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Notice that subterms correspond to principal ideals (all the nodes below or 
equal to a fixed node) in the term tree. Also note that the input length of a term 
t is just the number of nodes of the term tree T(l). In dealing with the ques- 
tion 0 < u we need the direct product of the term trees 7’(u) x T(U). Direct 
products of two trees are characterized by having a greatest element, which we 
still call the root, and the filter above each element is the direct product of two 
chains. We let u be a typical subterm of u and b a typical subterm of u. Then 
(u, b) is a node of T(U) x T(U). Recall the due of the node (u, b), denoted 
val(u, b), is true if u 6 b, and false otherwise. If u # u, then u has a unique upper 
cover in T(n), which we denote u *. Thus, u* is the unique subterm of u which 
has LZ as an immediate subterm. If b # u as well, then (u, b) has precisely two 
upper covers in r(u) x T(U), (u*, b) and (u, b*) (Figure 2). 

(orb) 

Fig. 2. 

Notice that Whitman’s algorithm implies the value of any node (u, b) is 
determined by the values of the nodes immediately below. The basic idea of the 
algorithm of Hunt, Rosenkrantz, and Bloniarz in [3] is this. Make a list of all 
subterms of IJ and a list of all subterms of u and order the lists by size. Form 
a matrix whose rows are indexed by the first list and whose columns are indexed 
by the second. The (u, b)th entry of the matrix is val(u, b). If the matrix is filled 
in the right order, the value of any entry can be determined from previously 
filled in entries. Of course the last entry of the matrix is the (u, u) entry, which 
is the answer. Since the matrix has order less than or equal to the input size 
of the problem (which is the input length of u plus the input length of u) it is 
not difficult to see that this algorithm is polynomial. 

In many respects the above algorithm is very efficient. However, there are 
also a great many cases where Whitman’s algorithm is much faster. If, for 
example, u = ul v <es v & and Us $ b, then in determining val(u, b) Whitman’s 
algorithm does not need the value of any node of T(U) x 5’(u) below (Us, b) 
for i > m. Thus, Whitman’s algorithm is able to prune away a great deal of the 
tree. An extreme case of this is the problem x A u < x v u, where x is a generator 
and u and u are long terms. Whitman’s algorithm will solve this instantaneously 
but the algorithm above will have to compute the whole matrix, taking time 
at least the square of the problem input length. Of course the disadvantage with 
Whitman’s algorithm is that it can reach some of the nodes several (possibly 
exponentially many) times, whereas the algorithm above avoids this. We are 
seeking an algorithm with the advantages of both. 
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We will consider B’hilmun-/&e algorithms, i.e., algorithms that proceed 
through T(u) x T(U) as in Whitman’s algorithm except that at certain nodes 
(u, f~) it might record and/or lookup val(u, b) in a table. To study these algo- 
rithms we need a few more definitions. Recall that the type of a term a, type(a), 
is either v or A or gen, depending on whether u is a join, meet, or generator. 
Let type(u, b) = (type(u), type(b)). Recall that val(u, b) is determined by the 
values val(ui, b) and val(u, bj). We say that the node (u, b) uccesses the (Us, b) 
(and (u,, b) is uccessed by (u, b)) if the value of this node is used to calculate 
val(u, b). Note that (u, b) can be accessed by at most two nodes, namely (u*, b) 
and (u, b*), see Figure 2. 

LEMMA 2.2. In u Whitmun-like ulgorithm u node (u, b) of zype (v, A) with 
b # u is never uccessed. If b = u such u node is uccessed only ij the type oj 
(II, u) is (v, A). 

Proof Suppose that b # u and let (u, b) be a counter-example which is 
maximal in the ordering of T(U) x 7’(u). Obviously, type(u, b*) is either (v, A) 
or (v, v). In both cases Whitman’s algorithm determines val(u, b*) entirely 
from the values u(u~, b*). Thus, (u, b) is not accessed by (u, b*). Suppose that 
(u, b) is accessed by (u*, b) and that type(u*, b) = (A, A). In this case, val(u*, b) 
is determined without val(u, b) as above. If type(u*, b) = (v, A) then we violate 
the maximality of (u, b). The proof of the second statement is similar. 0 

LEMMA 2.3. An element (u, b) of type (A, A) is not uccessed by (u*, b) unless 
b = u und type(u) = v. 

