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Abstract. The analysis of the set of isomorphism classes of Frobenius groups
with commutative Frobenius kernel is reduced here to “abelian” algebraic num-
ber theory. Some problems, such as the computation of the number of isomor-
phism classes of Frobenius groups subject to various restrictions on orders,
are further reduced to elementary number theory. The starting point is the
bijection between the set of isomorphism classes of Frobenius groups with com-
mutative Frobenius kernel and with given Frobenius complement G and the
set of G–semi-linear isomorphism classes of finite modules over a ring naturally
associated with G. This ring is a maximal order in a simple algebra whose
center Z is an abelian extension of Q. All Frobenius complements and their
associated rings are explicitly computed here in terms of simple numerical in-
variants. The finite modules of such a ring are sums of indecomposable ones,
and the indecomposable ones are shown to correspond to powers of unramified
(over Q) maximal ideals of the ring of integers of Z which do not contain the
order of the Frobenius complement.
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CHAPTER 1

Introduction

A Frobenius group is a finite group G with a nontrivial normal subgroup N
(called a Frobenius kernel) and a nontrivial subgroup H (called a Frobenius com-
plement) such that the orders of N and of H are relatively prime and for every
x ∈ G\N there exists a unique y ∈ N with x ∈ yHy−1. Particular classes of
Frobenius groups are of interest (see [J1, Example, pp. 320–324] for a striking
application), as is the class of Frobenius groups as a whole (e.g., proofs of gen-
eral results involving minimal counterexamples sometimes reduce to an analysis
of Frobenius groups and their automorphism groups). The structure of Frobenius
groups has been clarified by deep results such as Thompson’s theorem (settling a
long–standing conjecture) that Frobenius kernels are nilpotent [T, Theorem 1, p.
579] and Zassenhaus’s structure theory for Frobenius complements [Pa], [Z].

The study of Frobenius groups with abelian Frobenius kernel is reduced in
this paper to algebraic number theory. The author and D. K. Harrison [BrH]
showed that there is associated with each Frobenius complement H a ring, called
its truncated group ring (cf. Chapter 2), such that the G–semi-linear isomorphism
classes (cf. Remark 13.3) of finite modules over that ring are naturally bijective
with the isomorphism classes of Frobenius groups with Frobenius complement H
and abelian Frobenius kernel. (Frobenius kernels are always abelian except when
the complement is a group of odd order all of whose Sylow subgroups are cyclic.
Of the 5,385,907 isomorphism classes of Frobenius complements of order at most
106 only about 11% are of this type. Combinatorial results for Frobenius comple-
ments are discussed in Chapter 11.) For example, if G is a metabelian Frobenius
group, then its Frobenius complement is cyclic, say of order m, and the truncated
group ring of the complement is Z

[
1/m, e2πi/m

]
. Since finite modules over such

rings are well–understood, one can obtain a very complete picture of the class of
metabelian Frobenius groups, including counting theorems for isomorphism classes
(cf. [BrH, Section 11]). Another example of a Frobenius complement is the multi-
plicative group of real quaternions {±1,±i,±j,±k} (the quaternion group). Here
the truncated group ring is the localization Z

[
i, j,k, 1

2

]
of the Hurwitz ring [H, p.

373].
In this paper a complete computation of the truncated group rings of arbitrary

Frobenius complements is given in terms of simple numerical invariants which deter-
mine the isomorphism classes of the Frobenius complements. As the next theorem
indicates, these rings are of such a nature that the problem of computing their
finite modules can be regarded as a problem in algebraic number theory, albeit in
a broad sense.

1.1. Theorem. The truncated group ring of a Frobenius complement of order
γ is a maximal Z[1/γ]–order in a finite dimensional simple algebra whose center is
an abelian Galois field extension of Q.

1



2 1. INTRODUCTION

The above theorem lets us apply the theory of modules over maximal orders to
find the isomorphism classes of Frobenius groups with abelian Frobenius kernel.

1.2. Theorem. There is a natural bijection from the set of isomorphism classes
of Frobenius groups with abelian Frobenius kernel and with given Frobenius comple-
ment G to the set of orbits (under the natural action of AutG) of the free abelian
semigroup on the set of all powers of maximal ideals of the center of the truncated
group ring of G.

In Chapter 13 we prove a more complete statement of Theorem 1.2, namely
Theorem 13.2. We also give there a simple description of all abelian Frobenius
kernels and find the thirteen isomorphism classes of nonsolvable Frobenius groups
of order at most one million. The Frobenius groups of order at most one billion
with noncyclic Frobenius complement and nonabelian Frobenius kernel are shown
to have only three possible orders. The results of Chapter 13 are applied in the next
one to give concrete constructions of all Frobenius groups with abelian Frobenius
kernel. These are shown in Theorem 14.2 to be semidirect products (see below)

(⊕

a

I ′/aI ′
)

⋊H

where H is a Frobenius complement, the a are powers of maximal ideals in a ring I,
and I and I ′ are the integral closures, respectively, of Z[1/|H |] in the center of and
in a canonical maximal subfield of the simple algebra of Theorem 1.1 arising from
H . (If a group B (written multiplicatively) acts on a group A (written additively),
then we let A ⋊ B denote the semidirect product , i.e., the set A × B with the
operation given by the formula (a, b)(c, d) = (a + bc, bd).) Constructions of all
Frobenius groups whose Frobenius complement is the special linear group SL(2, 5)
or a binary dihedral group are given involving little more than elementary number
theory. Here is a simple example.

1.3. Example. In Remark 14.5 below we show that the Frobenius groups
whose Frobenius complement is the quaternion group 〈i, j〉 are up to isomorphism
exactly the semidirect products H := M ⋊ 〈i, j〉 where M is a direct sum (uniquely
determined by the isomorphism class of H except for the order of the factors)
of groups of the form M(pk) := (Z/pkZ)2 where p is an odd prime, k > 0,
and the action of 〈i, j〉 on M(pk) is such that for all (δ, γ) ∈ M(pk) we have
i(δ, γ) = (aδ + bγ, bδ − aγ) and j(δ, γ) = (γ,−δ) where for each pk we have fixed
integers a and b with a2 + b2 ≡ −1 (mod pk).

Theorem 1.2 is applied in Chapter 15 to give a formula (Theorem 15.1) in terms
of elementary number theory for the number of isomorphism classes of Frobenius
groups with abelian Frobenius kernel of given order and with given Frobenius com-
plement. The formula is applied to calculate, for example, that there are exactly
569,342 isomorphism classes of such groups of order at most one million.

Theorem 1.1 will be proved in Chapter 12. The proof will depend on the anal-
ysis in Chapters 5 through 10 of six types of Frobenius complements. The breakup
into six cases arises from the following sharpening of a theorem of Zassenhaus [Pa,
Theorem 18.2, p. 196] on the structure of solvable Frobenius complements.

1.4. Classification Theorem. Every Frobenius complement G has a unique
normal subgroup N such that all Sylow subgroups of N are cyclic and G/N is
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isomorphic to one of the following six groups:

1, V4, A4, S4, A5, S5(1)

where 1 denotes the trivial group and V4 denotes the Sylow 2–subgroup of the alter-
nating group A4.

Theorem 1.4 will be proved in Chapter 4 using the results of the preceding two
chapters. In Chapter 2 we will review the construction of the truncated group ring
of a group and prove some basic lemmas about them, including an analysis of the
truncated group rings of direct products and of cyclic extensions. (This chapter
has references to [BrH], but it, and in fact almost all of this paper, can be read
independently of [BrH]; we do include for completeness a few short arguments from
that paper.) The truncated group rings of finite subgroups of the multiplicative
group of units of the division ring of real quaternions are computed in Chapter 3.
These groups give standard examples of five of the six types of Frobenius comple-
ments and they play a special role in the general theory. We also lay the foundation
in Chapter 3 for the construction in Chapter 4 of an example of the sixth type of
Frobenius complement.

We referred earlier to numerical invariants determining the isomorphism class of
a Frobenius complement. Detailed insights into the structure of Frobenius comple-
ments and related groups can be found in the literature. The work here inevitably
overlaps some of this (e.g., Theorems 7 and 16 of [Z] give presentations by generators
and relations related to ones given here), but it is distinctive in the identification of
numerical invariants which determine isomorphism classes with sufficient precision
to allow one to read off the number of isomorphism classes of Frobenius comple-
ments of various sorts. (The counting theorems here are less interesting to me in
themselves than as tests of the completeness of the theory.)

The next definition introduces one group of invariants which determines a
Frobenius complement up to isomorphism. The definition uses the fact (easily
deduced from [S, 12.6.17, p. 356]) that if N is a group all of whose Sylow sub-
groups are cyclic (i.e., N is a Z–group [Pa, p. 104]), then the group N ′ × (N/N ′)
is cyclic, so its automorphism group is canonically isomorphic to Z•

|N |. (N ′ denotes

the commutator subgroup of N .)

1.5. Definition. Let G and N be as in Theorem 1.4. We call N the core of G
and [G : N ] the core index of G. The signature of G is the image of the composition
of maps

G −→ Aut
(
N ′ × (N/N ′)

)
−→ Z•

|N |

where the left-hand map is induced by conjugation by elements of G and the right-
hand map is the canonical isomorphism.

1.6. Theorem. A Frobenius complement is determined up to isomorphism by
its order, core index, and signature.

Theorem 1.6 will be proved in Chapter 16, where we will also show that other
combinations of invariants—especially ones arising from the truncated group ring—
determine the isomorphism class of a Frobenius complement. For example, in the
statement of the above theorem the signatures can be replaced by the abelian exten-
sions (of the rational numbers) from Theorem 1.1. The arguments in Chapters 11
through 17 will depend on the analysis of each of the six types of Frobenius com-
plements, namely those with core index 1, 4, 12, 24, 60 and 120 (the orders of the
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six groups in the list (1)). In Chapters 5 through 10 we will determine one after
another the set of isomorphism classes and the truncated group rings of Frobenius
complements with given core index in terms of numerical invariants related to the
signatures above but more specifically tailored to the specific type of Frobenius
complement. In each case we will start with some numerical data, use it to con-
struct a ring and to identify a subgroup of the group of units of the ring, and
then prove that the group is a Frobenius complement, the ring is its truncated
group ring, the numerical data are isomorphism invariants of the group, and all
Frobenius complements with the given core index are constructed in this way. This
approach is focused specifically on Frobenius complements since these are precisely
the nontrivial groups whose truncated group rings are nontrivial [BrH, Theorem
8.4].

The method of constructing groups sketched above is related to Amitsur’s con-
struction [Am] of the groups which are isomorphic to finite subgroups of the groups
of units of division rings. This should not be surprising since all such groups are
known to be Frobenius complements [SW, Theorem 2.1.2, p. 45]. The precise
overlap of this paper with [Am] is obscured by the focus here on a systematic
(indeed, functorial) method of associating rings to groups by means of truncated
group rings. In both cases the association allows the application of arithmetic
methods. Such methods are used in Theorem 17.4 to give a formula involving only
elementary number theory for the index of the central simple algebra of a Frobenius
complement which is a Z-group. This formula is used to show that every Frobe-
nius complement which is a Z–group of order at most 100,000 can be expressed as
group of k × k–matrices over a division ring where the average value of k for these
groups is less than 2. The formula is presented as a contribution to what would
be a natural extension of Amitsur’s work [Am], namely, the computation of the
index and the degree of the central simple algebra associated with each Frobenius
complement. (The degrees and centers of these algebras are computed in Chapters
5 through 10; a comparison of the degree and index shows how close a Frobenius
complement is to being a subgroup of a division ring.) The formula is also used to
establish a variant of Shirvani’s characterization of the Z–groups which are finite
subgroups of division rings.

We end this chapter by collecting for reference some notational conventions; all
those which are not standard will be explained again when first used.

For any integer n we set ζn = e2πi/n and let n0 denote the product of the
distinct rational primes dividing n. Z, Q, Zn, and Z•

n denote the ring of integers,
the ring of rationals, the factor ring Z/nZ, and its group of multiplicative units,
respectively. The Euler phi-function is denoted by φ.

For any finite set S, unitary ring R, finite group G and g ∈ G we let |S| denote
the number of elements in S, |g| denote the order of g, G′ denote the commutator
subgroup of G, Z(G) denote the center of G, R• denote the multiplicative group
of units of R, Mn(R) denote the ring of n × n matrices over R, and RG denote
the group ring of G over R. We let 〈g〉 denote the subgroup of G generated by g,
and use similar notation for the subgroup generated by a sequence of elements of
G. The restriction of a function f with domain S to a subset T of S is denoted
f |T . We let IntF R denote the integral closure in a field F of a subring R. If σ is a
function whose domain contains S, then Sσ = {a ∈ S : σ(a) = a}; similar notation
is used for the fixed subset of S of a set of functions with domain containing S.
Finally, we write S ⊳ G if S is a normal subgroup of G.
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Another group of conventions will prove convenient. Suppose g is an element
of order n of a multiplicative group. It is common and unambiguous to write gs+nZ

for gs (where s ∈ Z). We will extend this notation to cosets whose moduli are
multiples of n and even mix different moduli, e.g.,

g(3+nZ)+(5+2nZ) = g8 .

We will similarly mix integers and cosets of various sorts in congruences: if a and
b are either integers or cosets whose moduli are multiples of n, then we shall write
a ≡ b (mod n) if and only if a+ nZ = b+ nZ. For example, 1 + 12Z ≡ 13 ≡ 7 + 6Z
(mod 6).

Next, if n is a multiple of an integerm, then for any integer a we unambiguously
write (a + nZ,m) for the greatest common divisor (a,m). Thus for example 2 =
(6, 8) = (6 + 24Z, 8).

Two other conventions will be used constantly. If m and n are positive integers,
then m//n will denote the largest factor of m relatively prime to n, and nm will
denote the largest factor of m dividing a power of n. Note m = (nm)(m//n). For
example, 6120 = 24 and 120//6 = 5. We make the order of operation conventions
so that ab//cd = (ab)//(cd) and abn = a(bn).

When defining a symbol a to be an expression E, we often write a := E.
APPENDIX. Here is a list indicating the page on which is first introduced a

notation (other than those given immediately above) or a definition which might
be used in a subsequent chapter with little or no reminder.
page 1: Frobenius group , Frobenius kernel , Frobenius complement
page 2: A⋊B (semidirect product)
page 3: V4, Z–group, core, core index, signature
page 6: ĝ, aG, g, Z(G), the integral truncated group ring Z〈G〉, the rational trun-
cated group ring Q〈G〉, the truncated group ring Z(G)〈G〉
page 8: (A, σ,m, c), σ̂, QA
page 10: H, R, α, β, Cn, D4n, H24, H48, H120, γ

∗ (conjugate of γ)
page 14: generalized quaternion group
page 17: H240

page 18: (proper) Frobenius triple, 1–complement; r–sequence and invariant of a
1–complement
page 21: core invariant, type, J-complement (for J = V4, A4, S4, A5, S5); r–sequence,
invariant and reduced invariant for a V4–complement
page 31: r–sequence, invariant and reduced invariant for an A4–complement
page 42:. r–sequence, invariant and reduced invariant for an S4–complement
page 50: invariant and reduced invariant for an S5–complement
page 62: (E/K,Φ) (crossed product algebra)
page 66: G–group, Iso(G), S(G), [η] (for η ∈ S(G))



CHAPTER 2

Lemmas on Truncated Group Rings

Let G be a finite group.

2.1. Notation. Let A be a subring of the field of rational numbers Q. If g ∈ G
let ĝ denote the image of g under the natural map from G into the group ring AG.

Let aG denote the set of elements of AG of the form
∑

h∈〈g〉 ĥ where g ∈ G and

g 6= 1. Also let A〈G〉 = AG/(aG) and A(G) = A[1/|G|]. Finally for each g ∈ G, let
g = ĝ + (aG) be its image in A〈G〉. (Note that the precise meanings of aG and of
the ideal (aG) depend on the choice of A.)

In this paper we use the above notation only withA equal to either Z, Z(G) or Q.
We call Z〈G〉 and Q〈G〉 the integral truncated group ring and the rational truncated
group ring of G, respectively. The ring Z(G)〈G〉 is called the truncated group ring
of G. (By [BrH, Lemma 8.1, p. 64] this ring is the same as the “truncated group
ring” of [BrH, Definition 7.3, p. 63].)

In this chapter we focus on integral truncated group rings because of their
apparent simplicity and the fact that the other truncated group rings are obtained
from them essentially by tensoring with either Z(G) or Q.

Guralnick and Wiegand prove that the ideal (aG) of the integral group ring ZG
has trivial intersection with Z if and only if G is a Frobenius complement [GW,
Theorem 2.2, p. 570]. We will use several times the following corollary of this
result; for completeness a proof is given using some arguments from [BrH].

2.2. Lemma. Suppose G is nontrivial. Then G is a Frobenius complement if
Z〈G〉 is not a torsion Z–module.

Proof. Let p be any rational prime not dividing |G|. The canonical image
M of Z〈G〉 in Q〈G〉 is finitely generated and hence free as a Z-module, and by
hypothesis it is nontrivial. Hence M/pM is finite and nontrivial. Now suppose g
is a nontrivial element of G; then g has a power gs of prime order, say q = |gs|.
The canonical map Z[x] −→ Z〈G〉 taking x to gs takes the cyclotomic polynomial
Φq(x) = 1 + x + x2 + · · · + xq−1 to zero (cf. Notation 2.1), and hence it induces

a homomorphism Z[ζq] −→ Z〈G〉 taking ζq to gs. Since q = Φq(1) =
q−1∏
i=1

(1 − ζiq),

therefore
q−1∏
i=1

(1− gsi) = q. Thus if gm = m for some m ∈ M/pM , then gsm = m

and so

0 = (1− gs)m =

q−1∏

i=1

(
1− gsi

)
m = qm .

Since we also have pm = 0 and p 6= q, then m = 0. This shows that the natural
action of G on M/pM is without fixed points. It follows easily using the definition

6



2. LEMMAS ON TRUNCATED GROUP RINGS 7

of a Frobenius group in [S, p. 348] that the semidirect product M/pM ⋊ G with
respect to the natural action of G on M/pM is a Frobenius group with Frobenius
complement isomorphic to G.

We will see by inspection from the explicit computation in Chapters 5 through
10 of the integral truncated group rings of all Frobenius complements that the
integral truncated group rings of Frobenius complements are actually nontrivial
and free as Z–modules (cf. Theorem 12.2). Until this is proved we will often as
a matter of bookkeeping be either hypothesizing or noting that various integral
truncated group rings are nontrivial and free as Z–modules.

It will sometimes be more convenient to work with the image of G in Z〈G〉
rather than with G itself. The following lemma is then relevant.

2.3. Lemma. If Z〈G〉 is nontrivial and free as a Z–module, then the natural
map G −→ Z〈G〉 is injective.

Proof. Suppose h ∈ G has order s > 1 and h = 1. Then s1 =
∑s−1
i=0 h

i
= 0,

since
∑

g∈〈h〉 ĝ ∈ aG. This contradicts the hypothesis that Z〈G〉 is nontrivial and

free.

The next lemma will be used in Chapter 3 in the analysis of groups of real
quaternions and in Chapter 17 in the analysis of finite subgroups of division rings.

2.4. Lemma. Let G be a finite subgroup of the group of units D• of a division
ring D and let ϕ : ZG −→ D be the map induced by the inclusion map G −→ D.
Then aG is contained in kerϕ.

Proof. Suppose g ∈ G has order n > 1. Then g − 1 is a unit in D. Since

0 = gn−1 = (g−1)(1+g+· · ·+gn−1), then
∑

h∈〈g〉 ĥ ∈ kerϕ. Thus aG ⊂ kerϕ.

We describe below how to compute the truncated group rings of direct products
and cyclic extensions of groups in terms of the truncated group rings of these groups.
In the former case, the key construction is tensor product; in the latter it is an old
construction of Albert. Albert states his result for algebras over fields, but it
generalizes transparently to algebras over arbitrary commutative rings.

2.5. Theorem. [A, Theorems 10 and 11, pp. 183–184]. Let A be an algebra
over a unitary commutative ring R. Let m be a positive integer, σ be an automor-
phism of A, and c be a unit of A with σ(c) = c and ca = σm(a)c for all a ∈ A. Then
A is a subalgebra of an R–algebra B which has an element b such that 1, b, . . . , bm−1

is a basis for B as a left A–module, bm = c, and ba = σ(a)b for all a ∈ A. More-
over, if A is simple with center K and σ|K has order m, then B is simple with
center Kσ.

In the above theorem, σ|K denotes the restriction of σ to K and Kσ is the
fixed field of σ|K.

2.6. Remark and Notation. We describe here some identifications that will
be used throughout the paper in order to keep notational complexity under control.

(A) Let G be a group. We often treat the natural isomorphisms Z(G)〈G〉 −→
Z(G) ⊗ Z〈G〉 and Q〈G〉 −→ Q ⊗ Z(G)〈G〉 as identifications. Now suppose Z〈G〉 is
free as a Z–module. Then the canonical homomorphisms Z〈G〉 −→ Z(G) ⊗ Z〈G〉
and Z(G)〈G〉 −→ Q ⊗ Z(G)〈G〉 are injective and we treat them as identifications.



8 2. LEMMAS ON TRUNCATED GROUP RINGS

Thus, for example, when Z〈G〉 is free as a Z–module we will in the natural way
regard Z〈G〉 as a subring of Q〈G〉 (this combines all the above identifications:

Z〈G〉 −→ Z(G) ⊗ Z〈G〉 ∼= Z(G)〈G〉 −→ Q⊗ Z(G)〈G〉 ∼= Q〈G〉) .
(B) In the setting of Theorem 2.5 we let σ̂ denote a specific choice of an element

b as in that theorem. With this choice the algebra B is uniquely determined up
to (canonical) isomorphism by A, σ, m and c; we denote it by (A, σ,m, c). Thus
(A, σ,m, c) is the A–algebra with basis (as a left A–module) 1, σ̂, · · · , σ̂m−1 having
σ̂m = c and σ̂a = σ(a)σ̂ for all a ∈ A.

(C) Suppose A is a Z–algebra which is free as a Z–module. We then use the
canonical injective homomorphism A −→ Q ⊗ A to identify A with a subring of
Q ⊗ A and we denote Q ⊗ A by QA. If in the statement of Theorem 2.5 we have
R = Z and A free as an R–module, then there is a natural isomorphism

(QA, I ⊗ σ,m, 1⊗ c) −→ QB

(where I : Q −→ Q is the identity map), which we also treat as an identification.
Thus in particular A, QA and B are all identified with subrings of QB.

The following lemma is related to an observation of Guralnick and Wiegand
[GW, p. 564] and will be used in the treatment below of direct products and cyclic
extensions of Frobenius complements.