ProojY Again let (u, b) be a counter-example maximal in the ordering of 
T(u) x T(U). If the type(u*, b) = ( A, A), then val(u*, b) is determined by the 
values val(u*, bE), and so (u*, b) does not access (u, b). Hence, type(u*, b)= 
(v, A). By Lemma 2.2, b = u and type(u) = v. 0 

LEMMA 2.4. An element (u, b) ojtype (v, v) is not uccessed by (u, b*). 
ProoJ Left to the reader. 0 

We will now conside a Whitman-like algorithm which looks up and records 
at all nodes of type (A, v), (gen v), (A, gen). By this we mean an algorithm 
which maintains a lookup table of previously determined values. When it 
reaches a node of one of the types above, it first looks to see if it already has 
found the value. If it has it takes that and does not access the nodes below. If 
the value has not been determined, it is determined recursively from the nodes 
below a la Whitman. Then it records the value on the table. 

LEMMA 2.5. With the ulgorithm described ubove u node (u, b) is not uccessed 
twice by (u*, b) nor is it uccessed twice by (u, b*). 

Proox Suppose that (u, b) is accessed twice by (u, b*) and is the largest 
node accessed twice from one side. Then (u, b*) must be accessed from both 
sides. By the last three lemmas applied to the (u, b*) and the fact that b* is 
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obviously not a generator, the type of (u, b*) is either (A, v), (gen, v), or (gen, A). 
The last case cannot occur. Otherwise (u, b*) would be accessed by (u*, b*), 
with type(b*) = A. But such a node would not access (u, b*) unless type(u*) = v, 
so that type(u*, b*) = (v, A). By Lemma 2.2, b* = U. But then (u, b*) cannot 
be accessed by (u, b**), since b ** does not exist. Hence, the type of (u, b*) must 
be either (A, v) or (gen, v). But, since we record at these nodes, the second time 
we reached (u, b*) we would fmd its value on the table and not access (u, b) the 
second time. We leave the case that (u, b) is accessed twice by (u*, b) to the 
reader. q 

The next lemma will let us improve our algorithm. 

LEMMA 2.6. With the algorithm described before Lemma 2.5 ifa node (u, b) 
is accessed by both (a*, b) and (a, b*), then it is uccessed by (u, b*)$rst. 

Proojl Let (a, b) be a counter-example. Then there are two accessed paths 
from (0, u) to (a, b), one through (a, b*) and the other through (a*, b). Let (c, d) 
be the node lowest in the ordering of T(u) x T(U) which lies in both paths. 
The interval of T(U) x T(U) between (a, b) and (c, d) is the direct product of 
two chains. The type of (c, d) must be (A, v) since by the minimality of (c, d) 
the two paths from (c, d) to (u, b) cannot start out the same. Let (ci, d) and 
(c, d,) be the two nodes below (c, d) and above (u, b). Whitman’s algorithm 
will access (cl, d) before (c, d,). We claim the path through (cl, d) is the one 
through (a, b*), and the one through (c, d,) is the one through (u*, b). Otherwise 
the paths would cross since the interval is a product of two chains, violating 
the minimality of (c, d). 0 

The above lemma shows that it is possible to determine at each node whether 
to record or lookup or do neither and suggests the following algorithm: we have 
a table which initially has no values. We proceed as in Whitman’s algorithm. 
When we are determining the value of (a, b) if we access (q, b), where type&, b) 
is either (gen, v) or (A, gen) or (A, v), we lookup on our table before continuing 
in the Whitman descent. If we access (a, b,), and it is one of the above types, 
we determine the answer and then record it on the table. 

If the input length of the problem (u, U) is n then there are at most n* nodes 
in 7(u) x T(u). By Lemma 2.5, each node is accessed at most twice. How 
much time is spent at each node (u, b)? The original Whitman’s algorithm only 
needed to determine the type of (u, b) and call the appropriate procedure. This 
can be done in constant time when we represent lattice words as lists with the 
operation symbol as the first element (i.e., Polish notation). In the algorithm 
above we must also lookup and/or record on a table. There are ways of doing 
this in nearly constant time. 