2.7. Lemma. Suppose that every nontrivial Sylow subgroup of G has a unique
subgroup of prime order. Let P denote the set of prime divisors of |G| and for each
p ∈ P pick a subgroup Hp of G of order p. Then the ideal (aG) of ZG is generated

by
{∑

h∈Hp
ĥ : p ∈ P

}
.

Proof. Suppose 1 6= h ∈ G. Then hs has prime order p for some integer s > 0.
By hypothesis (and Sylow’s Theorem) 〈hs〉 = bHpb

−1 for some b ∈ G. Thus the
element

∑

g∈〈h〉
ĝ =


 ∑

g∈〈hs〉
ĝ



(
s−1∑

i=0

ĥi

)
= b̂


∑

g∈Hp

ĝ


 b̂−1

(
s−1∑

i=0

ĥi

)

of aG is in the ideal generated by
∑
g∈Hp

ĝ.

2.8. Cyclic Extension Lemma. Suppose that 1 6= H ⊳ G and c ∈ G. As-
sume that Z〈H〉 is nontrivial and free as a Z–module, that cH generates G/H, that
[G : H ] divides a power of |H |, and that every nontrivial Sylow subgroup of G has
a unique subgroup of prime order. Then G is a Frobenius complement, Z〈G〉 is
nontrivial and free as a Z–module, and there is a natural isomorphism of Z〈H〉–
algebras

θ : Z〈G〉 −→
(

Z〈H〉, σ, [G : H ], c[G:H]
)

mapping c to σ̂, where σ ∈ Aut Z〈H〉 is induced by conjugation by c.

The reader will easily verify that the construction of truncated group rings is
functorial on the category of groups and injective group homomorphisms. Thus
conjugation by c on H does induce an automorphism of Z〈H〉 (as is assumed in the
statement of the above theorem) and the inclusion H −→ G does induce a unitary
homomorphism Z〈H〉 −→ Z〈G〉, making Z〈G〉 a Z〈H〉–algebra.
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Proof. Let B =
(
Z〈H〉, σ, [G : H ], c[G:H]

)
. It suffices to prove the existence of

the isomorphism θ; then by the construction of B, Z〈G〉 is nontrivial and free as a
Z–module, and hence G is a Frobenius complement by Lemma 2.2.

We have a well–defined map θ0 : G −→ B taking hci to hσ̂i whenever h ∈ H
and 0 ≤ i < [G : H ]. A straightforward computation shows that θ0 preserves
multiplication. Therefore θ0 induces a ring homomorphism θ1 : ZG −→ B which is
surjective since B is generated by θ0(H) and σ̂. It suffices to show that aG generates
the kernel of θ1. Now for each rational prime p dividing |G|, p also divides |H |,
so G has a subgroup of order p contained in H . Thus by Lemma 2.7 as ideals of
ZG we have (aG) = (aH) ⊂ ker θ1. Now any element A of ZG can be written in

the form
∑[G:H]−1

i=0 hiĉ
i where hi ∈ ZH for all i. (Identify ZH with a subring of

ZG.) Then θ1(A) =
∑

i hiσ̂
i where hi denotes the image of hi in Z〈H〉. Thus, if

A ∈ ker θ1 then θ1(hi) = hi = 0 for all i, so hi ∈ (aH) for all i, and hence A ∈ (aG).
This completes the proof of Lemma 2.8.

2.9. Direct Product Lemma. Let G and H be nontrivial groups of relatively
prime orders such that Z〈G〉 and Z〈H〉 are nontrivial and free as Z–modules. Then
Z〈G×H〉 is nontrivial and free as a Z–module, G×H is a Frobenius complement,

and there is an isomorphism Z〈G×H〉 −→ Z〈G〉 ⊗Z〈H〉 taking (g, h) to g⊗ h for
all (g, h) ∈ G×H.

Note that G ×H cannot be a Frobenius complement if G and H do not have
relatively prime orders [Pa, Theorem 18.1(i), p. 194].

Proof. By Lemma 2.2 it suffices to prove the existence of the isomorphism.
The natural multiplicative map G×H −→ Z〈G〉⊗Z〈H〉 taking each (g, h) to g⊗h
induces a homomorphism θ from the integral group ring of G×H to Z〈G〉⊗Z〈H〉.
By Lemma 2.7 (aG×H) is generated by elements of the forms

∑
g∈G0

(̂g, 1) and
∑
h∈H0

(̂1, h) where G0 and H0 range over subgroups of G and H , respectively, of

prime order. (Recall that |G| and |H | are relatively prime, so every Sylow subgroup
of G×H is a Sylow subgroup of either G× 1 or of 1×H .) θ clearly maps all such
elements to 0, so (aG×H) ⊂ ker θ. Hence θ induces a homomorphism

θ1 : Z〈G×H〉 −→ Z〈G〉 ⊗ Z〈H〉 .
On the other hand the injections G −→ G × H and H −→ G × H induce maps
Z〈G〉 −→ Z〈G×H〉 and Z〈H〉 −→ Z〈G×H〉, and hence a homomorphism

θ2 : Z〈G〉 ⊗ Z〈H〉 −→ Z〈G×H〉
with θ2(g ⊗ h) = (g, h) for all g ∈ G and h ∈ H . Since θ2 is clearly the inverse of
θ1, then θ1 is an isomorphism.



CHAPTER 3

Groups of Real Quaternions

Denote the division ring of real quaternions by

H = R + Ri + Rj + Rk

where R denotes the ring of real numbers; we identify ζn = e2πi/n with the element
cos 2π/n + i sin 2π/n of H. Let τ =

(√
5 + 1

)
/2 (so τ−1 =

(√
5 − 1

)
/2), α =

(−1 + i + j + k)/2 and β =
(
τ−1 + τ i + j

)
/2.

3.1. Remark and Examples. Consider the following subgroups of H•,
namely, Cn := 〈ζn〉 (n ≥ 1), D4n := 〈ζ2n, j〉 (n ≥ 2), H24 := 〈i, j,α〉, H48 :=
〈ζ8, j,α〉, and H120 := 〈i, j,α,β〉. Vignéras [V, Theorem 3.7 and Proposition 3.8,
p. 17] reports that every finite subgroup of H• is isomorphic to one of the groups
listed above and that H24 and H120 are isomorphic to the special linear groups of
2× 2 matrices over the fields of order 3 and 5, respectively. By Corollary 3.3 below
all of these groups except the trivial group are Frobenius complements. It is easy
to see that Cn (for n > 1) and D4n (for odd n > 2) have core index 1 and that D4n

(for even n ≥ 2) has core index 4. (The core in the latter case is 〈ζn〉.) Moreover
H24, H48 and H120 have core index 12, 24, and 60, respectively (in each case the
core is 〈−1〉). In Example 4.3 we construct a Frobenius complement, denoted H240,
of core index 120.

We can now state the main theorem of this chapter; equivalent results in the
cyclic case go back at least fifty years (see [LL, Theorem 2.2]) and include [BrH,
Claim2, p. 58].

3.2. Theorem. Let H be any of the groups Cn (n ≥ 1), D4n (n > 1), H24,
H48 or H120. Then the inclusion H −→ H induces an isomorphism from Z〈H〉
onto Z[H ].

In the above theorem Z[H ] denotes the subring of H generated by the setH . We
will use a common notation for conjugation in H: for any γ = a+ bi+ cj+ dk ∈ H,
we write γ∗ = a − bi − cj − dk for the conjugate of γ in H. Before proving the
theorem we record a corollary of it and Lemma 2.2.

3.3. Corollary. The nontrivial groups listed in Theorem 3.2 are all Frobenius
complements.

In fact all the nontrivial finite subgroups of the group of units of any division
ring are Frobenius complements (see [SW, Theorem 2.1.2, p. 45] or Proposition 17.1
below).

The next two lemmas will be used in the proof of Theorem 3.2. The first records
the results of some routine computations. Note that Part (E) implies that |α| = 3.

3.4. Lemma. (A) αiα−1 = k, αjα−1 = i, and αkα−1 = j.

10
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(B) β4 = β∗ (so |β| = 5).

(C) β2 = αβ + i.

(D)
(
β2i
)2

= −αβi = (β2i)∗ (so |β2i| = 3).

(E) If γ = (−1± i± j± k)/2, then γ2 = γ∗ (so |γ| = 3).

3.5. Lemma. 1,β is a basis for Z[H120] as a Z[H24]–module, and α, i, j, k is a
basis for Z[H24] as a Z–module.

Proof. Since |β| = 5 (Lemma 3.4B), 〈β〉 and H24 are disjoint subgroups of
H120 with |〈β〉||H24| = |H120|, so every element of H120 can be uniquely written
as a product ab where a ∈ H24 and b ∈ 〈β〉. Hence Lemma 3.4C implies that the
set {1,β} spans Z[H120] as a Z[H24]–module. Now suppose A + Bβ = 0 where
A and B are in Z[H24] and are not both zero. Then clearly B 6= 0 so we can
write β = −B−1A, which is in Q[i, j] (the ring of rational quaternions is a division
subring of H ). This is impossible since τ 6∈ Q. Hence 1, β is a basis for Z[H120]
as a Z[H24]–module. The second assertion of the lemma follows easily from [H,
Lemma 7.4.4, p. 373].

Theorem 3.2 will now be proven.

Proof. By Lemma 2.4 the inclusion H −→ H induces a homomorphism
ϕ : ZH −→ Z[H ] with kerϕ ⊃ (aH). It suffices to prove the reverse inclusion.

Case I : H = H24 or H48. Let γ ∈ kerϕ. We can write γ =
s∑
i=1

ĥi −
t∑

j=1

ĝj for some

hi, gj ∈ H . We may assume by induction that such sums with fewer than s + t
terms are in (aH). Note

γ =




s∑

i=1

ĥi +

t∑

j=1

−̂gi


−

(
t∑

i=1

ĝi

(
(−̂1) + 1̂

))
.(2)

The last summation of equation (2) is in (aH). Thus without loss of generality
we may assume that t = 0, and, further, that h1 = 1 (since γ ∈ (aH) if and only

if ĥ−1
1 γ ∈ (aH)). Hence without loss of generality we may further assume that

h2 = −1 or h2 = (−1± i± j±k)/2; otherwise the real part of ϕ(γ) would be of the

form m/2 + n/
√

2 where m, n ∈ Z, m > 0 (contradicting that ϕ(γ) = 0) since the

hi are in H48, whose 48 elements are ±1,±i,±j,±k, (±1± i±j±k)/2, (±1± i)/
√

2,

(±1± j)/
√

2, (±1± k)
√

2, (±i± j)/
√

2, (±i± k)/
√

2, (±j± k)/
√

2 [C, p. 372]. If

h2 = −1 then ĥ1 + ĥ2 ∈ aH and we are done by induction. On the other hand if

h2 = (−1± i± j± k)/2, then 1̂ + ĥ2 + ĥ2
2 ∈ aH by Lemma 3.4E and so

γ =

(
−̂h2

2 +

s∑

i=3

ĥi

)
+
(
1̂ + ĥ2 + ĥ2

2 − ĥ2
2

(
1̂ + (−̂1)

))
.

Since the second term is in (aH) and the first has fewer than s elements, we conclude
by induction that γ ∈ (aH), as required.
Case II : H = H120. First recall from Lemma 3.5 that 1,β is a basis for Z[H120] as
a Z[H24]–module. Next note that by Lemma 3.4D,

β̂
2 − α̂ β̂ − î =

(
−̂αβi + β̂2i + 1̂

)
(̂−i)−

(
α̂β + −̂αβ + î + −̂i

)

=

(
(̂β2i)2 + β̂2i + 1̂

)
(̂−i)−

(
α̂β + i

)(
1̂ + (̂−1)

)
∈
(
aH
)
.



12 3. GROUPS OF REAL QUATERNIONS

(Be careful here to distinguish between −γ̂ and −̂γ for γ ∈ H .) Therefore modulo
(aH) we have

β̂
2 ≡ α̂β + î ,

β̂
3 ≡ α̂β2 + îβ =

(
α̂

2 + î
)

β̂ + α̂i ,

β̂
4 ≡

(
α̂

3 + îα + α̂i
)

β̂ + α̂2i + (−̂1) .

Now suppose C ∈ kerϕ; it suffices to show C ∈ (aH). C is a sum of terms of

the form nδ̂ β̂
i

where 0 ≤ i < 5, δ ∈ H24 and n ∈ Z. By the above paragraph C
can therefore be written modulo (aH) in the form

C ≡ A+Bβ̂

where A, B ∈ ZH24. Since aH ⊂ kerϕ, 0 = ϕ(A)+ϕ(B)β. Since 1, β forms a basis
for Z[H120] as a Z[H24]–module, then ϕ(A) = ϕ(B) = 0. Thus by the previous case
A, B ∈ (aH24) ⊂ (aH), so C ∈ (aH), as required.
Case III : H = Cn. The theorem is trivial if n = 1. Now suppose n is a prime
power pt+1 where t ≥ 0. The canonical surjective homomorphism γ : Z[x] −→ ZH

with γ(x) = ζ̂n carries the cyclotomic polynomial Φn(x) =
p−1∑
i=0

X ipt

onto Φn
(
ζ̂n
)

=

p−1∑
i=0

ζ̂ ip. Thus by Lemma 2.7, γ carries the kernel of the natural homomorphism

Z[x] −→ Z[ζn] taking x to ζn onto the kernel of the natural homomorphism ZH −→
Z〈H〉 (note that 〈ζp〉 is the unique subgroup of H of prime order). Hence γ induces

an isomorphism Z[ζn] −→ Z〈H〉 taking ζn to ζn. The inverse of this isomorphism
is induced by the inclusion H −→ H, proving the theorem in this case.

Next suppose n = mk where m and k are relatively prime integers larger
than 1. By induction on the number of prime factors of n we may suppose we
have isomorphisms γ : Z〈Cm〉 −→ Z[ζm] and δ : Z〈Ck〉 −→ Z[ζk] taking ζm and

ζk respectively to ζm and ζk. By the Direct Product Lemma 2.9 we have an
isomorphism

µ : Z〈Cm × Ck〉 −→ Z〈Cm〉 ⊗ Z〈Ck〉
taking (ζm, 1) to ζm ⊗ 1 and (1, ζk) to 1⊗ ζk. We also have natural isomorphisms

η : Z〈Cn〉 −→ Z〈Cm × Ck〉
(induced by the group isomorphism Cn = 〈ζm, ζk〉 −→ Cm×Ck taking ζm to (ζm, 1)
and ζk to (1, ζk)) and

ρ : Z[Cm]⊗ Z[Ck] −→ Z[Cn]

(taking ζm⊗1 and 1⊗ ζk to ζm and ζk, respectively). The composition ρ(γ⊗ δ)µη :

Z〈Cn〉 −→ Z[Cn] carries ζk and ζm to ζk and ζm, and hence is the promised
isomorphism induced by the inclusion H −→ Z[H ].
Case IV : H = D4n, n ≥ 2. By the Cyclic Extension Lemma 2.8 we have an
isomorphism

Z〈D4n〉 −→
(
Z〈C2n〉, σ, 2,−1

)

taking ζ2n (in Z〈D4n〉) to ζ2n (in Z〈C2n〉) and j to σ̂, where σ is the automorphism

of Z〈C2n〉 induced by conjugation by j (so σ
(
ζ2n

)
= jζ2nj−1 = ζ

−1

2n ). By the
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previous case we have an isomorphism

(Z〈C2n〉, σ, 2,−1) −→ (Z[ζ2n], τ, 2,−1)

where τ(ζ2n) = ζ−1
2n . Composing these isomorphisms with the obvious isomorphism

(Z[ζ2n], τ, 2,−1) −→ Z[D4n]

(map ζ2n to itself and τ̂ to j) gives the required map Z〈H〉 −→ Z[H ].

The next lemma will be needed in several proofs below, beginning with the
proof of the Classification Theorem 1.4 in the next chapter.

3.6. Lemma. (A) There is a unique automorphism ψ0 of H120 mapping j to k

and fixing i. It maps α to (αi)−1 and β to (βi)−1.
(B) There is a unique automorphism of Z[H120] mapping j to k and fixing i. It

extends the map ψ0.
(C) There is a unique automorphism of Q[i, j,

√
5] extending ψ0. It maps

√
5

to −
√

5.

Proof. Conjugation by ζ8 fixes i = ζ2
8 and maps j to

ζ8jζ
−1
8 = ζ8

(
jζ−1

8 j−1
)
j = ζ2

8 j = ij = k .

Hence there is an automorphism ψ1 of Q[i, j] of order 4 fixing i and taking j to k.

Let ψ2 be the automorphism of Q[
√

5] of order 2 taking
√

5 to −
√

5. Then ψ1⊗ψ2

induces an automorphism ψ of order 4 of

Q[H120] = Q[i, j,
√

5](∼= Q[i, j]⊗Q[
√

5])

taking
√

5 to −
√

5, j to k and fixing i. Then ψ(k) = ψ(ij) = ik = −j and
ψ(τ) = −τ−1, so ψ(α) = (−1 + i− j + k)/2 = (αi)−1 and

ψ(β) = (−τ − τ−1i + k)/2 = (βi)−1 .

The automorphism ψ therefore restricts to an automorphism ψ0 of H120 and to an
automorphism of Z[H120] fixing i and mapping j to k. (The restrictions must be
automorphisms since ψ has order 4.) Suppose now that ϕ is another automorphism
of Z[H120] fixing i and mapping j to k. Then ϕ extends to an automorphism

ϕ1 of Q[H120](∼= Q ⊗ Z[H120]). The center of Q[H120] = Q[
√

5][i, j] is Q[
√

5], so

ϕ1 restricts to an automorphism of Q[
√

5]. If ϕ1 fixes
√

5, then ϕ1(τ) = τ , so
ϕ(β) =

(
τ−1 + τ i + k

)
/2 and hence

−1

2
=
[
(k − j)/2

]2
=
(
ϕ(β)− β

)2 ∈ Z[H120] .

But this contradicts the fact that Z[H120] as a Z–module is finitely generated.

Hence ϕ1(
√

5) = −
√

5, so ϕ1 = ψ. Thus ϕ = ψ|Z[H120], so ψ|Z[H120] is the
unique automorphism of Z[H120] fixing i and mapping j to k. Now suppose ϕ0 is
a group automorphism of H120 fixing i and mapping j to k. Then ϕ0 induces an
automorphism of Z〈H120〉 and hence by Theorem 3.2 it extends to an automorphism
of Z[H120] fixing i and mapping j to k. Then by the uniqueness of ψ|Z[H120] we
must have ϕ0 = ψ0. Finally suppose ϕ2 is any extension of ψ0 to an automorphism
of Q[H120]. If ϕ2(

√
5) = −

√
5, then ϕ2 = ψ and we are finished. If not we must

have ϕ2(
√

5) =
√

5, so

ϕ2(β) =
(
τ−1 + τ i + k

)
/2 6= ψ0(β) ,

contradicting that ϕ2 extends ψ0. Thus ϕ2 = ψ.



CHAPTER 4

Proof of the Classification Theorem

We now prove Theorem 1.4. The proof will use some properties of generalized
quaternion groups which are collected in the lemma below. Recall that the Sylow
2–subgroups of Frobenius complements are either cyclic (in which case the Frobe-
nius complement is a Z–group) or generalized quaternion groups. The generalized
quaternion group of order 2n+1 ≥ 8 admits generators u and v with |v| = 2n,

u2 = v2n−1

and uvu−1 = v−1. The proof of the next lemma uses this notation.

4.1. Lemma. Let H be a generalized quaternion group of order 2n+1 and let
z ∈ H have order 2n.

(A) If w ∈ H\〈z〉, then H = 〈w, z〉, |w| = 4, and wzw−1 = z−1.
(B) H/〈z2〉 ∼= V4.

(C) Suppose 0 ≤ s ≤ n, s 6= 2. Then 〈z2n−s〉 is the unique cyclic subgroup of
H of order 2s. If s = 2 and n > 2, then it is the unique cyclic normal subgroup of
H of order 2s.

Proof. Write H = 〈u, v〉 as in the paragraph above the statement of the
lemma. The assertions of the lemma are easily verified if n = 2 (i.e., H is a

quaternion group), so suppose n > 2. Since v2n−1

= u2, then every element of H
has the form vi or uvi. But for all i, (uvi)2 = u2, so uvi clearly has order 4. Hence
z must be a power of v. All the assertions of (A) and (B) are now easily checked.
The fact that all elements of H outside of 〈v〉 have order 4 also makes clear that H
has only one cyclic subgroup of order 2s whenever 0 ≤ s ≤ n except when s = 2,

and this subgroup must be 〈z2n−s〉. Now suppose s = 2. Then 〈z2n−s〉 is normal
and cyclic of order 4. Any other such subgroup would have the form 〈uvi〉, and
hence would contain the element

v(uvi)v−1(uvi)3 = v2 .

Since v2 has order 2n−1 ≥ 4 we must have 〈uvi〉 = 〈v2〉. Hence u ∈ 〈v〉, a contra-

diction. Thus 〈z2n−s〉 is the only normal cyclic subgroup of H of order 4.

4.2. Lemma. Let G be a Frobenius complement with a subgroup of index 2
which is an internal direct product of H120 and a subgroup J . Then there exists an
element u of G of order 8 with u2 = i, uju−1 = k, uku−1 = −j, uαu−1 = (αi)−1

and uβu−1 = (βi)−1.

Proof. The order of J is relatively prime to 30 [Pa, Theorem 18.1(i), p. 193-
194]. Thus H120 is a characteristic subgroup of JH120 and any Sylow 2–subgroup
of G must be a generalized quaternion group of order 16. G has such a subgroup
S containing 〈i, j〉, say with u ∈ S of order 8. Then u2 is an element of order 4 in
〈i, j〉. By Lemma 3.4A we may assume without loss of generality that u (and S)
are chosen with u2 = ±i and indeed with u2 = i (if necessary, replace u by iu).

14
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Then by Lemma 4.1A

uju−1 = u(juj−1)−1j = u2j = ij = k

and so uku−1 = uiju−1 = ik = −j. Finally, applying Lemma 3.6A to conjugation
by u, we have uαu−1 = (αi)−1 and uβu−1 = (βi)−1.

The above lemma shows that there is at most one (up to isomorphism) Frobe-
nius complement having H120 as a subgroup of index 2. Such a group is constructed
in Example 4.3 below.

We now give the proof of the Classification Theorem 1.4.

Proof. Recall that a Z–group is a group all of whose Sylow subgroups are
cyclic, so a Frobenius complement is a Z–group if and only if its Sylow 2–subgroup
is cyclic [Pa, Theorem 18.1(iv), p. 194]. Hence a Frobenius complement is a
Z–group if it has a subgroup of odd index which is a Z–group.

Now let G be any Frobenius complement. We begin by showing the existence
of a core N of G, i.e., a normal Z–subgroup of G such that G/N is isomorphic
to one of the groups on the list (1) of Chapter 1. We first suppose G is solvable.
Then G has a normal subgroup N0 which is a Z–group of maximal possible order
such that G/N0 is isomorphic to a subgroup of S4 [Pa, Theorem 18.2 (Zassenhaus),
p. 196]. Therefore [G : N0] 6= 3, since otherwise by the previous paragraph G is
a Z–group and so |N0| was not maximal. Similarly, [G : N0] 6= 6 (otherwise N0

would be a subgroup of index 3 of a subgroup of G of index 2, since every group
of order 6 has a subgroup of order 3). If [G : N0] = 1, 12, or 24, then G/N0 is
isomorphic to 1, A4, or S4 and we can simply set N = N0. Suppose this is not
the case; then by Lagrange’s theorem [G : N0] is a proper power of 2: 2, 4 or
8. We may write N0 = 〈x, y〉 where |x| = n, |y| = m and xy = yrx for some
positive integers r, n, m satisfying (m,nr(r − 1)) = 1 [Pa, Proposition 12.11, p.
106],[S, 12.6.17, p. 356]. Then m is clearly odd. Recall that 2n denotes the largest
power of 2 dividing n and n//2 denotes the largest odd factor of n (cf. Chapter 1).
Then N1 := 〈x2n , y〉 is clearly a normal subgroup of G of odd order |G|//2. Let
H be a Sylow 2–subgroup of G; H is a generalized quaternion group since G is
not a Z–group. The natural homomorphism H −→ G/N1 is injective, and hence
is an isomorphism. By Lemma 4.1B there is a normal cyclic subgroup H1 of H
with H/H1

∼= V4. Hence by the Noether isomorphism theorems G has a normal
subgroup N containing N1 with N/N1

∼= H1 and G/N ∼= V4. N is a Z–group since
its Sylow 2–subgroups are isomorphic to the cyclic group H1. This completes the
proof of the existence of the group N of Theorem 1.4 in the case that G is solvable.

Now suppose G is not solvable. Then without loss of generality we may assume
that G has a subgroup of index at most two which is an internal direct product of
a Z–group M of order relatively prime to 30 and the group H120 of the previous
chapter (apply [V, Proposition 3.8, p. 17] and [Pa, Theorem 18.6 (Zassenhaus), p.
204]). Z• = {±1} is the unique subgroup of H120 of order 2; it is in the center of
G [Pa, Theorem 18.1(iii), p. 194] and is normal in G. M is normal in G because
MH120 is normal in G andM is a characteristic subgroup ofMH120 (it is the unique
subgroup of MH120 of order |M |). Thus N := Z•M is a normal Z–subgroup of
G. If G = MH120, then G/N ∼= H120/Z• ∼= A5 [Pa, Lemma 13.6 and Proposition
13.7, pp. 120–122]. Now suppose G 6= MH120. Then

|G/N | = [G : MH120][MH120 : MZ•] = 2|A5| = |S5| .
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We can therefore show that G/N ∼= S5 by proving that G/N is generated by
elements satisfying defining relations for S5.

By Lemma 4.2 G has an element u with u2 = i, uju−1 = k, uku−1 = −j,
uαu−1 = (αi)−1 and uβu−1 = (βi)−1. Let s2 = βu−1N and s5 = βN in G/N . In
order to show that G/N ∼= S5 it then suffices to prove that G/N = 〈s2, s5〉 and

s22 = s25 = (s5s2)
4 =

(
s−1
5 s2s5s2

)3
= 1(3)

[B, Section 6, p. 125]. Now 〈s2, s5〉 contains βN , uN , and iN = u2N and therefore
also contains αN (Lemma 3.4D) and hence both jN and kN (Lemma 3.4A). Thus
〈s2, s5〉 contains and hence equals

〈u〉(H120M)/N = G/N .

Next, s55 = 1 by Lemma 3.4B, and

s22 = u−1
(
uβu−1

)
βu−1N = u−1i−1β−1βu−1N = −1N = 1 .

Therefore

(s5s2)
4 = βNs22uNs

2
2uNs

2
2uNs

2
2uβ

−1N

= βu4β−1N = 1 .

Also since |β2i| = 3 (Lemma 3.4D), we have
(
s−1
5 s2s5s2

)3
= u−1β2u−2β2u−2β2u−2uN

= u−1
(
β2i
)3

(−u)N = −1N = 1 .

This completes the proof of the relations in the list (3). Thus G/N ∼= S5. This
completes the proof of the existence part of the Classification Theorem 1.4. We
next prove uniqueness.

Let us suppose that M and N are both normal subgroups of G which are Z–
groups such that G/N and G/M are both isomorphic to groups on the list (1). We
prove M = N . We may suppose without loss of generality that [G : N ] ≤ [G : M ]
and hence that [G : N ] divides [G : M ]. (Note that if G is solvable, then [G : N ]
and [G : M ] are both in {1, 4, 12, 24}, and otherwise they are both in {60, 120}.)
Thus |M | divides |N |.

We claim M ⊂ N . Without loss of generality (for proving this assertion)
G 6= N . Hence G 6= M . Hence [G : N ] and [G : M ] are divisible by 4. For each
prime divisor p of |G| we can find Sylow p–subgroups Mp, M

∗
p , Np, and N∗

p of M ,
G, N , and G, respectively, with Mp ⊂M∗

p and Np ⊂ N∗
p . Consider any such prime

p. Since Mp = M ∩M∗
p , then Mp ⊳ M∗

p . Similarly Np ⊳ N∗
p , and if p = 2 then

4 divides
[
N∗
p : Np

]
. Since Np is cyclic it has a cyclic subgroup N0 of order |Mp|.

N0 is a characteristic subgroup of Np and Np ⊳ N∗
p , so N0 ⊳ N∗

p . Indeed, N0

is the unique normal cyclic subgroup of N∗
p of order |Mp| (this is trivial if N∗

p is

cyclic; otherwise apply Lemma 4.1C after observing that 4 divides
[
N∗
p : N0

]
). Now

Sylow p–subgroups of G are conjugate, so there exists x ∈ G with xM∗
px

−1 = N∗
p .

Since Mp ⊳ M∗
p , then xMpx

−1
⊳ xM∗

px
−1 = N∗

p . Hence xMpx
−1 = N0. Thus

Mp = x−1N0x ⊂ x−1Nx = N . But then, as claimed, M = 〈⋃Mp〉 ⊂ N , where the
union is taken over all prime divisors p of |M |.

We finish the proof of Theorem 1.4 by proving that N = M . First suppose
G is nonsolvable. Then G/N and G/M must be isomorphic to either A5 or S5.
Now G/N is a homomorphic image of G/M but A5 is not a homomorphic image of
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S5 (otherwise S5 has a normal subgroup of order 2 and hence a central element of
order 2, which is false). Thus G/N and G/M must be isomorphic to each other, so
|N | = |M |, and hence N = M . Next suppose G is solvable, so G/N and G/M are
isomorphic to 1, V4, A4 or S4. Again, suppose G/N is not isomorphic to G/M since
otherwise |M | = |N |, so N = M . However G/N is again a homomorphic image of
G/M . But of the groups 1, V4, A4 and S4 only 1 is a homomorphic image of any
of the others. Thus G = N , and so G is a Z–group. Hence the Sylow 2–subgroups
of G, and therefore of G/M also, are all cyclic. But neither V4, A4 nor S4 has a
cyclic 2–Sylow subgroup. Thus G/M is trivial, so M = G = N in this case. This
completes the proof of the Classification Theorem.

The following construction of a Frobenius complement with core index 120 will
preview techniques which will be used repeatedly in the following chapters.

4.3. Example. Let ψ denote the automorphism of Z[H120] of Lemma 3.6B.
Recall that ψ(i) = i and note that ψ2 is just conjugation by i. Thus the ring
R := (Z[H120], ψ, 2, i) is well–defined and free as a Z–module (cf. Remark 2.6 and

Lemma 3.5). Let H240 denote the subgroup of R• generated by H120 and ψ̂. Then
H240 satisfies the conditions of the Cyclic Extension Lemma 2.8 (with H = H120

and c = ψ̂; note that the Sylow subgroup 〈ψ̂, j〉 is a generalized quaternion group
of order 16). Thus Z〈H240〉 ∼= R is nontrivial and torsion–free as a Z–module
and H240 is a Frobenius complement. Since H240 contains H120, it is not solvable,
so it must have core index 60 or 120. Just suppose the core index is 60. Since
|H240| = 240 = 4|A5|, then the core would be a cyclic group of order 4. By Sylow’s
Theorem some conjugate of the core, and hence the core itself, is a normal cyclic

subgroup of 〈ψ̂, j〉 of order 4. But by Lemma 4.1C the only such subgroup is

〈ψ̂2〉 = 〈i〉. This is impossible, however, since 〈i〉 is not even a normal subgroup of
H120 (e.g. see Lemma 3.4A). Thus H240 must have core index 120. It follows that
the core of H240 is 〈−1〉.

We end this chapter by sketching an alternative approach to classifying Frobe-
nius complements into six types (cf. Theorem 1.4).

4.4. Remark. If G has core index larger than 1, then the core C admits a
unique subgroup C0 of index 2 and the factor group G/C0 is isomorphic to either
D8, H24, H48, H120 or H240 depending on whether G has core index 4, 12, 24, 60 or
120, respectively. This fact could be used in place of the Classification Theorem 1.4.
Our explicit use of the groups “Hi” (e.g. in Theorems 7.11 and 9.1) recommends
such an approach. On the other hand, the groups V4, A4, S4, A5 and S5 used in
Theorem 1.4 are simpler and more familiar than the groups D8, H24, H48, H120

and H240.



CHAPTER 5

Frobenius complements with core index 1

By a 1–complement we mean a Frobenius complement which is a Z–group; this
usage will be generalized in Definition 6.1 below. We study here the isomorphism
classes and integral truncated group rings of 1–complements; this will require a
modest elaboration of the usual structure theory of Z–groups [Pa, Proposition
12.11, p. 106]. Recall that if 0 < n ∈ Z, then n0 denotes the largest square–free
integer dividing n.

5.1. Definition. (A) A Frobenius triple is an ordered triple (m,n, T ) where
(A1) m and n are relatively prime positive integers;
(A2) the order of T divides n/n0; and
(A3) T is a cyclic subgroup of Z•

m with (−1 + T ) ∩ Z•
m nonempty.

(B) We call the Frobenius triple (m,n, T ) proper if n > 1.
(C) Suppose G is a Z–group. The invariant of G is the triple

(
|G′|, [G : G′], I

)

where I is the image of the composition of functions

G −→ AutG′ −→ Z•
|G′| .

The left hand map above is induced by conjugation by elements of G and
the right hand map is the natural isomorphism (recall that G′ is cyclic [S,
12.6.17, p. 356]).

(D) If G has invariant (m,n, 〈r〉) for some r ∈ Z•
m, then an r–sequence for G is

a sequence x, y of elements of G with |x| = n, |y| = m, and xyx−1 = yr.

The only Frobenius triple which is not proper is (1, 1,Z•
1).

The next theorem assembles the main results of this chapter.

5.2. Theorem. (A) The map assigning to each 1–complement its invariant
induces a bijection from the set of isomorphism classes of 1–complements to the set
of proper Frobenius triples.

(B) If G is a 1–complement with invariant (m,n, 〈r〉), then G has an r–
sequence.

(C) Say (m,n, 〈r〉) is a proper Frobenius triple and t = |r|. Then there is
an automorphism σ of Z[ζmn/t] fixing ζn/t and with σ(ζm) = ζrm. The subgroup
G := 〈ζm, σ̂〉 of the group of units of the ring

A :=
(
Z[ζmn/t], σ, t, ζn/t

)

is a 1–complement with invariant (m,n, 〈r〉). Moreover, the inclusion G −→ A
induces an isomorphism Z〈G〉 −→ A.

(D) Let G be as in part (C). Then Z〈G〉 is a free Z–module of rank φ(mn), and
Q〈G〉 is a simple algebra with degree t and with rational dimension [Q〈G〉 : Q] =
φ(mn); the isomorphism Q〈G〉 −→ QA maps the center of Q〈G〉 onto Q[ζmn/t]

σ.

18
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The “σ” in part (D) is actually the canonical extension of the σ of part (C)
to Q[ζmn/t]. The bijection of part (A) easily generalizes from 1–complements to
arbitrary Z–groups. The focus in (A) on the group T rather than on the generator
r (as in [Pa]) is because T , but not r, is an isomorphism invariant of G. The index
of the simple algebra Q〈G〉 is computed in Theorem 17.4 below.

We begin the proof of Theorem 5.2 by collecting some simple observations
about Frobenius triples.

5.3. Lemma. Let m and n denote relatively prime positive integers. Let r ∈ Z•
m

and set t = |r| and T = 〈r〉.
(A) (m,n, T ) satisfies condition (A2) of Definition 5.1 if and only if (m, r−1) =

1; also, (m,n, T ) satisfies condition (A3) of Definition 5.1 if and only if
rn/n0 = 1.

(B) Suppose (m,n, T ) is a Frobenius triple. Then:
(B1) m is odd, and either t is even or 3 ∤ m;
(B2) if n = 2 then m = t = 1;
(B3) if n ≡ 2 (mod 4), then t is odd and (m,n/2, T ) is a Frobenius triple.

Proof. Note that if −1 + rj ∈ Z•
m, then 1 =

(
(r − 1)(1 + r + · · ·+ rj−1),m

)
,

so (m, r − 1) = 1. We leave the rest of the proof of part (A) to the reader. The
equation (m, r) = (m, r − 1) = 1 implies m is odd. It also says that if 3 divides m,
then r ≡ 2 (mod 3) so r2 ≡ 1 (mod 3). But if 3 divides m, then rt ≡ 1 (mod 3), so t
must be even. (If t were odd then r ≡ 1 (mod 3), contradicting that (m, r−1) = 1.)
The last two parts of (B) are easily verified.

We now give the proof of Theorem 5.2.

Proof. Let G be a 1–complement. Then by Theorem 12.11 of [Pa, p.106]
there exists x, y ∈ G, positive integers m and n, and r ∈ Z•

m with rn = 1 and
(m,nr(r − 1)) = 1 such that the equations

xn = ym = 1, xy = yrx

give a presentation of G. Moreover by Theorem 18.2 of [Pa, p. 196] (or, more
pecisely, by the first paragraph of its proof) rn/n0 ≡ 1 (mod m), so (m,n, 〈r〉) is a
Frobenius triple (cf. Lemma 5.3). Since G′ = 〈y〉 (note xyx−1y−1 = yr−1 generates
〈y〉), then m = |G′| and n = [G : G′]. The image of the map G −→ AutG′ is
generated by the image of x and this maps to r in Z•

m. Thus the invariant of G is
(m,n, 〈r〉), and it is a proper Frobenius triple.

Suppose s is any generator of 〈r〉. Let t = |r|, so t divides n. Then s = ri for
some i ∈ Z such that (t, i) = 1. There exists j ∈ Z with j ≡ i (mod tn) and j ≡ 1
(mod n/tn) where tn as usual denotes the largest divisor of n dividing some power
of t. Then (j, n) = 1, so |xj | = n. Then xj , y is an s–sequence for G, proving part
(B).

Next suppose G1 is another 1–complement with the same invariant (m,n, 〈r〉)
as G. By (B), G1 has an r–sequence x1, y1. But then G ∼= G1 since the two groups
have equivalent presentations in terms of the generating sets x, y and x1, y1.

We next prove part (C); note that this will complete the proof of part (A). Thus
let (m,n, 〈r〉) be any proper Frobenius triple. The existence of the automorphism
σ of (C) is routine since (m,n) = (m, r) = 1. Note σ has order t = |r|. Thus
the algebra A of part (C) is well–defined (cf. Theorem 2.5 and Remark 2.6B). Let
H = 〈ζmn/t〉 and G = 〈ζm, σ̂〉. Then |ζm| = m and since σ̂t = ζn/t, then

∣∣σ̂
∣∣ = n.
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(We clearly have σ̂n = (ζn/t)
n/t = 1. On the other hand if 1 = σ̂tq+ρ where

0 ≤ ρ < t, then 1 = (ζn/t)
qσ̂ρ, so by the definition of A, n/t divides q and ρ = 0, so

n divides tq+ρ.) Moreover σ̂ζmσ̂
−1 = σ(ζm) = ζrm. Hence G is clearly a Z–group of

order mn. By Theorem 3.2 the inclusion H −→ Z[ζmn/t] induces an isomorphism
Z〈H〉 −→ Z[ζmn/t]. Hence by Corollary 3.3 H is a Frobenius complement. Since
Z[ζmn/t] is torsion–free and finitely generated as a Z–module, then Z〈H〉 is free and
of rank φ(mn/t). Condition (A3) of Definition 5.1 says that [G : H ] = t divides a
power of |H | = mn/t. Hence by the Cyclic Extension Lemma 2.8 G is a Frobenius
complement, and hence a 1–complement with invariant (m,n, 〈r〉), and the inclusion
G −→ A induces an isomorphism Z〈G〉 −→ A. Thus in particular Z〈G〉 is free of
rank tφ(mn/t) = φ(mn) (use Definition 5.1(A3) to apply the usual computation
of the Euler φ–function [NZ, Section 2.4, pp. 48-49]). Hence Q〈G〉 has rational
dimension φ(mn). Since Q〈G〉 ∼=

(
Q[ζmn/t], σ, t, ζn/t

)
= QA (cf. Remark 2.6), by

Theorem 2.5 Q〈G〉 is simple with center isomorphic to Q[ζmn/t]
σ. The dimension

of Q〈G〉 over its center is
[
QA : Q[ζmn/t]

][
Q[ζmn/t] : Q[ζmn/t]

σ
]

= t2 ,

so the degree of Q〈G〉 is t.

5.4. Remark. Suppose x, y is an r–sequence for a 1–complement G with in-
variant (m,n, 〈r〉). We will frequently use the well–known fact that the center of
G is 〈xt〉 where t = |r|, and the commutator subgroup of G is 〈y〉. The first fact
follows easily from the definition of t; the second was proved (briefly) above.

In Proposition 11.1 below we look at the problem of counting the number of
isomorphism classes of 1–complements.



CHAPTER 6

Frobenius complements with core index 4

6.1. Definition. Let G be a Frobenius complement with core N . Then there
is a unique Frobenius triple ∆ and group J from the list (1) of Chapter 1 such that
∆ is the invariant of N and G/N ∼= J (cf. Theorems 1.4 and 5.2A). We call ∆ the
core invariant of G and J the type of G, and say that G is a J–complement.

The core index is of course just the order of the type, and hence is one of the
integers 1, 4, 12, 24, 60, or 120.

6.2. Notation. In this and the next four chapters we will let ∆ = (m,n, T )
be a fixed proper Frobenius triple. We will also let r denote a fixed generator of
T and set t = |T |. In these chapters we will analyze Frobenius complements with
core invariant ∆ and core index larger than 1.

The reader may find it helpful (but not necessary) to know that in Chapters 6
through 10 p will only be used to denote a rational prime; that a, b, c, d will be
elements of Zm; and that e, f , g, h will often be elements of Zn and will always be
elements of rings of the form Zs where s is a divisor of n.

In this chapter we will analyze all V4–complements with core invariant ∆ =
(m,n, 〈r〉). We begin by introducing the numerical objects which will be shown to
be in one–to–one correspondence with the isomorphism classes of V4–complements
with core invariant ∆.

6.3. Notation. Let ψ : Z•
m×Z•

n//t −→ Z•
2n//t

be the natural map (so ψ(a, f) =

f +2n//tZ). Let S denote the set of all subgroups of Z•
m×Z•

n//t whose image under

ψ is 〈−1 + 2n//tZ〉 and which have order at most 4 and exponent at most 2.

The size of S will be computed in Corollary 6.6 below. Note that 2n//t = 2n if
t is odd, which we will find in Theorem 6.5 below to be the only case of interest.

6.4. Definition. Let u, v, x, y be a sequence of elements of a V4–complement
G with core invariant ∆. We will call u, v, x, y an r–sequence for G if x, y is an
r–sequence for the core of G (cf. Definition 5.1D); 〈u, v〉 is a Sylow 2–subgroup of
G with v2 = xn//2; and 〈u, v〉 is contained in the normalizer of 〈x〉. The invariant
of an r–sequence u, v, x, y of G is the 4–tuple (a, g, c, h) in Z•

m × Z•
n × Z•

m × Z•
n

with uyu−1 = ya, uxu−1 = xg, vyv−1 = yc, vxv−1 = xh; we call the subgroup
〈(a, g + n//tZ), (c, h+ n//tZ)〉 of Z•

m × Z•
n//t a reduced invariant of G.

In the next theorem we assert that a V4–complement has one and only one
reduced invariant; neither of these facts is supposed to be obvious at this point.
Please note that the choice of r is fixed (cf. Notation 6.2); the uniqueness assertions
of Theorem 6.5 below assume this fixed choice of r.

21
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6.5. Theorem. There exists a V4–complement with core invariant ∆ if and
only if n is even and t is odd. If n is even and t is odd, then every V4–complement
with core invariant ∆ has a unique reduced invariant, and assigning to each such
Frobenius complement its reduced invariant induces a bijection from the set of iso-
morphism classes of V4–complements with core invariant ∆ to the set S.

We will soon give a sequence of lemmas which will contain the proof of The-
orem 6.5 and go on to analyze the truncated groups rings. First, however, we use
Theorem 6.5 to count isomorphism classes.

6.6. Corollary. Let s denote the number of distinct odd prime divisors of
mn//t. The number of isomorphism classes of V4–complements with core invariant
∆ is 0 if n is odd or t is even; 2s−1(2s + 1) if t is odd and n ≡ 0 (mod 4); and
(2s + 1)(2s−1 + 1)/3 if t is odd and n ≡ 2 (mod 4).

Proof. We may assume without loss of generality that n is even and t is odd
(Theorem 6.5), and that s ≥ 1 (if s = 0 then ψ is an isomorphism and S has only
one element). The integer k := mn//2t factors into the product of prime powers∏
p|k pk. Each of the groups Z•

pk
is cyclic [NZ, Theorem 2.34, p. 79] and hence has

a unique element of order 2. The map ψ of Notation 6.3 is the composition of the
natural isomorphism

Z•
m × Z•

n//t −→


∏

p|k
Z•
pk


× Z•

2n

with the projection 
∏

p|k
Z•
pk


× Z•

2n
−→ Z•

2n
.