A sketch of such a LISP program runs as follows. First make copy of D and a 
copy of u (time proportional to n). Maintain two counters. If we reach a node 
(u, b) where we wish to record and the first element of the list representing u is 
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a meet symbol and for b it is a join symbol (so that the type of (u, b) is (A, v)), 
we replace the meet symbol of a with the current value m of our first counter 
(and then increment the counter) and replace the join symbol of b with the 
current value k of the second counter (using, e.g., RPLACA). Then we can 
create a symbol (i.e., LISP atom) mGk and set its value to val(a, b). (Alternately, 
we could maintain a rectangular array and set the (m, k)th entry to val(u, b).) It 
is possible that the first element of u and/or the first element of b is already 
a number. Then we use that number. We are still able to determine the type 
since in 0 only meet symbols are replaced by numbers and in u only join sym- 
bols are replaced. To record val(u, !J) when u is an atom, say x, assign the 
symbol xGk to val(u, b), where k is the number we placed into the first element 
of b. Assuming that the value of mGk can be recovered in constant time, this 
algorithm is proportional to n2. Since it first copies u and U, its minimum time 
is proportional to n. 

It is possible to modify the algorithm so that it copies as it goes, only copying 
that part of u and u which is actually reached. (With LISP it is less natural to 
copy from the top down, but not difficult.) With this algorithm the minimum 
time is constant. Thus it retains the advantage of Whitman’s algorithm of being 
particularly fast on many problems while keeping the maximum time to essen- 
tially n2. A listing of the LISP program for this algorithm is available from the 
author. 

As mentioned earlier, Whitman’s algorithm is very good at paring down the 
direct product tree T(u) x T(U), Somewhat surprisingly, there is a simple 
modification of Whitman’s algorithm which not only greatly improves this 
ability but also simplifies the proof of certain free lattice theorems. 

LEMMA 2.7. Let 

and 

u= y1 v*-. vysvu~ V...VU~ 

be elements of u free luttice, where the x,‘s und the y]‘s ure generutors. Then 
v 6 u if und only if 

!li,jX,=Yj or 3iVj<U or 3jvGt.4,. W+J 

ProoJ This follows easily from (W). II 

3. Algorithms on Covers 

We say that b covers u in a lattice L if u < b and there is no c E L with u < c < b. 
We write u<b and say that b is an upper cover of u and a is a lower cover of b. 
Whitman noticed a few particular covers in free lattices. For example, he noted 
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that in FL(X), V(X-- {x})<VX, for any x~ X when Xis fmite. 
The study of covers was revived with McKenzie’s work on lattice varieties. 

He noted that if a<b in FL(X) and ~(a, b) is the unique largest congruence 
separating a from b, then L = FL(X)/I,U is a splitting lattice, i.e., there is a unique 
largest variety not containing L, namely the variety defined by the law u = b. 
Splitting lattices and the associated equations play an important role in the 
study of lattice varieties (see, for example, [16]), lattice structure theory (e.g., 
[4]), congruence varieties (e.g., [2], [3]), and modular lattices (e.g., [5]). More- 
over covers in free lattices are fascinating in their own right. There were three 
important results. The first is an unpublished result of Dean%. 

THEOREM 3.1. There are elements of FL(3) which have no lower covers. In 
fact, x A (y v z) is such an element. 

The second is McKenzie’s result. 

THEOREM 3.2. One can recursively decide for lattice terms u and D if o<u in 
the free lattice. 

The third result is Alan Day’s. 

THEOREM 3.3. FL(X) is weakly atomic when X is$nite. That is, every inter- 
val contains a covering. 

McKenzie’s algorithm started out with X as the variables in n and u, and 
then formed the subset S of FL(X) obtained by starting with X and alternately 
closing under joins and meets until D and u were in the subset. S is closed under 
one of the lattice operations, contains the least and greatest elements, and is finite. 
Thus, it is a lattice (although not a sublattice). McKenzie’s algorithm examined 
the homomorphic images of ,S and showed that U<U if and only if one of these 
images had a certain property (a bounded homomorphic image of a free lattice). 