Thus S is naturally bijective with the set of subgroups of Z•s × Z•
2n

which project
onto the subgroup 〈−1 + 2nZ〉 of Z•

2n
and have order at most 4 and exponent at

most 2.
First suppose n ≡ 2 (mod 4), so 2n = 2 and Z•

2n
is trivial. Then S is bijective

with the set of subgroups of Z•s of order at most 4. There are 2s such subgroups of
order at most 2, generated by the 2s elements of Z•s. We have a 6:1 covering of the
set of subgroups of order 4 of Z•s by the set of ordered pairs of distinct nontrivial
elements of Z•s (assign to each such ordered pair the group that its components
generate), so there are exactly (2s−1)(2s−2)/6 such subgroups. Thus when n ≡ 2
(mod 4), then S has cardinality exactly

(
2s − 1

)(
2s − 2

)
/6 + 2s =

(
2s + 1

)(
2s−1 + 1

)
/3 .

Finally suppose n ≡ 0 (mod 4), so −1 + 2nZ 6= 1 + 2nZ. Then no group in S
is trivial. The groups of order 2 in S correspond bijectively with the elements of
Z•s, of which there are 2s. The groups of order 4 in S correspond bijectively with
subgroups of order 4 and exponent 2 of Z•s×Z•

2n
projecting onto −1+2nZ and each

of these is uniquely generated by an unordered pair of distinct nontrivial elements
of Z•s × Z•

2n
with last coordinate −1 + 2nZ. There are exactly 2s

(
2s − 1

)
/2 such

pairs, and hence S has cardinality

2s−1
(
2s − 1

)
+ 2s = 2s−1

(
2s + 1

)
.
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We begin the proof of Theorem 6.5 with some lemmas which will be used in
this and in later chapters; the first two will be used repeatedly.

6.7. Lemma. Let x, y be an r–sequence for a 1–complement with invariant ∆.
Suppose a ∈ Zm, g ∈ Zn, s ∈ Z and (g, t) = 1. Then

(
yaxg

)s
= xgs if s ≡ 0

(mod t), and
(
yaxg

)s
= yaxgs if s ≡ 1 (mod t).

Proof. Suppose s ≡ 0 (mod t). Then
(
rg − 1

)(
1 + rg + · · ·+ rg(s−1)

)
= rsg − 1 = 0 .

Since (g, t) = 1, then 〈r〉 = 〈rg〉, so rg − 1 ∈ Z•
m (cf. Lemma 5.3A). Thus 1 + rg +

· · ·+ rg(s−1) = 0. Repeatedly applying the rule xgyx−g = yr
g

we have
(
yaxg

)s
= ya(1+r

g+r2g+···+r(s−1)g)xgs = xgs .

Hence if s ≡ 1 (mod t) we also have
(
yaxg

)s
= yaxg

(
yaxg

)s−1
= yaxgxg(s−1) = yaxgs .

6.8. Lemma. Let x, y be an r–sequence for a 1–complement H with invariant
∆. Suppose that σ ∈ AutH and that s is a positive integer. Then there exists
a ∈ Z•

m, b ∈ Zm, and g ∈ Z•
n with σ(y) = ya, σ(x) = ybxg and g ≡ 1 (mod t).

Moreover, if σs(x) = x, then gs = 1 and b
(
1 + a + · · · + as−1

)
= 0. Finally,

if σ has order dividing s and (s,m) = 1, then as = 1 and also (m, a − 1) and(
m, 1 + a+ · · ·+ as−1

)
are relatively prime and have product m.

Proof. The existence of a, b and g follows from the definition of an r–sequence
and the fact that 〈y〉 is a characteristic subgroup of H ; that a and g are in Z•

m and
Z•
n follows from the fact that σ preserves the orders of elements of H . After all, if

some prime p divided both g and n, then by Definition 5.1(A3) and the previous
lemma,

1 6= σ(x)n/p =
(
ybxg

)n/p
=
(
xn
)g/p

= 1 ,

a contradiction. Thus g ∈ Z•
n and, similarly, a ∈ Z•

m.
Since xy = yrx we have

yarybxg = σ(yrx) = σ(xy) = ybxgya = ybyar
g

xg ,

so ar + b = b + arg, whence rg−1 = 1. Then g ≡ 1 (mod t). An easy induction
argument using the previous lemma shows that for any positive integer j

σj(x) = yb(1+a+···+aj−1)xg
j

.

Therefore if σs(x) = x, then b
(
1 + a+ · · ·+ as−1

)
= 0 and gs = 1.

Suppose that (s,m) = 1 and σ has order dividing s. Then y = σs(y) = ya
s

, so
as = 1. If p is a prime divisor of (m, a − 1), then 1 + a+ · · ·+ as−1 ≡ s (mod p),
so by hypothesis p does not divide

(
m, 1 + a + · · · + as−1

)
. Hence (m, a − 1) and(

m, 1 + a+ · · ·+ as−1
)

are relatively prime. However since as = 1 and

as − 1 = (a− 1)
(
1 + a+ · · ·+ as−1

)
,

then m is the product of (m, a− 1) and
(
m, 1 + a+ · · ·+ as−1

)
.

6.9. Lemma. Suppose g ∈ Zn and g ≡ 1 (mod k) for some divisor k of n. If
gs = 1 for some integer s relatively prime to k, then g ≡ 1 (mod kn).
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Proof. Suppose a prime p divides k and pi divides n. It suffices to show that
pi divides g−1, i.e., that g ≡ 1 (mod pi). Since g ≡ 1 (mod p), then 1+g+· · ·+gs−1

is not divisible by p since it is congruent to s modulo p and (s, k) = 1. However pi

divides

(g − 1)
(
1 + g + · · ·+ gs−1

)
= gs − 1 ,

so pi divides g − 1, as required.

6.10. Lemma. If (m,n, T ) is the core invariant of a Frobenius complement G
which is not a Z–group, then n is even.

Proof. Since all the nontrivial groups of display (1) in Chapter 1 have a
subgroup isomorphic to V4, then G has a subgroup which is a V4–complement with
the same core as G. Hence we may suppose without loss of generality that G is
a V4–complement. If n is odd then each Sylow 2–subgroup of G has 4 elements
and hence is cyclic [Pa, Theorem 18.1(iv), p. 194]. This says G is a Z–group,
contradicting our hypothesis. Thus n must be even.

6.11. Lemma. Suppose u, v, x, y are elements of a V4–complement G with
core invariant ∆ such that x, y is an r–sequence for the core of G and 〈u, v〉 is a
Sylow 2–subgroup of G with v2 = xn//2. Further suppose a, b, c, d ∈ Zm and g,
h ∈ Zn and uyu−1 = ya, uxu−1 = ybxg, vyv−1 = yc and vxv−1 = ydxh. Then t
is odd, a2 = c2 = 1, g2 = h2 = 1, g ≡ h ≡ 1 (mod t), b(a + 1) = d(c + 1) = 0,
d(a− 1) = b(c− 1), and h ≡ −g ≡ 1 (mod 2n).

Proof. Since m is odd (Lemma 5.3(B1)) and n is even (Lemma 6.10) and G
is a V4–complement, then 〈u, v〉 is a generalized quaternion group of order 4(2n)
and v has order 2(2n). Hence u has order 4 (Lemma 4.1A). Hence conjugation by u
induces an automorphism of 〈x, y〉 of order dividing 2. Thus by Lemma 6.8, a2 = 1,
g2 = 1, g ≡ 1 (mod t), and b(a+ 1) = 0. The lemma (applied to conjugation by v)
also implies that h ≡ 1 (mod t). Since v2 = xn//2,

yc
2

= v2yv−2 = xn//2yx−n//2 = yr
n//2

,

so c2 = rn//2. Also xn//2uv = v2v−1u = vu, so

yac = vuy(vu)−1 = ycar
n//2

,

so ac = acrn//2. But then rn//2 = 1, so c2 = 1 and t divides n//2. Thus t is odd and
so conjugation by v has order dividing 2 on 〈x, y〉. Hence h2 = 1 and d(c+ 1) = 0.
Next since uv = v−2vu and v2 = xn//2 commutes with x and y, we have

yda+bxhg = uvxv−1u−1 = vuxu−1v−1 = ybc+dxhg ,

so da+ b = bc+ d, i.e., d(a− 1) = b(c− 1). Since v2 = xn//2, then by Lemma 6.7,

xn//2 = vxn//2v−1 =
(
ydxh

)n//2
= xh(n//2) .

Thus n//2 ≡ h(n//2) (mod n), so h ≡ 1 (mod 2n). Similarly,

xg(n//2) = uxn//2u−1 = uv2u−1 = v−2 = x−n//2 ,

so g ≡ −1 (mod 2n).
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6.12. Remark and Notation. Suppose that u, v, x, y is an r–sequence for
a V4–complement G with core invariant ∆. Then t is odd by Lemma 6.11. Let

θ = θu,v,x,y : 〈u, v〉 −→ Z•
m × Z•

n//t

assign to each w ∈ 〈u, v〉 the pair (a, g + n//tZ) where a ∈ Zm and g ∈ Zn satisfy
wyw−1 = ya and wxw−1 = xg. Note that θ is a homomorphism, v2 = xn//2 ∈ ker θ,
and the image of θ is exactly the reduced invariant of G corresponding to u, v, x,
y. In particular θ and the reduced invariant depend only on the group 〈u, v〉 and
not on the sequence u, v.

We are now ready to prove about half of Theorem 6.5.

6.13. Lemma. If there is a V4–complement with core invariant ∆, then n is
even and t is odd. Every V4–complement with core invariant ∆ has a unique reduced
invariant and it is in S. Moreover, two V4–complements with core invariant ∆ are
isomorphic if and only if they have the same reduced invariant.

Note that to say a V4–complement with core invariant ∆ has a reduced invariant
is to say it has an r–sequence; that the reduced invariant is unique says that all the
r–sequences give rise to the same reduced invariant.

Proof. Suppose G is a V4–complement with core invariant ∆. Then n is even
by Lemma 6.10. There exists an r–sequence x, y for the core of G (Theorem 5.2B).
There is a Sylow 2–subgroup of G containing xn//2; it is a generalized quaternion
group 〈u, v〉 of order (2n)4 with u2 = v2n , uvu−1 = v−1, and u4 = 1. If 2n = 2,
then xn//2 = v2 (G has a unique element of order 2 [Pa, Theorem 18.1(iii), p. 194]).
Suppose 2n > 2. Then

〈xn//2〉 = 〈x, y〉 ∩ 〈u, v〉 ⊳ 〈u, v〉 ,
so by Lemma 4.1C (applied with 2s = 2n), 〈xn//2〉 = 〈v2〉, so for some odd integer
k, xn//2 = (vk)2. Replacing v by vk we may assume without loss of generality that
v is chosen with v2 = xn//2. Since 〈x, y〉 and 〈y〉 are normal subgroups of G, there
exist a, b, c, d ∈ Zm and g, h ∈ Zn with

uyu−1 = ya , uxu−1 = ybxg , vyv−1 = yc , vxv−1 = ydxh .

Then by Lemma 6.11, t is odd and a2 = c2 = 1, g2 = h2 = 1, g ≡ h ≡ 1 (mod t),
b(a+1) = d(c+1) = 0, d(a− 1) = b(c− 1) and h ≡ −g ≡ 1 (mod 2n). Conjugation
by u and by v each induce on 〈x, y〉 automorphisms of order dividing 2 (since t is
odd, v2 = xn//2 is a power of xt, which commutes with y since rt = 1). Hence by
Lemma 6.8

m = (m, a+ 1)(m, a− 1) = (m, c+ 1)(m, c− 1)

where the two factors of m in both cases are relatively prime. Hence there exist a′,
c′ ∈ Z•

m with

a′(a− 1) ≡ 1 (mod(m, a+ 1)) and c′(c− 1) ≡ 1 (mod(m, c+ 1)) .

Since d(a− 1) = b(c− 1) we have

a′b ≡ c′d (mod(m, c+ 1, a+ 1)) .

Thus there exists an integer j with

j ≡ −a′b (mod (m, a+ 1)) and j ≡ −c′d (mod (m, c+ 1)) ,
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whence

(a− 1)j + b ≡ 0 (mod (m, a+ 1))

and

(c− 1)j + d ≡ 0 (mod (m, c+ 1)) .

But then

0 ≡ (a− 1)j + b ≡ (c− 1)j + d (mod m)

since the equations b(a+ 1) = d(c+ 1) = 0 imply

b ≡ 0 (mod (m, a− 1)) and d ≡ 0 (mod (m, c− 1)) .

The sequence u, v, yjx, y is an r–sequence for G with invariant (a, g, c, h) be-
cause (yjx)n = 1 and (yjx)y(yjx)−1 = yr; (yjx)n//2 = xn//2 = v2 (Lemma 6.7);

uyjxu−1 = yja+bxg =
(
yjx
)g

since ja+ b ≡ j (mod m); and vyjxv−1 = yjc+dxh =(
yjx
)h

since jc + d ≡ j (mod m). The corresponding reduced invariant is
〈(a, g + (n//t)Z), (c, h + (n//t)Z)〉, which is in S by the identities proved earlier.
Thus we have shown that any V4–complement with core invariant ∆ has an r–
sequence, and its corresponding reduced invariant is in S.

We need some notation. Suppose G and G1 are V4–complements with core
invariant ∆. Suppose u, v, x, y and u1, v1, x1, y1 are r–sequences with invariants
(a, g, c, h) and (a1, g1, c1, h1) and corresponding reduced invariants S and S1 for G
and G1, respectively.

We now prove G has a unique reduced invariant. For this we use the above
notation, taking G = G1. There exists z ∈ G with z〈u1, v1〉z−1 = 〈u, v〉. We have
integers ω, δ, µ, ρ, σ, τ with x1 = yωxδ, y1 = yµ, zyz−1 = yρ, and zxz−1 = yσxτ .

By hypothesis, yr1 = x1y1x
−1
1 = yr

δ

1 , so r = rδ . Thus δ ≡ 1 (mod t). Also τ ≡ 1
(mod t) by Lemma 6.8. Hence by Lemma 6.7

zx1z
−1 = yρω

(
yσxτ

)δ
= yρω+σxτδ .

Note that zu1z
−1, zv1z

−1, zx1z
−1, zy1z

−1 must be an r–sequence for G with the
same invariant as u1, v1, x1, y1. Next calculate that

(
zx1z

−1
)n//2

=
(
yρω+σxτδ

)n//2
= xτδ(n//2) =

(
vδτ
)2
.

But τ and δ are odd, since they are relatively prime to n. Thus

〈zu1z
−1, zv1z

−1〉 = 〈u, v〉 = 〈u, vδτ 〉 .
Hence u, vδτ , zx1z

−1, zy1z
−1 is also an r–sequence for G with possibly a different

invariant than u1, v1, x1, y1 but with the same reduced invariant S1 (cf. Re-
mark 6.12). We now compute the invariant for this r–sequence. First note that

uzy1z
−1u−1 = yµρa =

(
zy1z

−1
)a

; similarly

vδτzy1z
−1v−δτ =

(
zy1z

−1
)cδτ

=
(
zy1z

−1
)c
.

(Note that c2 = 1 and δτ is odd, so cδτ = c.) Next, modulo the normal subgroup
〈y〉 we have

uzx1z
−1u−1 ≡ xδτg ≡

(
zx1z

−1
)g

and similarly

vδτzx1z
−1v−δτ ≡ vzx1z

−1v−1 ≡
(
zx1z

−1
)h
.
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Since vδτ and u are in the normalizer of 〈zx1z
−1〉 we therefore have the equations

uzx1z
−1u−1 =

(
zx1z

−1
)g

and vδτ
(
zx1z

−1
)
v−δτ =

(
zx1z

−1
)h
.

Thus u, vδτ , zx1z
−1, zy1z

−1 has the same invariant (a, g, c, h) as u, v, x, y,
and hence the same reduced invariant S. Thus S = S1, as claimed.

Let us now assume that S = S1. We complete the proof of the lemma by
showing that G ∼= G1. (We use the notation introduced in the paragraph before the
last one.) It suffices to show G and G1 have r–sequences with the same invariant,
since then they have equivalent presentations and hence are isomorphic. First
suppose 2n > 2, so 1 + 2nZ 6= −1 + 2nZ and |S| is 2 or 4. Let θ = θu,v,x,y and
θ1 = θu1,v1,x1,y1 (cf. Remark 6.12). If |S| = 2, then by Lemma 6.11 θ(u) must be
the unique nontrivial element of S and θ(v) must be trivial; the same is true for
θ1(u1) and θ1(v1), so θ(u) = θ1(u1) and θ(v) = θ1(v1). On the other hand if |S| = 4,
then θ(v) = θ1(v1) since both must be the unique nontrivial element of S ∩ kerψ
(cf. Lemma 6.11 and Remark 6.12; ψ is defined in Notation 6.3). Also θ(u) and
θ1(u1) are not in kerψ so either θ(u) = θ1(u1) or θ(u) = θ1(u1v1); we may assume
without loss of generality that θ(u) = θ1(u1) (if necessary replace u1 by u1v1 which
changes the invariant but not the reduced invariant of the r–sequence u1, v1, x1,
y1). Hence whatever the value of |S|, we have a = a1, c = c1, g ≡ g1 (mod n//t)
and h ≡ h1 (mod n//t). But by Lemma 6.9 (applied with k = t), g ≡ g1 ≡ h ≡ h1

(mod tn). Thus g = g1 and h = h1, so G and G1 have r–sequences with the same
invariant, as was to be proved.

Next suppose 2n = 2. If w and z are any pair of generators of 〈u, v〉, then w, z,
x, y is an r–sequence for G with reduced invariant S. With such a modification we
may assume without loss of generality that u and v are chosen with θ(u) = θ1(u1)
and θ(v) = θ1(v1). Then a = a1, g ≡ g1 (mod n//t), c = c1, and h ≡ h1 (mod n//t).
Again applying Lemma 6.9 we have (a, g, c, h) = (a1, g1, c1, h1), which completes
the proof that G ∼= G1.

In the next theorem we complete the proof of Theorem 6.5 by showing that
when n is even and t odd, every element of S is the reduced invariant of some
V4–complement with core invariant ∆. As with earlier constructions of Frobenius
complements we will begin by constructing the truncated group ring. The reader
might wish to read the last paragraph of the next theorem before reading the rest.

6.14. Theorem. Suppose n is even and t is odd. Let S ∈ S. Then there exists
(a, g, c, h) ∈ Z•

m × Z•
n × Z•

m × Z•
n with

S = 〈(a, g + n//tZ), (c, h+ n//tZ)〉 ;
g ≡ h ≡ 1 (mod tn); h ≡ −g ≡ 1 (mod 2n); and (c, h) = (1, 1) if |S| < 4.

Let A =
(
Z[ζmn/t], σ, t, ζn/t

)
be as in Theorem 5.2C, and set x = σ̂ and y =

ζm. Then there exists σ0 ∈ AutA with σ0(y) = yc and σ0(x) = xh. Further,
σ0

(
xn//2

)
= xn//2, |σ0| ≤ 2, and xn//2z = σ2

0(z)xn//2 for all z ∈ A. Let A1 =(
A, σ0, 2, x

n//2
)

and v = σ̂0. Then there exists σ1 ∈ AutA1 with |σ1| = 2, σ1(y) =

ya, σ1(x) = xg, and σ1(v) = v−1. Let B = (A1, σ1, 2,−1) and u = σ̂1.
The multiplicative monoid G := 〈x, y, u, v〉 is a V4–complement with core in-

variant ∆; u, v, x, y is an r–sequence for G with invariant (a, g, c, h) and reduced
invariant S; and the inclusion G −→ B induces an isomorphism Z〈G〉 −→ B. Z〈G〉
is free of rank φ(|G|) = 4φ(mn) as a Z–module.
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The conditions specified on the automorphisms σ0 and σ1 should be checked
to imply that the rings A1 and B above make sense (cf. Theorem 2.5 and Re-
mark 2.6B).

Proof. The existence of (a, g, c, h) follows from the Chinese Remainder Theo-
rem (note tn and n//t are relatively prime with product n) and the definition of S.
One easily checks that xh, yc is an r–sequence for the 1–complement H := 〈x, y〉
(recall that h ≡ 1 (mod t), so rh = r). Hence there exists an automorphism
of H mapping x to xh and y to yc; this map induces an automorphism σ̃0 of
Z〈H〉 taking x to xh and y to yc and hence an automorphism σ0 of A taking x
to xh and y to yc (cf. Theorem 5.2C). Note σ0(x

n//2) = xh(n//2) = xn//2 since
h ≡ 1 (mod 2n), and |σ0| ≤ 2 since h2 = 1 and c2 = 1 (cf. the definition of
S and the fact that h ≡ 1 (mod tn)). Also since t is odd, xn//2 is in the center
of 〈x, y〉, so xn//2z = σ2

0(z)x
n//2 for all z ∈ A. Hence it makes sense to define

A1 =
(
A, σ0, 2, x

n//2
)

and to let v = σ̂0. Let H1 = 〈x, y, v〉. By the Cyclic Exten-
sion Lemma 2.8 H1 is a Frobenius complement and the inclusion H1 −→ A1 induces
an isomorphism Z〈H1〉 −→ A1. (The isomorphism in question is actually the com-

position of the isomorphism Z〈H1〉 −→
(
Z〈H〉, σ̃0, 2, x

n//2
)

from Lemma 2.8 and
an isomorphism

(
Z〈H〉, σ̃0, 2, x

n//2
)
−→

(
A, σ0, 2, x

n//2
)

induced by the isomorphism Z〈H〉 −→ A of Theorem 5.2C.) Since A is free of rank
φ(mn) as a Z–module, A1 is free of rank 2φ(mn). H1 has a presentation with
generators x, y, v satisfying the relations

xn = ym = 1, xy = yrx, v2 = xn//2, vx = xhv and vy = ycv .

(The definition of A1 is used here; for example vxv−1 = σ̂0xσ̂
−1
0 = σ0(x)σ̂0σ̂

−1
0 =

xh.) Now H1 is also generated by xg, ya, v−1 and these generators can also be
checked to satisfy the above relations: (xg)n = (ya)m = 1; xgyax−g = yar (since
g ≡ 1 (mod t)); (v−1)2 = x−n//2 = (xg)n//2 (since g ≡ −1 (mod 2n));

v−1ya(v−1)−1 = v−2vyav−1v2 = x−n//2yacxn//2 = (ya)c ;

and, similarly, v−1xg(v−1)−1 = (xg)h. Hence there exists an automorphism of H1

taking x, y and v to xg, ya and v−1, respectively; this induces an automorphism
σ̃1 of Z〈H1〉 and hence induces an automorphism σ1 of A1 taking x, y and v to
xg, ya and v−1 respectively (arguing as above in the construction of σ0). Since
a2 = 1, g2 = 1 and σ1(v) 6= v, and A1 is generated as a ring by x, y and v,
therefore |σ1| = 2. Hence we can form B := (A1, σ1, 2,−1) and set u = σ̂1 and let
G = 〈x, y, u, v〉. 〈u, v〉 is a Sylow 2-subgroup of G and it is a generalized quaternion
group, so it has a unique subgroup of order 2. Then by the Cyclic Extension
Lemma 2.8 G is a Frobenius complement and the inclusion G −→ B induces an
isomorphism Z〈G〉 −→ B (as before, Lemma 2.8 gives an isomorphism Z〈G〉 −→(
Z〈H1〉, σ̃1, 2,−1

)
and the isomorphism Z〈H1〉 −→ A1 induces an isomorphism(

Z〈H1〉, σ̃1, 2,−1
)
−→ B). Now since A1 is free of rank 2φ(mn) as a Z–module,

then B is free of rank 4φ(mn) as a Z–module. By construction H is a normal Z–
subgroup ofG and G/H = 〈uH, vH〉 ∼= V4 since u2 and v2 are inH and [G : H ] = 4.
Thus H is the core of G, and G has core index 4 and core invariant ∆. Moreover u,
v, x, y is by construction an r–sequence for G with invariant (a, g, c, h) and hence
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with reduced invariant 〈(a, g + n//tZ), (c, h+ n//tZ)〉 = S. Finally, since n is even
and [G : H ] = 4, then the rank of Z〈G〉 is 4φ(mn) = φ(4mn) = φ(|G|).

The last theorem in this chapter gives some basic properties of the rational
truncated group ring of a V4–complement. We will use the notation of the previous
theorem, so that in particular G is a V4–complement with core invariant ∆ and
reduced invariant S, and Z〈G〉 ∼= B.

6.15. Theorem. Q〈G〉 is a simple algebra with dimension φ(|G|) = 4φ(mn)
over Q and with degree 4t if |S| = 4 and 2t otherwise. The inclusion G −→ B
induces an isomorphism Q〈G〉 −→ QB, and the center of QB is Kσ0,σ1 if |S| = 4
and K[v]σ1 if |S| 6= 4, where K denotes the center of QA.

The proof of Theorem 6.15 will show that if |S| 6= 4, then K[v] is a quadratic
field extension of K and the restriction of σ1 to it has order 2. If |S| = 1, then
K[v]σ1 = K and the proof will show that K[u, v] is a quaternion algebra over K
and QB ∼= QA⊗K K[u, v].

Proof. [Q〈G〉 : Q] = 4φ(mn) since Z〈G〉 is free of rank 4φ(mn) as a Z–
module. We may assume by Theorem 6.5 that G is the group of Theorem 6.14.
First suppose |S| = 1. Then 2n = 2 (otherwise S must have nontrivial image
in Z2n). Thus K[u, v] is a quaternion algebra over K (note u2 = v2 = −1 and
uvu−1 = v−1) and hence is simple with center K and dimension 4 over K. By
Theorem 5.2D, QA is central simple with dimension t2 over K. Further, since
|S| = 1, then u and v commute with x and y, and so every element of K[u, v]
commutes with every element of QA. Also QB is clearly generated as a Q–algebra
by x, y, u and v, and

[QB : K] = 4[QA : K] = [K[u, v] : K][QA : K] .

Hence Q〈G〉 ∼= QB ∼= K[u, v]⊗K QA by [P, Proposition c, p. 165]. Thus Q〈G〉 is a
central simple K–algebra of degree 2t [P, Proposition b(i), p. 226]. Since 2n = 2,
K[v] is clearly a quadratic field extension of K with fixed field K under σ1 (recall
that σ1(v) = −v).

Next suppose |S| = 2. Then (c, h) = (1, 1), so v commutes with x and y.
L := Q[ζmn/t] has no root of unity of order 2(2n) = |v|, so v generates a quadratic

field extension of L and hence of K (note v2 = xn//2 ∈ K since t is odd). By [P,
Proposition c, p. 165], QA1

∼= QA ⊗K K[v], so QA1 is simple with center K[v]
[P, Proposition b(ii), p. 226]. The automorphism σ1 of QA1 induces on K[v] an
automorphism of order 2 (recall that σ1(v) = v−1). Hence QB is simple with center
K[v]σ1 by the theorem of Albert (Theorem 2.5). The degree is therefore 2t.

Finally suppose |S| = 4. Then the surjection θu,v,x,y : 〈u, v〉 −→ S induces
an isomorphism θ : 〈u, v〉/〈v2〉 −→ S (cf. Remark 6.12). Since v2 is in the center
of 〈x, y〉, conjugation induces a homomorphism δ : 〈u, v〉/〈v2〉 −→ Aut〈xt, y〉.
Suppose w ∈ 〈u, v〉 commutes with xt and y, i.e., that w〈v2〉 ∈ ker δ. Write
wxw−1 = xf for f ∈ Z•

n (recall that u, v, x, y is an r–sequence ). Then wyw−1 = y
and xt = wxtw−1 = xft, so f ≡ 1 (mod n/t). Hence θ(w〈v2〉) = (1, f + n//tZ) =
(1, 1), so w〈v2〉 is trivial. Therefore δ is injective. Hence the image of δ, which
is exactly the group of automorphisms of 〈y, xt〉 = 〈ζm, ζn/t〉 = 〈ζmn/t〉 induced
by σ0 and σ1, has 4 elements. Thus the group 〈σ0|L, σ1|L〉 of automorphisms of
L := Q[ζmn/t] has 4 elements, so

[
L : Lσ0,σ1

]
= 4. Since [L : K] = t is odd, therefore

[L : Lσ0,σ1 ∩K] = 4t. Thus σ0 induces an automorphism of order 2 on K and σ1
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induces an automorphism of order 2 on Kσ0 . Therefore QA1 is simple with center
Kσ0 and QB is simple with center Kσ0,σ1 (cf. Theorem 5.2D and Theorem 2.5).
The degree of QB over its center is therefore 4t.



CHAPTER 7

Frobenius complements with core index 12

The isomorphism classes of A4–complements and their truncated group rings
are computed here. We begin by introducing the numerical objects which will
be shown to be bijective with isomorphism classes of A4–complements with core
invariant ∆. We continue to use the notation of Notation 6.2.

7.1. Notation. Let S denote the set of all cyclic subgroups S of Z•
m× Z•

n//6t

such that T ∗ × 〈1〉 is a subgroup of S of index either (3, t) or (3, n), where T ∗

denotes the Sylow 3–subgroup of T .

In some cases S can be described much more simply; see Remark 7.4 below.
Notice that the meaning of the symbol S here is different from that in Chapter 6.

7.2. Definition. Let G be an A4–complement with core invariant ∆. Suppose
that (d, h) ∈ Z•

m × Z•
n and that u, v, x, y, z is a sequence of elements of G such

that H := 〈u, v, x, y〉 is a V4–complement with the same core as G; u, v, x, y is
an r–sequence for H with trivial invariant; z3 = xn//3, zyz−1 = yd, zxz−1 = xh,
zvz−1 = u, and zuz−1 = vu. We then call u, v, x, y, z an r–sequence for G with
invariant (d, h) and reduced invariant 〈(d, h + n//6tZ)〉 (so a reduced invariant of
G is a subgroup of Z•

m × Z•
n//6t).

The next theorem says (among other things) that an A4–complement with
core invariant ∆ has an r–sequence and hence a reduced invariant, and that all
r–sequences give rise to the same reduced invariant. Note that the notions of
r–sequences for 1–complements, V4–complements, and A4–complements are three
distinct (but related) concepts.

7.3. Theorem. If there exists an A4–complement with core invariant ∆, then
n ≡ 2 (mod 4). If n ≡ 2 (mod 4), then every A4–complement with core invariant
∆ has a unique reduced invariant and assigning to each such Frobenius complement
its reduced invariant induces a bijection from the set of isomorphism classes of
A4–complements with core invariant ∆ to the set S.

The reader may find it useful to keep in mind that

n ≡ 2 (mod 4)⇐⇒ (n, 4) = 2⇐⇒ 2n = 2⇐⇒ n//2 = n/2 .

Before turning to the proof of Theorem 7.3 we give an analysis of the set S in
the next remark, and then use this remark and Theorem 7.3 to count the number of
isomorphism classes of A4–complements with core invariant ∆. The computation
will show that S can be empty even if n ≡ 2 (mod 4), so this condition is not
sufficient for the existence of an A4–complement with with core invariant ∆.

7.4. Remark. If 3 does not divide n, then S contains only the trivial group. If
3 divides n but not t, then S consists of all subgroups of Z•

m×Z•
n//6t of order dividing

31
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3. Finally, if 3 divides t, then S consists of all cyclic subgroups of Z•
m×Z•

n//6t having

〈(rn//3, 1)〉 as a subgroup of index 3. In this case S is naturally bijective with the
set of cosets of the factor group

(
Z•
m×Z•

n//6t

)
/〈
(
rt/3, 1

)
〉 of the form (a, g)〈

(
rt/3, 1

)
〉

where a3 = rn//3 and g3 = 1. (Assign to any such coset the subgroup of Z•
m×Z•

n//6t

generated by any of its three members.)

Proof. The assertions above are easily verified except for the last one. Sup-
pose 3 divides t. Any member of S is generated by an element (a, g) of Z•

m×Z•
n//6t

such that g3 = 1 and a3 = rn//3 (if (a, g) is any generator, then (a, g)3 generates
〈
(
rn//3, 1

)
〉, so for some s ∈ Z not divisible by 3 we have (a, g)3s = (rn//3, 1);

now just replace (a, g) by (as, gs)). For any s ∈ Z the cyclic group generated
by (a, g)(rt/3, 1)s is independent of the value of s since

(
rt/3, 1

)
∈ 〈
(
rn//3, 1

)
〉 ⊂

〈(a, g)〉. If 〈(b, h)〉 = 〈(a, g)〉 and h3 = 1 and b3 = rn//3, then
(
(a, g)(b, h)−1

)3
= 1,

so for some integer s, (a, g) = (b, h)(rt/3, 1)s (note that 〈
(
rt/3, 1

)
〉 is the unique

subgroup of 〈(a, g)〉 of order 3).

7.5. Corollary. Let s denote the number of prime factors p of mn//t with
p ≡ 1 (mod 3). The number of isomorphism classes of A4–complements with core
invariant ∆ is 1 if n ≡ 2 (mod 4) and 3 does not divide n; (3s + 1)/2 if n ≡ 2
(mod 4) and 3 divides n but not t; 3s−1 if n ≡ 2 (mod 4), 3 divides t, and

if p | m (p prime) and 3p−1 =
∣∣rn//3 + pZ

∣∣, then 3p−1 = 1 ;(4)

and 0 otherwise ( i.e., if either n 6≡ 2 (mod 4) or else 3 divides t and for some
prime divisor p of m, 1 < 3p−1 =

∣∣rn//3 + pZ
∣∣).

Note that the condition 1 < 3p−1 =
∣∣rn//3 + pZ

∣∣ simply says that 〈r + pZ〉
contains a nontrivial Sylow 3-subgroup of Z•

p.

Proof. We may assume without loss of generality that n ≡ 2 (mod 4) and that
3 divides n, since otherwise the Corollary is immediate from Theorem 7.3. For any
finite abelian group A and power 3i let A3i denote the set of elements of A of order
dividing 3i. By the Chinese Remainder Theorem, from the prime factorization

mn//6t =
∏

p

pi(p)

(product over all prime factors p of mn//6t) we obtain a ring isomorphism

Zm × Zn//6t −→
∏

p

Zpi(p)

and hence a group isomorphism

Z•
m × Z•

n//6t −→
∏

p

Z•
pi(p) .

Each factor Z•
pi(p) is cyclic [NZ, Theorem 2.34, p. 79] and hence is an internal

direct product of a subgroup isomorphic to Z•
p and a p–group (recall that φ(pi(p)) =

pi(p)−1(p− 1)). Thus for each integer i ≥ 0 we have a natural isomorphism
(
Z•
m × Z•

n//6t

)
3i
∼=
∏

p

(
Z•
p

)
3i .(5)
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In particular
(
Z•
m × Z•

n//6t

)
3
∼=
∏

p

(
Z•
p

)
3
∼= (Z3)

s

since Z•
p has an element of order 3 if and only if p ≡ 1 (mod 3) (recall that it is

cyclic). Thus Z•
m × Z•

n//6t has 3s − 1 elements of order 3 and hence

1 +
((

3s − 1
)
/2
)

=
(
3s + 1

)
/2

subgroups of order dividing 3 (each subgroup of order 3 contains and is generated
by two elements of order 3). Thus if 3 divides n but not t, the set S has

(
3s+ 1

)
/2

elements (cf. Remark 7.4). Let us now finish by considering the case that 3 divides t.
In this case Z•

m×Z•
n//6t

( ∼=
∏
p Z•

pi(p)

)
has an element of order 3 (namely (rt/3, 1)),

so some Z•
p has an element of order 3. Thus s > 0. It suffices to show that if |S| 6= 0,

then the condition (4) holds, and that if (4) holds, then |S| = 3s−1. So first suppose
|S| 6= 0. Then by Remark 7.4 there exists a ∈ Z•

m with a3 = rn//3. Suppose p is a
prime divisor ofm with 3p−1 6= 1 (i.e. p ≡ 1 (mod 3)). We need to show 3p−1, which

is the order of the Sylow 3–subgroup of Z•
p , does not equal |rn//3 +pZ|. Now this is

obvious if rn//3 + pZ is trivial, so suppose otherwise. Then it has order a positive
power of 3; since a3 = rn//3, then 3p−1 ≥ |a + pZ| = 3|rn//3 + pZ| > |rn//3 + pZ|,
proving (4). Now suppose (4) is valid; we show |S| = 3s−1. Let p be any prime
divisor of mn//6t. If 3p−1 = 1, then only one element of Z•

p has cube equal to

rn//3 + pZ = 1 + pZ; if 3p−1 > 1 and p divides n//6t, then exactly 3 elements of Z•
p

have cube equal to 1; and if 3p−1 > 1 and p | m, then Z•
p has exactly three elements

b with b3 = rn//3 + pZ (the hypothesis (4) says rn//3 + pZ does not have maximal
3–power order in the cyclic group Z•

p). From the isomorphism (5) we now deduce

that there are exactly 3s elements of Z•
m × Z•

n//6t with cube (rn//3, 1), and hence

there are exactly 3s−1 cyclic subgroups of Z•
m × Z•

n//6t such that 〈
(
rn//3, 1

)
〉 is a

subgroup of index 3 (each such subgroup is generated by three elements with cube
(rn//3, 1)). Hence in this case |S| = 3s−1.

We begin the proof of Theorem 7.3 with a lemma which is the key to the case
when 3 does not divide n.

7.6. Lemma. Suppose γ and δ are elements of a Frobenius complement of or-
ders p and s, respectively, where p is a prime not dividing s. If γδγ−1 ∈ 〈δ〉, then
γδ = δγ.

Proof. There is an integer k with γδγ−1 = δk. Since δ = γpδγ−p = δk
p

,
then kp ≡ 1 (mod s). Let q be any prime factor of s. Then 〈γ, δs/q〉 has order pq
and hence is cyclic [Pa, Theorem 18.1(ii), p. 194]. Thus δs/q = γδs/qγ−1 = δks/q.
Therefore

s/q ≡ ks/q (mod s), so 1 ≡ k (mod q) .

Hence k+sZ is in the kernel of the natural surjective homomorphism ρ : Z•
s −→ Z•

s0 .
Therefore the order of k + sZ in Z•

s divides

| ker ρ| = φ(s)/φ(s0) ,

which is a divisor of s (c.f. equation (24) in Chapter 15). Thus k + sZ has order
dividing (s, p) = 1. Hence γδ = δkγ = δγ.
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7.7. Lemma. Suppose there exists an A4–complement G with core invariant ∆.
Then n ≡ 2 (mod 4) and G has an r–sequence.

Proof. By hypothesis there is a surjective homomorphism Υ : G −→ A4

whose kernel is the core of G. Then Υ−1(V4) is a V4–complement with the same
core as G. By Theorem 6.5 it has an r–sequence u, v, x, y. Note vu, v, x, y is also
an r–sequence for Υ−1(V4). Also n ≡ 2 (mod 4) (apply Theorem 6.5 to Υ−1(V4)).
Hence t is odd and 3 does not divide m (Lemma 5.3(A and B1)). Thus 〈xn//3〉 is
a Sylow 3–subgroup of Υ−1(V4); hence it is a subgroup of index 3 of a (necessarily
cyclic) Sylow 3–subgroup 〈z〉 of G. Since 〈z3〉 = 〈xn//3〉 we may (and do) assume
that z is chosen with z3 = xn//3. Υ(z) has order 3 and hence is a 3–cycle in A4,
and conjugation by Υ(z) must cyclically permute the three nontrivial elements of
V4, namely Υ(u), Υ(v) and Υ(vu). Possibly replacing u by vu we may assume
Υ(zvz−1) = Υ(u) and Υ(zuz−1) = Υ(vu). Since 〈x, y〉 is the kernel of Υ we can
therefore write zvz−1 = ycxeu and zuz−1 = ydxfvu for some c, d ∈ Zm and e,
f ∈ Zn. By Lemma 6.8 we can write zyz−1 = yi and zxz−1 = yjxg where i ∈ Z•

m,
j ∈ Zm, g ∈ Z•

n, and g ≡ 1 (mod t).
We next prove that u and v commute with x and y, so the invariant and reduced

invariant of the r–sequence u, v, x, y of the V4–complement Υ−1(V4) are trivial.
We can write uyu−1 = ya and vyv−1 = yb for a, b ∈ Z•

m. Conjugating the first
equation by z yields the equation

yai = ydxfvuyiu−1v−1x−fy−d = yiabr
f

.

Hence brf = 1. Now b has order dividing 2 and rf odd order, so b = 1 and rf = 1,
so f ≡ 0 (mod t). Similarly, conjugating the second equation by z shows that
b = are, so re = 1 (whence e ≡ 0 (mod t)) and a = 1. Now write uxu−1 = xh and
vxv−1 = xk where h, k ∈ Z•

n and h ≡ k ≡ 1 (mod t) (Lemma 6.8). Conjugating
the equation ux = xhu by z yields that

yd+jxf+ghkvu = ydxfvuyjxg =
(
yjxg

)h
ydxfvu = yj+drxgh+fvu

(using Lemma 6.7 and the facts that rf = 1 and g ≡ h ≡ 1 (mod t)). Hence k = 1
and d = dr. But then d = 0 since (r − 1,m) = 1. Similarly conjugating vx = xkv
by z shows that c = cr and gk = gh (using the fact that k ≡ 1 (mod t) and re = 1),
so c = 0 and h = k = 1. This completes the argument that u and v commute with
x and y.

Let us summarize our partially simplified relations between u, v, x, y, z: u, v,
x, y is an r–sequence for Υ−1(V4) with trivial invariant, z3 = xn//3, zuz−1 = xfvu,
zvz−1 = xeu, zxz−1 = yjxg, and zyz−1 = yi. We next argue that u, v, x, y, z could

have been chosen so that j = 0. Note that yi
3

= z3yz−3 = xn//3yx−n//3 = yr
n//3

,
so i3 = rn//3. Let I = 1 + i+ i2 + · · ·+ i3(3n)−1, so

(i− 1)I = i3(3n) − 1 =
(
rn//3

)(3n) − 1 = rn − 1 = 0 .

By Lemma 6.8 (applied with s = 3 to conjugation by z on 〈x, y〉) we have that
g3 = 1 and (1 + i + i2)j ≡ 0 (mod m), and (applied with s = 3(3n), so that

zs =
(
xn//3

)3n
= 1 trivially commutes with x and y) we have that m is the product

of the relatively prime factors (m, i− 1) and (m, I). Since 1 + i+ i2 divides I, then
(m, 1 + i + i2) divides (m, I) and hence j ≡ 0 (mod m/(m, I)), i.e., j ≡ 0 (mod
(m, i− 1)). Now (i− 1)/(m, i− 1) is relatively prime to m/(m, i− 1) = (m, I), so
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there exists i∗ ∈ Z with

i∗(i− 1)/(m, i− 1) ≡ −j/(m, i− 1) (mod(m, I))

and hence

i∗(i− 1) ≡ −j (modm) .

Let
∨
x = yi

∗

x. Routine computations show u, v,
∨
x, y is an r–sequence for Υ−1(V4)

with trivial invariant. (E.g. use Lemma 6.7 to verify that
∨
xn//2= xn//2 = v2.)

Further,

∨
xn//3=

(
yi

∗

x
)n//3

= yi
∗(1+r+r2+···+r(n//3)−1)xn//3 = xn//3 = z3

because (r − 1,m) = 1 and

(r − 1)i∗
(
1 + r + · · ·+ r(n//3)−1

)
≡

(
rn//3 − 1

)
i∗ ≡

(
i3 − 1

)
i∗

≡ i∗(i− 1)
(
1 + i+ i2

)
≡ −j

(
1 + i+ i2

)
≡ 0 (modm) .

Next

z
∨
x z−1 = zyi

∗

xz−1 = yii
∗

yjxg = yi
∗

xg =
∨
xg

because

(ii∗ + j)− i∗ = i∗(i− 1) + j = −j + j ≡ 0 (modm) .

Further since e ≡ f ≡ 0 (mod t) as shown earlier, then zuz−1 =
∨
xf vu and

zvz−1 =
∨
xe u by Lemma 6.7. Thus we may without loss of generality assume j = 0

(replace x by
∨
x); none of the relations reviewed at the beginning of this paragraph

are changed.
Conjugating both sides of the equation u2 = xn/2 by z we obtain

xn/2 = xfvuxfvu = x2f (vu)2 = x2fxn/2

so 2f = 0. Similarly since v2 = xn//2, then

xg(n//2) = xeuxeu = x2exn/2 ,

so g(n//2) ≡ 2e + (n/2) (mod n). Since n ≡ 2 (mod 4), therefore n//2 = n/2,

and so 2e = 0. Hence e ≡ f ≡ 0 (mod n/2), so xe, xf ∈ 〈u2〉. Let
∨
v = xfv and

∨
u = xe+fu. Then

∨
v2 = xn//2;

∨
v and

∨
u commute with x and y;

z
∨
u z−1 = xe+fxfvu =

∨
v
∨
u; and z

∨
v z−1 = xfxeu =

∨
u .

Then
∨
u,

∨
v, x, y, z is an r–sequence for G.

7.8. Lemma. Suppose an A4–complement with core invariant ∆ has an r–
sequence with invariant (a, g). Then g3 = 1, a3 = rn//3, g ≡ 1 (mod (6t)n),
and the reduced invariant 〈(a, g + n//6tZ)〉 is in S.