When X has three elements and we form S by closing X under joins then 
meets then joins then meets, S has 677 elements. Closing once more probably 
gives more than 10 000 elements. So the algorithm is impractical. 

J. B. Nation and I became interested in the following problem: can one 
recursively decide for a lattice term u if its interpretation into the free lattice has 
a lower cover? It turns out that it is recursive (see [lo]). We have developed a 
fast algorithm for deciding if u has any lower covers and fmding them if it does. 

Our original algorithm used McKenzie’s algorithm, and thus was not effi- 
cient. We were unable to use this algorithm to decide other questions about free 
lattices such as is there an element with no lower and no upper cover and what 
are the tmite interval sublattices of free lattices. 

We present a sketch of the algorithms and a simple formula for w*, when it 
exists. First, if u is a join in FL(X) then u has a lower cover if and only if one of 
its joinands does. Thus we may assume that u is join-irreducible. In this case, u 
has a lower cover if and only if it is completely join-irreducible. If u does have 
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a lower cover we denote it u*. In this situation we let X(U) be the canonical 
meetand of U* not above U. It is not hard to see that X(U) is completely meet- 
irreducible with upper cover X(U)* = u v X(U), and X(U) is the largest element 
above U* but not above U. Note x defines a bijection between the completely 
join-irreducible elements and the completely meet-irreducible elements. It is 
possible to show that u and X(U) have essentially the same complexity. Thus, 
there are only finitely many candidates for X(U), so we can use McKenzie’s 
algorithm to find out if u is completely join-irreducible. This, of course, is not 
efficient. 

A more efficient procedure is this. For w join-irreducible in FL(X) define a 
subset J(w) of FL(X) as follows: if w is a meet of generators then J(w) = {w}. If 
the canonical form of w is 

where xk l X, then J(w) = {WI u UL,J J(w~). ,5(w) is the join closure in FL(X) 
of J(W) with a least element adjoined. This is a finite lattice and w has a lower 
cover if and only if it satisfies the law: for all a, b, c if a A b = a A c then a A b = 
a A (b v c). (A lattice satisfying this law and its dual is called semi-dislributive.) 
Since L(w) relatively small, this is not hard to check. Figure 3 below gives two 
examples. 

L~~xv~yAzl~A~yvlxAzl~l LlxA~yvz~l 

Fig. 3. 

It is easy to see that the Hurst lattice is semidistributive, and that the second 
fails the above law. Thus (xv (Y A z)) A (yv (x A z)) has a lower cover but 
x A (y v z) does not. (The latter is Dean’s result cited above.) 

The efficient syntactic algorithm which we have implemented on the micro- 
computer is this. 

THEOREM 3.4. Form J(w) as above. Then w is complelely join irreducible 
if and only $each u E J(w) - {w} is and 

tv $ vm4 

where 

K(w)={t~J(w):~w+~w} 

and 

w+=V{uoJ(w):~<w}. 
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Not only is this algorithm fast, it has some nice corollaries. The important 
one is this: a necessary (but not sufficient) condition for a join irreducible ele- 
ment to be completely join irreducible is that for each canonical meetand w1 = 
VJ wU of w there is exactly one j with wlJ not below w. Note that w, being com- 
pletely join irreducible, is independent of the generating set X and that if any 
u in J(w) fails to be completely join irreducible, then w is not completely join 
irreducible. 

Although it is much more difficult to Iind the lower cover w* of a completely 
join irreducible element w, the corollary above is the key to an efficient method. 
Since w* = w A X(w), it suffices to calculate X(w). Let 

/k+ = A{x(u): u E J(w) - {WI, x(u) 2 VK(w))* 

Then we have the following simple formula for x(w). 

THEOREM 3.5. If w is completely join irreducible in FL(X) then x(w) is 
given by the following 

x(w)=v{xEx:xvw+~wlv 

Although this algorithm asks you to calculate X(U) for all u in J(w) - {w}, 
there are at most the input size of w elements in J(w). From this it is easy to 
prove the following theorem. 