Proof. Let u, v, x, y, z be an r–sequence with invariant (a, g). Since

ya
3

= z3yz−3 = xn//3yx−n//3 = yr
n//3

then a3 = rn//3. Lemma 6.8 (applied to conjugation by z, with s = 3) implies g3 = 1
and g ≡ 1 (mod t). Since z commutes with z3 = xn//3, then xn//3 = zxn//3z−1 =
xg(n//3), so g ≡ 1 (mod 3n) (recall that n = (n//3)(3n)). Since n ≡ 2 (mod 4) (by
the previous lemma) and g3 = 1, then g ≡ 1 (mod 2n). By Lemma 6.9 (applied
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with s = 3 and k = t//3), g ≡ 1 (mod (t//3)n). Thus g ≡ 1 (mod (6t)n) (every
prime dividing 6t divides 2 or 3 or t//3). Now 〈rn//3〉 is the Sylow 3–subgroup of
T and 〈(a, g + n//6tZ)3〉 = 〈(rn//3, 1)〉, so T ∗ × 〈1〉 has index 1 or 3 in the reduced
invariant. If 3|t, then the index is 3 = (3, n) = (3, t). If 3|n but 3 ∤ t, then the index
is indeed either 1 = (3, t) or 3 = (3, n). Finally suppose 3 does not divide n. Then
z3 = xn//3 = xn = 1, so |z| = 3 is not a factor of |x| or |y|. Hence by Lemma 7.6,
z commutes with both x and y, so the invariant (a, g) is trivial. Thus the reduced
invariant has index 1 = (3, t) = (3, n) over the (trivial) Sylow 3–subgroup of T .
Therefore in all cases the reduced invariant is in S.

7.9. Lemma. Suppose u, v, x, y, z and u1, v1, x1, y1, z1 are r–sequences with
the same invariant (a, g) for A4–complements G and G1 with core invariant ∆,
respectively. Then there is an isomorphism from G to G1 taking u, v, x, y, and z
to u1, v1, x1, y1, and z1, respectively.

Proof. The lemma follows from the fact that ∆ and (a, g) completely deter-
mine a presentation of G by generators and relations with u, v, x, y, z as the
generators.

We now introduce notations that will be used in Chapters 9 and 10 as well as
in the next theorem.

7.10. Notation. Suppose n ≡ 2 (mod 4). Let σ ∈ AutZ[ζmn/2t] fix ζn/2t and
map ζm to ζrm. Then letA0 = (Z[ζmn/2t], σ, t, ζn/2t) and let J = 〈ζm, σ̂〉 (a subgroup
of A•

0). If n 6= 2 then (m,n/2, T ) is a proper Frobenius triple (Lemma 5.3B(3))
and J and A0 are the 1–complement and truncated group ring constructed as in
Theorem 5.2C with respect to this triple. If n = 2, then J = 〈1〉 and we may
identify A0 with Z ∼= Z〈J〉. (Note that since 2mn = 2, then Z[ζmn/2t] = Z[ζmn/t],
so the σ above is the same as the σ of Theorem 5.2C, but the σ̂ is not!). We let x0,
y0 be an r–sequence for J if n 6= 2 and set x0 = y0 = 1 if n = 2.

The next theorem uses the above notation and the group H24 of Example 3.1.
Together with Lemmas 7.7 and 7.8 it completes the proof of Theorem 7.3 in the
case that n is not divisible by 3.

7.11. Theorem. Suppose that n ≡ 2 (mod 4) and that 3 does not divide n.
Then G := H24 × J is the unique (up to isomorphism) A4–complement with core
invariant ∆, and the natural map G −→ Z[H24] ⊗ A0 induces an isomorphism
Z〈G〉 −→ Z[H24]⊗A0. Z〈G〉 is free of rank 4φ(mn) as a Z–module. Q〈G〉 is simple
with degree 2t and with dimension 4φ(mn) over Q; its center is naturally isomorphic
to the center of QA0 (namely, Q[ζmn/t]

σ). Finally, (i, 1), (k, 1), (−1, σ̂), (1, ζm),

(α2, 1) is an r–sequence for G.

Proof. By Theorem 5.2 (and Notation 7.10) the inclusion J −→ A0 induces
an isomorphism Z〈J〉 −→ A0. By Theorem 3.2 the inclusion H24 −→ Z[H24]
induces an isomorphism Z〈H24〉 −→ Z[H24]. Now H24 and J have relatively prime
orders by hypothesis (and Lemma 5.3(B1)), so by the Direct Product Lemma 2.9
G is a Frobenius complement and the natural map G −→ Z[H24]⊗A0 induces an
isomorphism Z〈G〉 −→ Z[H24]⊗A0. The Hurwitz ring Z[H24] = Z[i, j,α] is a free
Z–module by Lemma 3.5. Its rank must equal the rational dimension of the ring
Q⊗Z[H24] ∼= Q[i, j], which is a central simple quaternion algebra over Q of rational
dimension 4. By Theorem 5.2 A0 is free of rank φ(mn) as a Z–module, and QA0
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is simple with dimension φ(mn) over Q and with center Q[ζmn/t]
σ. Thus Z〈G〉 is

free of rank 4φ(mn) as a Z–module, Q〈G〉 is simple with dimension 4φ(mn) over
Q, and the center of Q〈G〉 is naturally isomorphic to the center of QA0 [P, Lemma
b(ii), p. 225 and Lemma c(ii), p. 226]. The degree of Q〈G〉 is the product of the
degrees of Q[i, j] and QA0, namely, 2t. Now let x = (−1, σ̂), y = (1, ζm), u = (i, 1),
v = (k, 1) and z = (α2, 1). Routine computations show that G = 〈u, v, x, y, z〉; that
〈x, y〉 is a normal subgroup of G with G/〈x, y〉 ∼= H24/〈−1〉 ∼= A4; and that 〈x, y〉
is a 1–complement with invariant (m,n, T ). Thus G is an A4–complement with
core invariant ∆. Using Lemma 3.4 one checks that the sequence u, v, x, y, z is an
r–sequence for G. Now suppose H is any A4–complement with core invariant ∆.
By Lemmas 7.7 and 7.8 H has an r–sequence, say with invariant (a, g); g ≡ 1 (mod
(6t)n); and the reduced invariant 〈(a, g+n//6tZ)〉 is in S. But the only element of S
is the trivial group. Thus (a, g) is trivial (recall that n = (6t)n(n//6t)). Therefore
every A4–complement with core invariant ∆ has trivial invariant and hence, by
Lemma 7.9, they are all isomorphic.

7.12. Remark and Notation. Suppose n ≡ 2 (mod 4). Let H = 〈u, v, x, y〉
be the V4–complement with core invariant ∆ and trivial reduced invariant con-
structed in Theorem 6.14 as a subgroup of the algebra B (and denoted in the
statement of Theorem 6.14 by G). In the next theorem we will use H and B to
construct A4–complements with core invariant ∆ and with reduced invariant any
given element in S in the case that 3 divides n.

We remark on some alternative approaches to A4–complements. First, it is not
hard to show that H ∼= D8×J and hence that B ∼= Z[i, j]⊗A0 where J and A0 are
as in Notation 7.10. Thus in the next theorem H and B could have been replaced
by D8 × J and Z[i, j] ⊗ A0, respectively. Next suppose that 3 does not divide n.
Let A = −(1 + u + v + uv)/2 ∈ QB. Then the subgroup 〈x, y, u, v, A〉 of QB is an
A4–complement with core invariant ∆. This observation gives an another approach
to the material of the previous theorem.

7.13. Theorem. Suppose that n ≡ 2 (mod 4), 3 divides n, and S ∈ S.
(A) There exists a ∈ Z•

m and g ∈ Z•
n with S = 〈(a, g + n//6tZ)〉, g ≡ 1

(mod (6t)n), and a3 = rn//3.
(B) There is an automorphism τ of B which restricts on H to a group automor-

phism fixing xn//3 and mapping u, v, x, and y to vu, u, xg, and ya, respectively.
Moreover, τ3(w) = xn//3wx−n//3 for all w ∈ H. Let C =

(
B, τ, 3, xn//3

)
, z = τ̂ ,

and G = 〈u, v, x, y, z). Then G is an A4–complement with core invariant ∆ and
reduced invariant S; and u, v, x, y, z is an r–sequence for G with invariant (a, g).

(C) The inclusion G −→ C induces an isomorphism θ : Z〈G〉 −→ C. Z〈G〉 is
free of rank 12φ(mn) as a Z–module. θ extends to an isomorphism Q〈G〉 −→ QC.
QC is a simple algebra with dimension 12φ(mn) over Q, with degree 2t(|S|, 3), and
with center Kτ if |S| 6= 1 and K[z(1− u− v− vu)] if |S| = 1, where K denotes the
center of QB.

The group H and ring B of the above theorem are those of the preceding
remark. The assertions about τ in (B) guarantee that C is properly defined (cf.
Notation 2.6B). By Theorem 6.15 the center K of QB is the field Q[ζmn/t]

σ of
Theorem 5.2; if |S| = 1 we will see that −z(1 − u − v − vu)/2 is a root of unity
of order 3(3n) and that it commutes with v, so that in this case it generates cubic
extensions both of L and of L[v].
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Proof. S = 〈(a, g0)〉 for some a ∈ Z•
m and g0 ∈ Z•

n//6t where a3 = rn//3 and

g3
0 = 1 (Remark 7.4; note that rn//3 = 1 if 3 does not divide t). By the Chinese

Remainder Theorem there exists g ∈ Z•
n with g ≡ g0 (mod n//6t) and g ≡ 1 (mod

(6t)n), so that g3 ≡ 1 (mod n) and g ≡ 1 (mod t).
Since u and v commute with x and y, then vu and u commute with xg and ya.

Since g ≡ 1 (mod t), xgyax−g = (ya)r. Also
∣∣xg
∣∣ = n and

∣∣ya
∣∣ = m and 〈xg , ya〉 is

the core of H . Finally, 〈vu, u〉 is a Sylow 2–subgroup of H , and (vu)2 = (xg)n//2

since n ≡ 2 (mod 4). Hence vu, u, xg, ya is an r–sequence for H with the same
trivial invariant as u, v, x, y. Thus there is an automorphism τ0 of H taking u, v,
x and y to vu, u, xg and ya, respectively (argue as in the proof of Theorem 7.9).
Hence there is an automorphism τ1 of Z〈H〉 taking u, v, x, y to vu, u, xg, ya and
therefore (since the inclusion H −→ B induces the isomorphism Z〈H〉 −→ B) an
automorphism τ of B restricting to τ0 on H . Since a3 = rn//3 and g3 = 1, then

τ3(x) = xg
3

= x = xn//3xx−n//3 and τ3(y) = ya
3

= yr
n//3

= xn//3yx−n//3; the
analogous formulas with y replaced by u or v hold since u and v commute with
x. Thus τ3(w) = xn//3wx−n//3 for all w ∈ B. Finally, τ(xn//3) = xg(n//3) = xn//3

since g ≡ 1 (mod (6t)n) (so g ≡ 1 (mod 3n) and (n//3)g ≡ n//3 (mod n)). This
completes the proof of the existence of τ . Since B is a free Z–module of rank
4φ(mn), then C is by construction a free Z–module of rank 12φ(mn). The Cyclic
Extension Lemma 2.8 says that G is a Frobenius group and that the inclusion
G −→ C induces an isomorphism Z〈G〉 −→ C. (We use here the fact that the
inclusion H −→ B induces an isomorphism Z〈H〉 −→ B, cf. Theorem 6.14.) G
is easily checked to be an A4–complement with core 〈x, y〉 and hence with core
invariant ∆. By construction u, v, x, y, z is an r–sequence for G with invariant
(a, g) and reduced invariant S. Also Q〈G〉 ∼= Q ⊗ C has dimension 12φ(mn) as a
Q–algebra. We can identify QC = Q ⊗ C with

(
QB, τ, 3, xn//3

)
(cf. Remark 2.6C).

It remains to argue that QC is simple and to compute its center and degree.
First suppose that S is nontrivial. If τ were trivial on 〈xt, y〉, then y = τ(y) = ya

so a = 1, and xt = τ(xt) = xtg so g ≡ 1 (mod n/t). Thus g = 1 since by construction
g ≡ 1 (mod tn). This contradicts the hypothesis that S is nontrivial. Hence
τ is nontrivial on the cyclic group 〈xt, y〉 and hence on the cyclotomic extension
L = Q

[
xt, y

]
= Q

[
ζnm/t]. Both σ and τ induce automorphisms on L (and hence on

all of the subfields of L). On L we have τ3 = σn//3 and τσ = στ , so
∣∣〈σ|L, τ |L〉

∣∣ ≤
3t. Suppose τ |L = (σ|L)i for some integer i. Then since σ

(
xt
)

= xt, we have

xgt = τ
(
xt
)

= xt, so g ≡ 1 (mod n/t), whence g ≡ 1 (mod n//6t). Thus a 6= 1

(by hypothesis S is nontrivial). Also yr
i

= σi(y) = τ(y) = ya, so a = ri. Thus
|a| divides t. Since a3 = rn//3, the order of a is a power of 3. Hence 3 divides t.
Since r3i = a3 = rn//3, then 3i ≡ n//3 (mod t). But then 0 ≡ n//3 (mod 3), a
contradiction. Hence τ |L 6∈ 〈σ|L〉. Thus

∣∣〈σ|L, τ |L〉
∣∣ = 3t. Setting K = Lσ we

therefore have

[K : Kτ ] = [L : Kτ ][L : K]−1 =
[
L : L〈σ,τ〉]t−1

=
∣∣〈σ|L, τ |L〉

∣∣t−1 = 3 .

Thus by the last part of Theorem 2.5 QC is simple with center Kτ . Hence the
degree of QC is triple the degree of QB, namely 6t = 2t(|S|, 3) (cf. Theorem 6.15).

Next consider the case that S is trivial. Then z commutes with x and y. Now
x and y also commute with u and v, and hence with A := (−1 + u+ v+ vu)/2 (an
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element of QC). Also A and z commute since conjugation by z just permutes the
summands of A. Hence |Az| = |z| (the order of z is a nontrivial power of 3 since
z3 = xn//3 by construction, and |A| = 3 by Lemma 3.4E). (In the application of
Lemma 3.4E we are identifying u, v, and A with i, k, and α. Formally we have
a homomorphism 〈i,k〉 −→ G taking i and k to u and v, and this map induces a
homomorphism ρ : Z[i,k] −→ C taking 2α to 2A; ρ can be used to push the formulas
of Lemma 3.4 into C.) Further, Az commutes not only with x and y but also with
u and v, since conjugation by A and by z give inverse automorphisms of 〈u, v〉
(Lemma 3.4A). Hence Az is in the center of QC. Thus the center of QC contains
K[Az]. Since a = 1, then rn//3 = 1, so t divides n//3. Hence xn//3 ∈ K. Now Az
is a root of the polynomial X3 − xn//3 ∈ K[X ]. The roots of this polynomial are
roots of unity of order 3(3n) and hence do not lie in K (recall K ⊂ Q[ζmn/t]). Thus
K[Az] is a cubic field extension of K. Hence QC ∼= QB ⊗K K[Az] [P, Proposition
a, p. 225]. Thus QC is simple with center K[Az] [P, Proposition b(ii), p. 226].
The degree of QC is 2t = 2t(|S|, 3) because QB has degree 2t (Theorem 6.15),
[QC : QB] = 3, and [K[Az] : K] = 3.

It remains to solve the isomorphism problem when 3 divides n, i.e., to show
that in this case every A4–complement with core invariant ∆ has a unique reduced
invariant and that the reduced invariant determines the A4–complement up to
isomorphism.

7.14. Lemma. An A4–complement G with core invariant ∆ has only one re-
duced invariant.

Proof. By Theorem 7.11 we may suppose 3 divides n. Let u, v, x, y, z and u1,
v1, x1, y1, z1 be r–sequences for G with invariants (a, g) and (a1, g1), respectively.
By Lemma 7.8

a3 = a3
1 = rn//3, g3 = g3

1 = 1, g ≡ g1 (mod (6t)n) .

We can write y1 = yb and x1 = ycxh for some b ∈ Z•
m, c ∈ Zm, and h ∈ Z•

n. As
usual h ≡ 1 (mod t) since

ybr
h

= x1y1x
−1
1 = yr1 = ybr .

We can also write z1 = ydxfviujzs where s = 1 or 2, d ∈ Zm, f ∈ Zn, i, j ∈ Z.
Then

ya1b = ya1
1 = z1y1z

−1
1 = yba

srf

,

so a1 = asrf and hence rn//3 = rs(n//3)+3f . Therefore

(s− 1)(n//3) + 3f ≡ 0 (mod t) .(6)

Similarly modulo the normal subgroup 〈y〉 we have

xg1h ≡ xg11 ≡ z1x1z
−1
1 ≡ xhgs

and so g1 = gs. If 3 does not divide t, then the congruence (6) implies that 3f ≡ 0
(mod t), and so f ≡ 0 (mod t). Hence a1 = as. Thus

(a, g + n//6tZ)s = (a1, g1 + n//6tZ) ,

so the reduced invariants of the two r–sequences are the same. Now suppose 3
divides t. Then the congruence (6) says (s− 1)(n//3) ≡ 0 (mod 3), so s = 1. Thus
g = g1 and f ≡ 0 (mod t/3). It follows that rf has order dividing 3 and hence lies in
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the unique subgroup of 〈r〉 = T of order 3, namely 〈rt/3〉. Thus (a, g+n//6tZ) and
(a1, g1 +n//6tZ) lie in the same coset of (Z•

m×Z•
n//(6t))/〈(rt/3, 1)〉 and so generate

the same subgroup of Z•
m × Z•

n//(6t) (cf. Remark 7.4).

The next lemma will complete the proof of Theorem 7.2.

7.15. Lemma. Suppose G and G1 are A4–complements with core invariant ∆
and with the same reduced invariant. Then G ∼= G1.

Proof. We may suppose 3 divides n (Theorem 7.11). By hypothesis there are
r–sequences u, v, x, y, z and u1, v1, x1, y1, z1 for G and G1 with invariants (a, g)
and (a1, g1), respectively, such that

S := 〈(a, g + n//6tZ)〉 = 〈(a1, g1 + n//6tZ)〉 .

Our strategy is to construct a new r–sequence for G with invariant (a1, g1) and
then to invoke Lemma 7.9 to conclude that G ∼= G1.

First suppose 3 does not divide t, so that the reduced invariant S is a subgroup
of Z•

m ×Z•
n//6t of order dividing 3 (Remark 7.4). Then for s equal to either 1 or 2,

(a, g + n//6tZ)s = (a1, g1 + n//6tZ) .

Hence as = a1 and gs = g1 (apply Lemma 7.8 which says gs ≡ g1 (mod(6t)n)). If
s = 1 there is nothing to prove, so suppose s = 2. Consider the sequence v3, u3, xi,
y, z2 where i ∈ Z is chosen so that i ≡ 2 (mod 3n) and i ≡ 1 (mod n//3). Since 3
does not divide t, then i ≡ 1 (mod t), so xiyx−i = yr. Also |xi| = n since (i, n) = 1.
Thus v3, u3, xi, y is an r–sequence for the V4–complement 〈u, v, x, y〉 with trivial
invariant (cf. Definition 6.4). Further, (z2)3 = x2(n//3) = (xi)n//3 since i ≡ 2 (mod

3n). Also z2yz−2 = ya
2

= ya1 and z2xiz−2 = xig
2

= (xi)g1 . One easily computes
that z2u3z−2 = v3 and z2v3z−2 = (vu)3 = u3v3. It follows that v3, u3, xi, y, z2 is
an r–sequence for G with invariant (a1, g1), so G ∼= G1.

Now suppose 3 divides t. In this case the construction of a suitable r–sequence
for G is a bit more subtle. Pick an integer s′ with s′ ≡ 1 (mod 3t) and s′ ≡ 0 (mod
n//3), and set s = s′t/3. Then s ≡ t/3 (mod t) and s ≡ 0 (mod (n//3)(3t/3)).
Since 3 divides t and g ≡ 1 (mod t), then 1 + g + g2 ≡ 0 (mod 3). Hence there
exists γ ∈ Zn with 3γ = 1 + g + g2. Since (n//3, 3n) = 1, there exists µ ∈ Z with
µ(n//3) ≡ 1 (mod 3n). By the Chinese Remainder Theorem we can pick h ∈ Zn
with h ≡ 0 (mod n//6t), h ≡ 0 (mod 2n), and h ≡ µs′γ (mod 3n). Now set
τ = 1 + th ∈ Zn, so τ ≡ 1 (mod t) and (τ, n) = 1. By the choices of γ, µ, and h
(respectively) we have that modulo 3n

s′(t/3)(1 + g + g2) ≡ s′(t/3)(3γ) ≡ tµs′γ(n//3) ≡ th(n//3)

and hence s(1 + g + g2) ≡ (τ − 1)(n//3) (mod 3n). Since s ≡ 0 (mod n//3) we
conclude that

(τ − 1)(n//3) ≡ s(1 + g + g2) (modn) .(7)

Now consider the sequence u, v, xτ , y, xsz. We show this is an r–sequence
for G. Clearly u, v, xτ , y is an r–sequence for 〈u, v, x, y〉 with trivial invari-
ant (one uses here only the facts that τ ≡ 1 (mod t) and (τ, n) = 1). Next

(xsz)3 = xs(1+g+g
2)xn//3 = (xτ )n//3 (by the congruence (7)), (xsz)u(xsz)−1 = vu,
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and (xsz)v(xsz)−1 = u (since u and v commute with x). Finally, (xsz)y(xsz)−1 =

yar
s

= yar
t/3

and (xsz)xτ (xsz)−1 = (xτ )g. This shows u, v, xτ , y, xsz is an r–
sequence for G with invariant (art/3, g). By Remark 7.4, a1 = a(rt/3)i for i = 0, 1
or 2 and g = g1. If i = 0 then a1 = a, so G and G1 have r–sequences with the same
invariant; if i = 1 then G and G1 still have r–sequences with the same invariant
(a1, g1): the sequence u, v, xτ , y, xsz works for G. If i = 2 then the above argument

shows u, v, xτ
2

, y, xs(τ+1)z is an r–sequence for G with invariant (a1, g1) (repeat
the construction of the r–sequence u, v, xτ , y, xsz from the r–sequence u, v, x, y, z
but now starting with the r–sequence u, v, xτ , y, xsz) . Hence for any value of i,
G ∼= G1.



CHAPTER 8

Frobenius complements with core index 24

The next definition focuses on a type of presentation by generators and relations
of S4–complements. We continue of course to use the notation of Notation 6.2.

8.1. Definition. Suppose G is an S4–complement with core invariant ∆. Sup-
pose u, v, w, x, y, z is a sequence of elements of G and (a, g) is an element of
Z•
m × Z•

n such that H := 〈u, v, x, y, z〉 is an A4–complement with the same core as
G; that u, v, x, y, z is an r–sequence for H with trivial invariant; and that w2 = u,
wxw−1 = xg, wyw−1 = ya, and wzw−1 = x−n//3vz2. We then call u, v, w, x, y, z
an r–sequence for G with invariant (a, g) and reduced invariant 〈(a, g + n//6tZ)〉.