THEOREM 3.6. The problem of deciding if a lattice word has a lower cover 
and ofjinding such a lower cover if it exists can be done in polynomial time. 

ProoJ First it is necessary to put w into canonical form, and thus we must 
show that this can be done in polynomial time. This has been done by Hunt, 
Rosenkrantz, and Bloniarz [ 131. The rest of the proof to the reader. IJ 

4. A Sketch of the Program with an Introduction to LISP 

There has been an increased interest among mathematicians in the computer 
language LISP, see, for example, [12, 171. Because of its mathematical structure 
recursive nature, it is well suited to symbolic math programming. We will give 
a brief outline of the fundamentals of this language. Its data structures are 
atoms (numbers and character strings) and binary trees. List are coded into the 
binary trees and for simplicity we will stick to lists. A list is a finite sequence 
whose members are either atoms or lists. The empty list is denoted by NIL and 
this is also used to denote false. The basic LISP functions are ATOM, EQ, CAR, 
CDR, and CONS. ATOM returns T (for true) if its argument is an atom, and NIL 
otherwise. EQ returns T if both of its arguments are the same atom, and NIL 
otherwise. The CAR of a list is its first element and the CDR is the list obtained 
by removing the first element. If the second argument of CONS is the list 
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L then it returns L with the first argument of CONS adjoined as a new first ele- 
ment. The syntax for f(x) is (Jx). f(g(x)) has the form (f(gx)). For example, 
if L is a nonempty list then (CONS (CAR L) (CDR L)) returns L. The function 
COND takes an arbitrary number of arguments, each an ordered pair. It evaluates 
the first part of each pair until it finds one whose value is anything except NIL 
and then returns the value of the second half If all evaluate to NIL then NIL is 
returned. 

Lattice terms are represented as lists. The generators are just atoms, e.g., x, 
y, z. If WI, w2, . . . . We are LISP representations of lattice terms then the join is 
represented by the list (+ wi w2 ... We) and the meet by (* wr w~...w~). Our 
basic function is LSSQL. This has two arguments, lattice terms u and u. It gives 
T if u < u in the free lattice and NIL otherwise. A definition, using the basic 
form of Whitman’s algorithm, is given below. Note how closely it resembles 
Whitman’s algorithm. 

(DWJ;DLSSQL (LAMBDA (V U) 

( %iDV) 
((A-KM U) CEQ V U) ) ) 
((EQ (CAR U) *) (LSSQL-V-ALL v (CDR 
(T (LSSQL-V-EX V (CDR U))) ) ) 

((EQ (CAR V) +) (LSSQL-ALL-U (CDR V) U) 
((ATOM U) (LSSQL-EX-U (CDR V) U)) 
((EQ (CAR U) *) (LSSQL-V-ALL v (CDR u)) 
(T (OR (LSSQL-EX-U (CDR V) U) 

(LSSQL-V-EX v (CDR u)) ) ) ) )) 

The lirst line is used to define LISP functions. The function body reads like 
this: ‘if V is an atom (generator) then if U is an atom the value of LSSQL is the 
value of (EQ V U), otherwise if U is a meet then the value is the value of 
(LSSQL-V-ALL V (CDR U))‘, etc. The T’s are used for the default cases. 
Notice that Whitman’s condition (W) is given by the last clause. The function 
LSSQL-V-ALL has two arguments, a lattice term u and a list of lattice terms. 
It returns T if u is less than or equal to each of the elements of the list. It can 
be defined as follows: 

(DEFUN LSSQL-V-ALL (LAMBDA (V LST) 
(COND 

((NULL LST) T) 
(T (AND (LSSQL V (CAR LST)) 

(LSSQL-V-ALL V (CDR LST)) )) ) )) 

The value of (NULL LST) is T if LST is the empty list. The meaning of the 
function AND, as well as the other helper functions to LSSQL should be clear. 

The definition of LSSQL using the algorithm of Section 2 is somewhat more 
complicated, but still relatively easy. 
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Next we define two functions + and *. The lu-st takes an arbitrary number 
of lattice terms as arguments and gives canonical form of their join provided 
each is in canonical form. The second is defmed dually. One of the beauties of 
LISP is that the functions as well as the data are lists. The function EVAL 
evaluates a list as a function. So with this scheme an arbitrary term w can be 
put into canonical form simply by (EVAL w). With this setup it is easy to define 
functions for the algorithms of the previous section. For example, the function 
(CJI w) gives T if w is completely join irreducible and the function (KAPPA 
w X) gives x(w) in FL(X). The functions J and L give 1(w) and L(w). The 
function (LOWER-COVERS x X) gives a list of all the lower covers of w in 
FL(X). 

If L is a list of lattice terms, the function (DRAW L) draws the partially 
ordered set on L with the order inherited from the free lattice. The algorithm 
for drawing L is interesting. It arranges L into levels, the first level being the 
minimal elements, the second being the minimal elements which remain, etc. 
These are then positioned symmetrically on the screen. The hard part is decid- 
ing how to arrange the elements within the levels. For example, consider the 
8 element Boolean algebra (Figure 4). 

Fig. 4. Fig. 5. 

In the above scheme, suppose we have positioned the least element and 
the three atoms. There are six ways to arrange the coatoms, five of which are 
bad. Our algorithm works roughly as follows. Suppose the first i - 1 levels have 
been positioned. We then order these elements essentially with the left to right 
order on the screen (for ties the one higher on the screen is lower in this order). 
Each element of the ith level has its list of lower covers, which, of course, have 
already been positioned. We order the elements within these lists of lower covers 
using the above order. Now the elements of the ith level are positioned accord- 
ing to the lexicographic order on their lists of lower covers. In the Boolean 
algebra above, if the atoms are labelled 1, 2, and 3, then the coatoms have lists 
of lower covers (1 2) (1 3), and (2 3). Note that this leads to the ‘correct’ picture 
above. 

The algorithm also applies this procedure to the dual of L as well. In the 
lattice of Figure 5 if we position the atoms wrong (i.e., if the ‘middle’ atom is not 
placed in the middle), then no positioning of the coatoms will help. However, 
using the information about the dual solves this problem. 
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5. Remarks 

When comparing the actual running time for deciding if u < u, Whitman’s 
original algorithm does very well. Of course, if we use the terms vH and u,, of 
Theorem 2.1, Whitman’s algorithm is extremely slow. When n is 20 Whitman’s 
algorithm takes about 16 hours while our polynomial algorithm only takes a 
few seconds. Nevertheless, on most problems Whitman’s algorithm is about the 
same or a little faster than the other algorithm. This leads to the question: is 
the expected time of Whitman’s algorithm polynomial? To answer such a ques- 
tion, we would first have to decide on the appropriate probability space for 
our lattice terms. The combinatorics of such a space would necessarily be 
difficult. We can make a few observations. Although Whitman’s algorithm 
may access a particular node (u, b) several times, each path from (u, U) to 
(a, b) will be traveled at most once, as is easy to see. The number of paths from 
(u, u) down to (u, b) is (‘(‘$y(‘) ), where d(u) is the depth of u in T(u). Thus, 
in order for the repeated accessing of (a, b) to significantly slow down the 
Whitman algorithm, it would be necessary that d(u) and d(b) be not too small 
compared to the size of T(u) and T(b). If, for example, T(u) and T(u) are 
balanced, then the depth of the trees is logarithmic in their size and this doubling 
effect would not be significant. Moreover, for terms which alternate between join 
and meet, the binomial coefficient above can be replaced with ((‘Ca)&$‘))‘2). 
Thus, the words would have to have depth 8 before the repeated accesses 
could begin to have a noticeable effect. 

Another reason that Whitman’s algorithm appears fast, is that in our pro- 
gram, the words are usually in a form with the shorter joinands or meetands 
first and very often these determine if u < u. 

Despite these observations, I do not think that Whitman’s algorithm could 
have polynomial expected time. It is known that the expected depth of a random 
tree is a constant times dn, where n is the number of nodes. Assuming that 
we give lattice terms a probability measure such that expected depth is also 
on the order of dn, and consider words u and u with no variable in common, 
it is possible to show that the expected time is exponential. 
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