One assertion of the next theorem is that an S4–complement has an r–sequence
and all such have the same reduced invariant.

8.2. Theorem. There exists an S4–complement with core invariant ∆ if and
only if 3 does not divide t and n ≡ 2 (mod 4). If 3 does not divide t and n ≡ 2
(mod 4), then each S4–complement with core invariant ∆ has a unique reduced
invariant, and assigning to each such Frobenius complement its reduced invariant
induces a bijection from the set of isomorphism classes of S4–complements to the
set of subgroups of Z•

m × Z•
n//6t of order dividing 2.

8.3. Corollary. Suppose n ≡ 2 (mod 4) and 3 ∤ t. Let s denote the number
of distinct prime divisors of mn//6t. Then there are 2s isomorphism classes of
S4–complements with core invariant ∆.

Proof. Z•
m × Z•

n//6t is a direct product of s cyclic groups of even order. Now

apply the above theorem.

As usual we proceed in a sequence of lemmas.

8.4. Lemma. Let G be an S4–complement with core invariant ∆. Suppose we
have a sequence u, v, w, x, y, z of elements of G such that H := 〈u, v, x, y, z〉 is
an A4–complement with the same core as G; that u, v, x, y, z is an r–sequence for
H with invariant (b, h); that |〈w, v〉| = 16; and that w2 = u, wzw−1 ∈ 〈x, y〉vz2,
wxw−1 = ycxg, and wyw−1 = ya where a, c ∈ Zm and g ∈ Zn. Then 3 ∤ t,
b = 1, h = 1, g ≡ −1 (mod 3n), g ≡ 1 (mod 2tn), g

2 = 1, a2 = 1, c(a + 1) = 0,
(m, a + 1, a − 1) = 1, m = (m, a + 1)(m, a − 1), wvw−1 = uv, and wzw−1 =
x−n//3vz2. Moreover, there exists an integer a′ with a′(a−1) ≡ −c (mod (m, a+1)),

and u, v, w, ya
′

x, y, z is an r–sequence for G with invariant (a, g) for any such
a′.

Proof. By Theorem 7.3, n ≡ 2 (mod 4). Hence by Lemma 4.1A, vwv−1 =
w−1 and thus

wvw−1 = w
(
vw−1v−1

)
v = w2v = uv .

42
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By Lemma 6.8 (applied with s = 2 to conjugation by w) we have a2 = 1, g2 = 1,
g ≡ 1 (mod t), c(1 + a) = 0, (m, a + 1, a− 1) = 1, and m = (m, a + 1)(m, a − 1).
Lemma 6.9 then implies that g ≡ 1 (mod tn). Since n ≡ 2 (mod 4) and g2 = 1,
then g is odd and g ≡ 1 (mod 2tn).

By hypothesis we can write wzw−1 = ydxevz2 for some d ∈ Zm and e ∈ Zn.
Conjugating each term of the equation zy = ybz by w yields the relation

yd+ab
2re

xevz2 = ydxevz2ya = yba+dxevz2

so bre = 1. By Lemma 7.8 then, r(n//3)+3e = 1, so (n//3) + 3e ≡ 0 (mod t). Hence
3 does not divide t, as claimed. Thus t divides n//3, so 3e ≡ 0 (mod t) and hence
e ≡ 0 (mod t). But then re = 1, so b = 1. Next conjugate the relation zx = xhz
by w to deduce that modulo the normal subgroup 〈y〉 we have

xe+gh
2

vz2 ≡ xevz2xg ≡ xgh+evz2

so that h = 1.
Now conjugate xn//3 = z3 by w; by Lemma 6.7 since t divides n//3 we have

xg(n//3) =
(
ydxevz2

)3
= y3dx3ez6 = y3dx3e+2n//3 .

Thus d = 0 (Lemma 5.3(B1)) and

3e ≡ (g − 2)(n//3) (modn) .(8)

Thus e ≡ 0 (mod n//3). We further claim g ≡ −1 (mod 3n). This is trivial if
3 ∤ n; if 3 is a factor of n then the congruence (8) implies that g ≡ 2 (mod 3), so
(3, g − 1) = 1. But since g2 = 1, then (g − 1)(g + 1) ≡ 0 (mod 3n), so g + 1 ≡ 0
(mod 3n), as claimed. The relation w2 = u implies that modulo 〈y〉,

v−1z ≡ u
(
zu−1z−1

)
z ≡ w2zw−2 ≡ wxevz2w−1

≡ xgeuv
(
xevz2

)2 ≡ xge+2e+n//3v−1z ,

so e(g+2)+n//3 ≡ 0 (mod n). But g ≡ −1 (mod 3n), so e ≡ −n//3 (mod 3n). Since
e ≡ 0 (mod n//3), we conclude that e ≡ −n//3 (mod n). Thus wzw−1 = x−n//3vz2.

It remains to prove the last sentence of the lemma. Since a−1 and (m, a+1) are
relatively prime, there exists a′ ∈ Z with a′(a−1) ≡ −c (mod (m, a+1)). But then
a′(a− 1) ≡ −c (mod m) since m = (m, a− 1)(m, a+ 1) and c ≡ 0 (mod (m, a− 1))

(recall that c(1+a) = 0). Now set
∨
x= ya

′

x. Then u, v,
∨
x, y is clearly an r–sequence

for 〈u, v, x, y〉 with trivial invariant. Indeed, u, v,
∨
x, y, z is an r–sequence for H

with trivial invariant since t divides n//3 and hence
∨
xn//3= xn//3 = z3 (Lemma 6.7).

To verify that u, v,w,
∨
x, y, z is an r–sequence for G with invariant (a, g) it remains

only to observe that

w
∨
x w−1 = ya

′a+cxg =
(
ya

′

x
)g

=
∨
x
g

since g ≡ 1 (mod t) and a′(a− 1) ≡ −c (mod m).

8.5. Lemma. Suppose G is an S4–complement with core invariant ∆. Then
n ≡ 2 (mod 4) and 3 does not divide t. G has an r–sequence, and both the invariant
and reduced invariant of any r–sequence for G have orders dividing 2.

Proof. By hypothesis there is a surjective homomorphism Υ : G −→ S4 whose
kernel is a Z–group with invariant ∆. Then H := Υ−1(A4) is an A4–complement
with the same core as G. Hence by Theorem 7.3, n ≡ 2 (mod 4) and H has an
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r–sequence u, v, x, y, z, say with invariant (b, h). There is a Sylow 2–subgroup of
G containing 〈u, v〉. It must be a generalized quaternion group and hence have an
element w of order 8 whose square must be in 〈u, v〉; we may assume without loss of
generality that w2 = u (if necessary replace w by an element of the form ziwz−iuj

where i, j ∈ {0, 1, 2}).
Υ(z) has order 3 and Υ(w) has order 4. Hence without loss of generality we

may assume Υ is chosen so that Υ(z) fixes 4 and Υ(w) = (1234). Thus Υ(u) =
Υ(w2) = (13)(24). We claim Υ(z) = (132). For suppose this is not true. Then
Υ(z) = (123). Thus Υ(wzw−1) = (234) = Υ(uz2), so wzw−1 = γuz2 for some
γ ∈ 〈x, y〉. Since zvz−1 = u and u commutes with γ (Definition 7.2), we have
(conjugating by w)

u = γuz2uvz−2u−1γ−1 = γu−1γ−1 = u−1 ,

a contradiction. Thus Υ(z) = (132), as claimed. Therefore

Υ
(
wzw−1

)
= (243) = Υ

(
z2u
)

= Υ
(
vz2
)
.

Hence wzw−1 ∈ 〈x, y〉vz2. Of course we can write wyw−1 = ya and wxw−1 = ycxg

for some a, c ∈ Zm and g ∈ Zn. Then Lemma 8.4 applies to tell us that 3 ∤ t; that
G has an r–sequence with invariant (a, g); and that both the invariant and reduced
invariant of any r–sequence have order at most 2.

8.6. Proposition. Suppose G and G1 are S4–complements with core invariant
∆. Suppose (a, g) and (a1, g1) are the invariants of r–sequences u, v, w, x, y, z and
u1, v1, w1, x1, y1, z1 of G and G1, respectively. Then the following are equivalent:

(A) G ∼= G1 ;
(B) 〈(a, g + n//6tZ)〉 = 〈(a1, g1 + n//6tZ)〉 ;
(C) (a, g) = (a1, g1) ;
(D) There is an isomorphism G −→ G1 taking u, v, w, x, y, z to u1, v1, w1,

x1, y1, z1, respectively.

Note that the implication (A) =⇒ (B) (applied in the case G = G1) says that
the reduced invariant of an S4–complement is unique.

Proof. Clearly (D) =⇒ (A). We now show (A) =⇒ (B) =⇒ (C) =⇒ (D).
(B) =⇒ (C). This is immediate from Lemma 8.4, since the element g of Zn is

completely determined by the congruences g ≡ 1 (mod 2tn), g ≡ −1 (mod 3n) and
g ≡ (g + n//6tZ) (mod n//6t).

(C) =⇒ (D). The invariant (a, g) determines a presentation of G by the gener-
ators u, v, w, x, y, z and the relations described by Definition 8.1 and Lemma 8.4.
If (a, g) = (a1, g1), then G1 has an equivalent presentation, and hence is isomorphic
to G.

(A) =⇒ (B). We may suppose without loss of generality that G = G1. Let
u, v, w, x, y, z and u1, v1, w1, x1, y1, z1 be r–sequences for G with invariants
(a, g) and (a1, g1), respectively. Now S4 has a unique subgroup of index 2 and
hence by hypothesis G has a unique subgroup of index 2 containing its core. Thus
〈u, v, x, y, z〉 = 〈u1, v1, x1, y1, z1〉, and hence w1 ∈ G\〈u, v, x, y, z〉. Thus we can
write w1 = ycxfγw for some c ∈ Zm, f ∈ Zn, and γ ∈ 〈u, v, z〉 (so γ commutes
with x and y). Similarly we can write y1 = yb and x1 = ydxe for b, d ∈ Zm, e ∈ Zn.
Then

ya1
1 = w1y1w

−1
1 = ycxfγwybw−1γ−1x−fy−c = yar

f

1 .
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Thus a1 = arf , so 1 = r2f , so rf = 1 (recall t = |r| is odd). Thus a = a1. Next,
modulo the normal subgroup 〈y〉 we have

xg11 ≡ w1x1w
−1
1 ≡ xfγwxew−1γ−1x−f ≡ xg1 ,

so g = g1. Condition (B) follows immediately.

The next theorem completes the proof of Theorem 8.2 by establishing the sur-
jectivity part of the bijection in the theorem. The integral and rational truncated
group rings of S4–complements are also described.

8.7. Theorem. Suppose n ≡ 2 (mod 4) and 3 does not divide t. Let S be a
subgroup of Z•

m × Z•
n//6t of order dividing 2.

(A) There is an A4–complement H with core invariant ∆ and trivial invariant.
There exists (a, g) ∈ Z•

m × Z•
n with S = 〈(a, g + n//6tZ)〉, g ≡ −1 (mod 3n),

and g ≡ 1 (mod (2t)n). The natural map H −→ Z〈H〉 is injective; let u, v, x,
y, z be an r–sequence for its image. Then there is an automorphism ρ of Z〈H〉
mapping u, v, x, y, z to u, uv, xg, ya, x−n//3vz2, respectively. For each γ ∈ Z〈H〉,
ρ2(γ) = uγu−1.

(B) Let D = (Z〈H〉, ρ, 2, u), w = ρ̂, and G = 〈u, v, w, x, y, z〉. Then G is
an S4–complement with core invariant ∆, and u, v, w, x, y, z is an r–sequence
for G with invariant (a, g) and reduced invariant S. The inclusion map G −→ D
induces an isomorphism Z〈G〉 −→ D. Finally Z〈G〉 is free of rank 8(n, 3)φ(mn) as
a Z–module.

(C) Q〈G〉 is isomorphic to QD, which is simple with dimension 8(n, 3)φ(mn)
over Q. Let E denote the center of Q〈H〉. If 3 ∤ n and S is trivial, then QD has
degree 2t and center E

[
(1− u)w

]
; otherwise QD has degree 4t and center Eρ.

The proof of Theorem 8.7 will show that if 3 does not divide n and S is trivial,
then E[(1− u)w] ∼= E[

√
2] 6= E.

Proof. Since 3 does not divide t, then the trivial group is in the set S of
Notation 7.1 and hence is the reduced invariant of an A4–complement H with core
invariant ∆ (by Theorem 7.3). The invariant of H is then also trivial (Lemma 7.8).
The existence of (a, g) follows from the Chinese Remainder Theorem (again recall
that 3 does not divide t). The natural map H −→ Z〈H〉 is injective by Lemma 2.3.
Hence the image of H has an r–sequence u, v, x, y, z. Now consider the sequence u,
uv, xg, ya, x−n//3vz2. First note that g2 = 1 since g2 ≡ 1 modulo n//6t, modulo 3n
and modulo (2t)n. Since g ≡ 1 (mod t), then u, v, xg, ya is easily checked to be an
r–sequence with trivial invariant for the V4–complement 〈u, v, x, y〉 = 〈u, uv, xg, ya〉.
Also

(
x−n//3vz2

)3
= x(−n//3)3v2u2x2(n//3) = x−n//3 =

(
xg
)n//3

since g ≡ −1 (mod 3n). Since t divides n//3, x−n//3vz2 commutes with x and y.
Next,

(
x−n//3vz2

)
u
(
x−n//3vz2

)−1
= x−n//3vvv−1xn//3 = v = (uv)u

and
(
x−n//3vz2

)
(uv)

(
x−n//3vz2

)−1
= u. Thus u, uv, xg, ya, x−n//3vz2 is also an

r–sequence with trivial invariant. Hence by Lemma 7.9 there is an automorphism
of the image of H in Z〈H〉 taking u, v, x, y, z to u, uv, xg, ya, x−n//3vz2. Then
this automorphism extends to the automorphism ρ of Z〈H〉. To verify the last
part of (A) we must show uγ = ρ2(γ)u for γ = u, v, x, y and z. The cases when
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γ = u, v, x, y are easily checked using the identities g2 = 1 and a2 = 1. Finally,
since g(n//3) ≡ −n//3 (mod n), then

ρ2(z)u = x−g(n//3)uv
(
x−n//3vz2

)(
x−n//3vz−2z3z

)
uz−1z

= uvvx−n//3vuxn//3vuz = uz .

This completes the proof of (A).
The assertions of part (A) guarantee that D is well–defined (cf. Notation 2.6B).

Theorems 7.11 and 7.13 say that Z〈H〉 is free of rank 4(n, 3)φ(mn) as a Z–module.
Also [G : H ] = 2 clearly divides |H |, and the Sylow 2–subgroup 〈w, v〉 of G is a
generalized quaternion group. Thus we can apply the Cyclic Extension Lemma 2.8
to deduce that G is a Frobenius complement and the inclusion G −→ D induces an
isomorphism from Z〈G〉 to D, which by construction is free of rank 8(n, 3)φ(mn)
as a Z–module. Now 〈x, y〉 is by construction a normal Z–subgroup of G. G/〈x, y〉
is generated by the cosets of wz and of z since

w = (wz)z−1, u = w2, and v = z−1uz .

One checks that modulo 〈x, y〉

(wz)2 ≡ 1, z3 ≡ 1, and
(
(wz)z

)4 ≡ 1 .

Hence G/〈x, y〉 is a homomorphic image of S4 [B, p. 119]; since G/〈x, y〉 has order
2[H : 〈x, y〉] = 24, then G/〈x, y〉 ∼= S4. Thus G is an S4–complement with core
〈x, y〉 and therefore core invariant ∆. By construction u, v, w, x, y, z is an r–
sequence with invariant (a, g) and core invariant S. (The automorphism ρ is just
conjugation by w.) This completes the proof of part (B).

We have isomorphisms

Q〈G〉 ∼= QD ∼= (Q〈H〉, ρ, 2, u)
(Notation 2.6); thus by Albert’s Theorem 2.5 QD is simple with center Eρ if ρ has
order 2 on E. Now ρ2 is conjugation by u, so its restriction to E is trivial. Hence
ρ has order 2 on E if and only if it is nontrivial on E. Now by Theorems 6.15, 7.11
and 7.13, E ⊃ K := Q

[
xt, y

]σ
where σ is the automorphism of D given by con-

jugation by x. If 3 divides n, then since g ≡ −1 (mod 3) we have xt ∈ E and
ρ
(
xt
)

= xtg 6= xt. Now suppose 3 does not divide n and S is nontrivial. Then the

restriction of ρ to Q
[
xt, y

]
is an automorphism of order exactly 2 (this is obvious

if a 6= 1; if g + n//6tZ 6= 1 then g 6≡ 1 (mod n/t), so ρ
(
xt
)

= xtg 6= xt). Hence

this restriction does not fix Q
[
xt, y

]σ
(otherwise ρ|Q

[
xt, y

]
∈ 〈σ|Q

[
xt, y

]
〉, which is

impossible since the restrictions of ρ and σ have orders 2 and t, respectively, and
t is odd). Thus ρ has order 2 on E. When this happens the degree of Q〈G〉 is
clearly twice that of Q〈H〉, which is 2t for all A4–complements with core invariant
∆ and trivial invariant. Thus if either S is nontrivial or 3 divides n, then indeed
Q〈G〉 is simple with degree 4t and center Eρ. Now suppose S is trivial and 3

does not divide n. Then E = Q
[
xt, y

]σ
by Theorem 7.11, which also implies that

Q[u, v, x, y, z] = Q[u, v, x, y]. (Remember that x and y are in Z〈H〉, not H .) Now
let η = (1 − u)w, so that η2 = (−2u)u = 2 (recall that w2 = u). By hypothesis
η commutes with x and y; it clearly commutes with u, and also with v since by
Lemma 8.4

vηv−1 = (v(1 − u)v−1)v(wv−1w−1)w = (1 + u)v(uv)−1w = η .
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Hence E[η] is contained in the centralizer of Q[u, v, x, y, z] = Q〈H〉, which is simple
with center E. Since n ≡ 2 (mod 4), then 2 is unramified in Q

[
xt, y

]
[R, 4B(1), p.

269] and hence in E. Thus x2 − 2 is irreducible over E, so E[η] is a quadratic field
extension of E. Hence

[E[η] : E][Q〈H〉 : E] = [QD : E] .

Further, since (1 + u)η = 2w, then the set E[η] ∪ Q〈H〉 generates QD. Hence by
[P, Proposition c, p. 165] QD ∼= E[η] ⊗E Q〈H〉. This implies that QD is simple
with center E[η] as claimed. Thus the degree of Q〈G〉 is the same as that of Q〈H〉,
namely, 2t. In all cases the rational dimension of Q〈G〉 is the same as the rank of
Z〈G〉, namely 8(n, 3)φ(mn).



CHAPTER 9

Frobenius complements with core index 60

We continue to use the notation of Notation 6.2 and, when n ≡ 2 (mod 4), the
notation of Notation 7.10.

9.1. Theorem. There exists an A5–complement with core invariant ∆ if and
only if (mn, 60) = 2. Suppose (mn, 60) = 2. The unique (up to isomorphism)
A5–complement with core invariant ∆ is J × H120. Moreover, Z〈J × H120〉 is a
free Z–module of rank 8φ(mn) and the natural map J ×H120 −→ Z〈J〉 ⊗ Z〈H120〉
induces an isomorphism Z〈J ×H120〉 −→ Z〈J〉⊗Z〈H120〉. Q〈J ×H120〉 is a simple
algebra with dimension 8φ(mn) over Q and with degree 2t; its center is naturally

isomorphic to K
[√

5
]
, a quadratic field extension of the center K of Q〈J〉.

The rings Z〈H120〉 and Z〈J〉 were analyzed in Theorems 3.2 and 5.2, respec-
tively. (If J = 1 then Z〈J〉 = Z.) The proof of Theorem 9.1 will show that J×〈−1〉
is the core of G.

Proof. First suppose (mn, 60) = 2. Let G = J ×H120. Z〈J〉 is free of rank
φ(mn) as a Z–module (note that φ(1) = 1; if n 6= 2 apply Theorem 5.2 to the triple
(m,n/2, T ), noting that φ(mn) = φ(mn/2)). Z〈H120〉 is isomorphic to Z[H120]
(Theorem 3.2), which as a Z–module is free (cf. Lemma 3.5). Its rank is therefore

the rational dimension of Q[H120] = Q
[
i, j,
√

5
]
, which is 8. Since H120 and J have

relatively prime orders we can apply the Direct Product Lemma 2.9 to deduce that
G is a Frobenius complement and

Z〈G〉 ∼= Z〈J〉 ⊗ Z〈H120〉 ,

so Z〈G〉 is free of rank 8φ(mn) and Q〈G〉 has rational dimension 8φ(mn). Next,
J × 〈−1〉 is a normal Z–subgroup of G with

G/
(
J × 〈−1〉

) ∼= H120/〈−1〉 ∼= A5 ,

so J ×〈−1〉 is the core of G and G is an A5–complement. If n = 2 then G has core
invariant (1, 2, 〈1〉) = ∆ (Lemma 5.3(B2)); suppose n 6= 2. Let x = (x0,−1) and
y = (y0, 1). Then 〈x, y〉 is the core of G, |x| = n, |y| = m, and xyx−1 = yr, so in
this case also G has core invariant (m,n, 〈r〉) = ∆.

Q[H120] = Q
[
i, j,
√

5
]

is a generalized quaternion algebra over Q
[√

5
]
, so it is

a simple algebra with center Q
[√

5
]
. Next, Q〈J〉 is simple and its center, call it K,

is isomorphic to a subfield of Q[ζmn/t] (cf. Theorem 5.2 if n 6= 2). Since 5 does not

divide mn, then
√

5 6∈ K [R, 4B(1), p. 269]. Hence the center of Q〈J〉 ⊗ Q[H120],

namely K⊗Q
[√

5
]
, is a quadratic field extension of K isomorphic to K

[√
5
]
. Thus

we have an isomorphism

Q〈G〉 ∼=
(
Q[H120]⊗Q[

√
5] K[

√
5
])
⊗K[

√
5]

(
Q〈J〉 ⊗K K

[√
5
])

48



9. FROBENIUS COMPLEMENTS WITH CORE INDEX 60 49

(cf. [P, Exercise 3, p. 226]). Hence Q〈G〉 is simple with center isomorphic to

K
[√

5
]

[P, Proposition b((i) and (ii)), p. 226]. The degree of Q〈G〉 is the square
root of

[
Q〈G〉 : Q

]
/
[
K
[√

5
]

: Q
]

= 8φ(mn)/2[K : Q] = 4[Q〈J〉 : K] = 4t2

(cf. Theorem 5.2), i.e., the degree is 2t.
Let us now suppose G is any A5–complement with core invariant ∆; we must

show that (mn, 60) = 2 and G ∼= J ×H120. Since A5 is not solvable, then G is not
solvable. Thus by a theorem of Zassenhaus [Pa, Theorem 18.6, p. 204], G has a
normal subgroup M of index at most 2 which is isomorphic to H ×H120 where H
is a Z–group of order relatively prime to 30. Now G has a subgroup which is an
A4–complement with the same core invariant ∆ as G, so by Theorem 7.3 n ≡ 2
(mod 4). But then since |G| = mn|A5|, 2|G| = 8. But 8 is already a divisor of
the order of H ×H120; hence M = G. Without loss of generality we may assume
G = H × H120. We must show H ∼= J . The core of G is H × 〈−1〉 since this is
a normal Z–subgroup with factor group A5 (cf. the Classification Theorem 1.4).
Hence H × 〈−1〉 has invariant ∆. If n = 2 then clearly H = J = 1 and we are
done. Suppose n 6= 2. Suppose the Z–group H has invariant (m1, n1, 〈r1〉) and
r1–sequence x1, y1. Let x = (x1,−1) and y = (y1, 1). Then |x| = 2n1, |y| = m1,
xyx−1 = yr1 and 〈x, y〉 = H × 〈−1〉. Therefore H × 〈−1〉 has invariant

(m,n, 〈r〉) = (m1, 2n1, 〈r1〉) ,
so the invariant of H is

(m1, n1, 〈r1〉) = (m,n/2, 〈r〉) .
Thus H and J are isomorphic since they have the same invariant (Theorem 5.2).
We also have that (mn, 60) = 2 since (m1n1, 30) = 1 and n ≡ 2 (mod 4).



CHAPTER 10

Frobenius complements with core index 120

As with other types of Frobenius complements, representations of S5–comple-
ments by generators and relations will be developed at least implicitly (e.g., see
Theorem 10.6B). However the emphasis will be put in this chapter on the close con-
nection between S5– and S4–complements (cf. Proposition 10.7 below). The next
definition exploits this connection to associate invariants with S5–complements.
We continue to use the notation of Notation 6.2 and, when n ≡ 2 (mod 4), Nota-
tion 7.10.

10.1. Definition. Suppose G is an S5–complement with core invariant ∆. An
element (a, g) of Z•

m × Z•
n is an invariant for G (and 〈(a, g + n//6tZ)〉 is a reduced

invariant for G) if it is an invariant for a subgroup of G which is an S4–complement
with the same core as G.

10.2. Theorem. There is an S5–complement with core invariant ∆ if and only
if (mn, 60) = 2. When (mn, 60) = 2, each S5–complement with core invariant ∆
has a unique reduced invariant and assigning to it its reduced invariant induces a
bijection from the set of isomorphism classes of S5–complements with core invariant
∆ to the set of subgroups of Z•

m × Z•
n//6t with order dividing 2.

Before proving Theorem 10.2 we apply it to count isomorphism classes.

10.3. Corollary. Suppose (mn, 60) = 2. The number of isomorphism classes
of S5–complements with core invariant ∆ is 2s, where s is the number of distinct
prime factors of mn//6t.

We now prove a strong version of the assertion of Theorem 10.2 that each
S5–complement has a unique reduced invariant.

10.4. Lemma. Suppose (mn, 60) = 2. Let G be an S5–complement with core
invariant ∆. Then G has a subgroup H of index 5. Moreover every subgroup of G
of index 5 is an S4–complement with the same core as G and with the same core
invariant, invariant, and reduced invariant as H.

Proof. The argument will depend on a simple property of S5. (We thank Ed
Bertram for a helpful discussion of subgroups of S5 of index 5.)

Claim. Any subgroup S of S5 of index 5 is conjugate to the subgroup S∗ of S5

of all permutations fixing 5.
Subproof. Since |S| = 24, S must contain a 3–cycle ξ and a Sylow 2–subgroup

of S5. Possibly replacing S by a conjugate we may assume without loss of generality
that S ⊃ 〈(1234), (13)〉. If ξ has the form (a b 5), then ξδξ−1 has the form (5 c)
where δ = (13) if b ∈ {1, 3} and δ = (2, 4) if b ∈ {2, 4}. Thus the 5–cycle (1234)(5 c)
is in S, contradicting that [S5 : S] = 5. Hence ξ fixes 5 and so

S = 〈(1234), (13), ξ〉 = S∗

50
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(the middle group is contained in the others and has order at least 24 = |S| = |S∗|).
This completes the proof of the claim.

Since S∗ ∼= S4 the Noether Isomorphism Theorem says G has a subgroup H
of index 5 which is an S4–complement with the same core N as G. Now let H1

be any subgroup of G of index 5. For each odd prime p dividing mn let Mp

be a Sylow p–subgroup of H1. Then Mp ⊂ N since every Sylow p–subgroup of
G lies in the normal subgroup N for p an odd prime divisor of mn. But N is
generated by all the Mp together with the unique element of G of order 2 (recall
that n ≡ 2 (mod 4) and m is odd), so N ⊂ H1. Now the subgroups H/N and
H1/N of G/N (∼= S5) are of index 5, so by the Claim above there exists g ∈ G with
(gN)(H/N)(gN)−1 = H1/N . Thus gHg−1 = H1. Since H and H1 are conjugate,
H1 is an S4–complement with the same core, core invariant, invariant and reduced
invariant as H (Proposition 8.6).

Part of the next lemma says that the hypothesis (mn, 60) = 2 of the previous
lemma was redundant.

10.5. Lemma. Let G be an S5–complement with core invariant ∆. Then
(mn, 60) = 2. Moreover any S5–complement with the same core invariant and
reduced invariant as G is isomorphic to G.

Proof. Since A5 is the unique subgroup of S5 of index 2, then G has a unique
subgroup A of index 2 which is an A5–complement with the same core as G. The-
orem 9.1 then implies that (mn, 60) = 2. Now let (a, g) be the invariant of G.
By Proposition 8.6 it suffices to show that (a, g) (together with the core invariant
∆ and core index 120) determine G up to isomorphism. By Theorem 9.1 we may
assume without loss of generality that the subgroup A is an internal direct product
of the groups H120 and J . By Lemma 4.2 there exists w ∈ G with

w2 = i, wjw−1 = k, wαw−1 = (αi)−1, wβw−1 = (βi)−1 .(9)

The subgroup JH24 = 〈i, j,α, x0, y0〉 has order 24(mn/2), so the group S :=
〈i, j, w, x0, y0,α〉 has order 24mn. Thus by Lemma 10.4 S is an S4–complement
with invariant (a, g) and the same core as G, namely 〈−1x0, y0〉 (cf. the paragraph
after the statement of Theorem 9.1). By Lemma 7.11 (last sentence) i, k, −1x0,
y0, α2 is an r–sequence for JH24. By the last sentence of Lemma 8.4 we may
assume without loss of generality that x0 is chosen so that i, k, w, −1x0, y0, α2 is
an r–sequence for S with invariant (a, g). Then since g is odd, wx0w

−1 = xg0 and
wy0w

−1 = ya0 ; these equations, together with the above list (9) of relations show
exactly how G is determined as a cyclic extension of the direct product JH120, and
hence how is G determined up to isomorphism by its core invariant, core index, and
invariant.

In the above proof we showed that G was isomorphic to that extension of
J ×H120 by a cyclic group of order 2 associated with the element (1, i) and auto-
morphism (ψ0, τ) of J ×H120 where ψ0 is the automorphism of Lemma 3.6A and τ
is the automorphism of J taking x0 to xg0 and y0 to ya0 [S, 9.7.1, p. 250]. This is our
only explicit reference to the machinery of cyclic extensions of groups; of course we
have repeatedly made such constructions using the Cyclic Extension Lemma 2.8.

The next theorem will complete the proof of Theorem 10.2 and give the struc-
ture of the S5–complements and their truncated group rings.
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10.6. Theorem. Suppose that (mn, 60) = 2 and that S is a subgroup of Z•
m ×

Z•
n//6t of order dividing 2.

(A) There exists (a, g) ∈ Z•
m × Z•

n with S = 〈(a, g + n//6tZ)〉 and g ≡ 1
(mod (2t)n) and g ≡ −1 (mod 3n). There also exists a unique automorphism ρ of

Z〈J×H120〉 fixing
(
1, i
)

and mapping
(
x0, 1

)
,
(
y0, 1

)
, and

(
1, j
)

to
(
x0, 1

)g
,
(
y0, 1

)a
,

and
(
1, k
)
, respectively. Moreover ρ2 acts as conjugation by

(
1, i
)
.

(B) The subgroup G := 〈
(
x0, 1

)
,
(
y0, 1

)
,
(
1, j
)
,
(
1,α

)
,
(
1,β

)
, ρ̂ 〉 of D• where

D :=
(
Z〈J×H120〉, ρ, 2, (1, i)

)
is an S5–complement with core invariant ∆, invariant

(a, g), and reduced invariant S. The inclusion G −→ D induces an isomorphism
θ : Z〈G〉 −→ D. Z〈G〉 is free of rank 16φ(mn) as a Z–module.

(C) θ induces an isomorphism Q〈G〉 −→ QD. QD is simple with rational
dimension 16φ(mn) and degree 4t. If E denotes the center of Q〈J × H120〉, then
the center of QD is Eρ.

The rings Z〈J × H120〉, Q〈J × H120〉, and E were analyzed in Theorem 9.1;
Lemma 3.6 shows that ρ maps the square root of 5 in E to its additive inverse
(recall E ∼= K

[√
5
]

where K is the center of Q〈J〉).

Proof. The existence of g follows from the fact that (2t)n, 3n, and n//6t are

relatively prime. Since g ≡ 1 (mod t), xg0y
a
0x

−g
0 =

(
ya0
)r

. Also
∣∣xg0
∣∣ = n/2 and∣∣ya0

∣∣ = m. Hence there is a unique automorphism of J = 〈x0, y0〉 taking x0 to
xg0 and y0 to ya0 ; by Lemma 3.6A there is a unique automorphism of H120 fixing
i and mapping j to k. Combining these automorphisms gives an automorphism
ρ0 of J × H120. Then ρ0 induces the automorphism ρ of Z〈J × H120〉. Moreover

ρ2 is conjugation by
(
1, i
)

because ρ2
0 is conjugation by (1, i), as is easily checked

(use Lemma 3.6A and the facts that a2 = 1 and g2 = 1). Thus the ring D is
well–defined.

By the Cyclic Extension Lemma 2.8 (applied with “H” the image of J ×H120

in Z〈J ×H120〉) G is a Frobenius complement and the inclusion G −→ D induces
an isomorphism Z〈G〉 −→ D. We now show G is an S5–complement with invari-
ant (a, g) and core invariant ∆. First, G contains an isomorphic copy of H120,
so it is not solvable. Further, it has an element of order 8, so it cannot be an
A5–complement (cf. Theorem 9.1). Thus it must be an S5–complement by the
Classification Theorem 1.4. The subgroup

H := 〈
(
x0, 1

)
,
(
y0, 1

)
,
(
1, i
)
, 〈
(
1, j
)
,
(
1,α

)
, ρ̂ 〉

has index 5 in G and hence by Lemma 10.4 is an S4–complement with the same core,
core invariant and invariant as G. Suppose the core of G has r–sequence x1, y1 and
invariant (m1, n1, 〈r1〉). Then 〈x2

1, y1〉 is a normal subgroup of G of order m1n1/2,
which is relatively prime to

[
G : 〈x2

1, y1〉
]

= 2|S5| = 240. Hence it equals 〈
(
x0, 1

)
,(

y0, 1
)
〉, since this supersolvable group also has order mn/2 = |G|/240 = m1n1/2

[S, Exercise 9.3.20, p. 230]. Thus 〈x1, y1〉 = 〈
(
x0,−1

)
,
(
y0, 1

)
〉 (the right hand

group is a subgroup properly containing 〈
(
x0, 1

)
,
(
y0, 1

)
〉, which has index 2 in

〈x1, y1〉). Thus G has core invariant ∆. With Theorem 7.11 it is now routine to
verify that

(
1, i
)
,
(
1,k
)
, ρ̂,
(
x0,−1

)
,
(
y0, 1

)
,
(
1,α2

)
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is an r–sequence for H with invariant (a, g), so G does indeed have invariant (a, g).
For example, to verify the last condition of Definition 8.1 we must check that

ρ̂
(
1,α2

)
ρ̂−1 =

(
x0,−1

)−n//3(
1,k
)(

1,α2
)2
,

i.e., that ρ0

(
(1,α2)

)
= (1,kα) (since 3 ∤ n). By Lemma 3.6A this is equivalent to

saying (αi)−2 = kα, which is easily verified using Lemma 3.4A.
From the construction of D we know that Z〈G〉 ∼= D is free of rank 16φ(mn)

as a Z–module (recall from Theorem 9.1 that Z〈J ×H120〉 is free of rank 8φ(mn)).
It follows that Q〈G〉 has rational rank 16φ(mn) and it is isomorphic to QD =(
Q〈J×H120〉, ρ′, 2, (1, i)

)
where ρ′ is the canonical extension of ρ to Q〈J×H120〉 (cf.

Remark 2.6C). By Theorem 9.1 and Theorem 3.2 we have a natural isomorphism

Q〈J ×H120〉 −→ Q〈J〉 ⊗Q
[
i, j,
√

5
]
.

By its construction ρ induces an automorphism of Q〈J〉 taking x0 to xg0 and y0 to ya0
and an automorphism of Q

[
i, j,
√

5
]

which by Lemma 3.6C maps
√

5 to −
√

5. The

above isomorphism on Q〈J ×H120〉 maps E to K ⊗Q
[√

5
]

where K is the center

of Q〈J〉. Now the restriction of ρ to E has order exactly 2 (since ρ
(√

5
)

= −
√

5

and a2 = 1 and g2 = 1). Hence by Albert’s Theorem 2.5 QD is simple with center
Eρ. The degree of QD is the square root of

[QD : Q]/[K[
√

5]ρ : Q] = 16φ(mn)/[K : Q] = 16[Q〈J〉 : Q]/[K : Q] = 16t2

(by Theorem 5.2). Thus the degree of QD is 4t, as claimed.

The last result in this chapter highlights the close connection between isomor-
phism classes of S4–complements and isomorphism classes of S5–complements.

10.7. Proposition. There is a one–to–one correspondence between the set of
isomorphism classes of S5–complements and the set of isomorphism classes of S4–
complements whose cores have order relatively prime to 15. If G and H are an S5–
complement and an S4–complement, respectively, then their isomorphism classes
correspond if and only if H is isomorphic to a subgroup of G of index 5.

Proof. By Lemma 10.4 and the first part of Theorem 10.2, any S5-complement
G has a subgroup of index 5 which is an S4–complement with the same core as G
and hence with a core whose order is relatively prime to 15, and all such subgroups
are isomorphic. Thus we have a well–defined function from the set of isomorphism
classes of S5–complements to the set of isomorphism classes of S4–complements
which have cores of order relatively prime to 15. Now let H be any such S4–
complement, say with invariant (a, g) and core invariant ∆. Since (mn, 60) = 2
(note n ≡ 2 (mod 4) by Theorem 8.2), there is an S5–complement G with invariant
(a, g) and core invariant ∆ (Theorem 10.2). By Lemma 10.4 G has a subgroup
of index 5 which is an S4–complement with invariant (a, g) and core invariant
∆. Hence this subgroup is isomorphic to H . Therefore our map is surjective. If
G1 is another S5–complement with a subgroup of index 5 isomorphic to H , then
G1 also has invariant (a, g) and core invariant ∆ (Lemma 10.4). Thus G ∼= G1

(Theorem 10.2), so our map is also injective.



CHAPTER 11

Counting Frobenius Complements

The following table lists the number of isomorphism classes of Frobenius com-
plements G subject to restrictions on the core index, call it I, of G and on the order
|G| of G.

|G| ≤ 105 |G| ≤ 5 · 105 |G| ≤ 106

I = 1 256,349 1,494,276 3,191,063
I = 4 137,769 935,711 2,119,504
I = 12 2714 14,524 29,865
I = 24 3229 18,775 39,850
I = 60 223 1115 2230
I = 120 275 1599 3395
TOTAL 400,559 2,466,000 5,385,907

About 88.8% of the isomorphism classes of order at most 106 have even order
(specifically, 4,782,903 out of 5,385,907). This suggests that the focus of this paper
on Frobenius groups with abelian Frobenius kernel is not unduly restrictive.

The main ingredients in the construction of the above table were, first, the
proposition below, which counts the number of proper Frobenius triples with cer-
tain given parameters, and, second, the “counting corollaries”, by which name we
refer collectively to Corollaries 6.6, 7.5, 8.3 and 10.3 which together with Theo-
rems 5.2A and 9.1 allow one to easily compute the number of isomorphism classes
of Frobenius complements with given core invariant in terms of these parameters.
The calculations were organized around a nest of loops involving first picking a
value for the order of the commutator subgroup of the core, then picking values of
the exponents e(i, j) of Part (B2) of the proposition below, and finally picking a
value for the order of the commutator factor group of the core.

11.1. Proposition. Let p(1), . . . , p(s) be the prime divisors of an integer m
such that m ≥ 3.

(A) Suppose (m,n, 〈r〉) is a proper Frobenius triple. Set t = |r|. For each i ≤ s
let t(i) = |r + p(i)Z|. Then

(A1) (m,n) = 1, n > 1, and tt0 divides n;
(A2) t = LCM[t(1), . . . , t(s)]; and
(A3) if i ≤ s, then t(i) is a divisor of (p(i)− 1)//m and t(i) 6= 1.
(B) Suppose now that n, t, and t(1), . . . , t(s) are any positive integers satisfying

conditions (A1), (A2) and (A3).
(B1) Then the number of proper Frobenius triples of the form (m,n, 〈r〉) with

t(i) = |r + p(i)Z| for all i ≤ s is η :=
(∏

i≤s φ(t(i))
)
/φ(t).

54
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(B2) Let q(1), . . . , q(s∗) denote the distinct prime factors of
∏
i≤s(p(i)− 1)//m

and for each i ≤ s write t(i) =
∏
j≤s∗ q(j)

e(i,j). Then η equals
∏

j≤s∗
q(j)L(j)−I(j)+min{1−M(j),0}(q(j)− 1)I(j)−min{M(j),1}

where for each j ≤ s∗, L(j) =
∑
i≤s e(i, j), I(j) =

∑
i≤s min{1, e(i, j)}, and

M(j) = max{e(1, j), . . . , e(s, j)}.
In the statement of the above proposition t(i) = |r + p(i)Z| denotes the order

of r + p(i)Z as an element of the multiplicative group Z•
p(i). Remark 11.2 below

discusses some of the significance of these parameters.

Proof. Condition (A1) follows directly from Definition 5.1(A and B). We can
write m =

∏
i≤s p(i)

e(i); then we have a natural isomorphism

Z•
m −→

∏

i≤s
Z•
p(i)e(i) .(10)

Thus t is the least common multiple of the orders of r(i) := r + p(i)e(i)Z, i ≤ s.
Now the order of each r(i) divides t and hence it is not divisible by p(i). On the
other hand Z•

p(i)e(i) is cyclic of order p(i)e(i)−1(p(i)− 1). Hence the order of r(i) is

|r+ p(i)Z| = t(i) (the kernel of the canonical surjection Z•
p(i)e(i) −→ Z•

p(i) has order

p(i)e(i)−1). This proves (A2). Now fix for consideration any i ≤ s. If t(i) = 1,
then r ≡ 1 (mod p(i)), contradicting that (r − 1,m) = 1 (Lemma 5.3A). That t(i)
divides p(i)− 1 and (t(i),m) = 1 follow from Lagrange’s theorem and the fact that
(t,m) = 1, respectively. This completes the proof of (A3).

Now suppose n, t and (t(i) : i ≤ s) satisfy conditions (A1), (A2), and (A3).
Suppose r ∈ Z•

m has order relatively prime to m and that | r + p(i)Z |= t(i) for
all i ≤ s. We claim that (m,n, 〈r〉) is a Frobenius triple. If some p(i) divides
(m, r − 1), then 1 = |r + p(i)Z| = t(i), contradicting (A3). Hence (m, r − 1) = 1.
Since r has order relatively prime to m, the order of r equals the order of its image
in
∏
i≤s Z•

p(i), which is t. Since tt0 divides n it follows that rn/n0 = 1. That

(m,n, 〈r〉) is a Frobenius triple now follows from Lemma 5.3A.
The isomorphism (10) shows that the set of all r ∈ Z•

m satisfying the conditions
of the previous paragraph is bijective with the set of s–tuples (r1, . . . , rs) where each
ri is an element of Z•

p(i)e(i) of order t(i). (Since p(i) ∤ t(i), the order of any such ri

is the same as that of ri + p(i)Z in Z•
p(i).) Since each Z•

p(i)e(i) is cyclic, the number

of such elements r is
∏
i≤s φ(t(i)). Each group generated by such an element is of

course generated by φ(t) such elements. Hence the number of subgroups generated
by such elements is

(∏
i≤s φ(t(i))

)
/φ(t), and hence this is the number of Frobenius

triples (m,n, 〈r〉) with |r + p(i)Z| = t(i) for all i ≤ s. This completes the proof of
(B1). The assertion (B2) follows from a routine computation using [NZ, Theorem
2.16, p. 48].

11.2. Remark. Let ∆ be the Frobenius triple (m,n, 〈r〉) of Proposition 11.1A.
Our focus above on the parameters m, n, and t(i) (i ≤ s) is only partly explained
by the fact that Proposition 11.1B allows us to compute the number of Frobenius
triples with these parameters. Just as important, these parameters determine the
number of isomorphism classes of Frobenius complements with core invariant ∆.
In fact by the counting corollaries the numbers of such isomorphism classes with
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given core index is determined by m, n, and t except in the case of core index 12
when 3 divides t. In this case the crucial condition (4) of Corollary 7.5 is satisfied
if and only if for all i ≤ s, either 3p(i)−1 = 1 or 3p(i)−1 does not divide t(i). (Note

that 3t(i) is the order of rn//3 + p(i)Z.) The invariants t(i) along with m and n
are also enough to determine whether or not a 1–complement with invariant ∆ is
isomorphic to a subgroup of the group of units of a division ring (cf. Theorem 17.6).



CHAPTER 12

Maximal Orders

In this chapter we will prove Theorem 1.1 of the Introduction and give a repre-
sentation of truncated group rings as crossed product algebras. The results in this
chapter are crucial for the analysis of Frobenius groups with abelian kernel in the
next three chapters.

12.1. Notation. For the remainder of this paper G will denote a Frobenius
complement with core C and core invariant ∆ = (m,n, T ); as in Notation 6.2 we
fix a generator r of T and set t = |T |. We also let Z and deg Q〈G〉 denote the
center and degree, respectively, of Q〈G〉.

12.2. Theorem. Suppose G is a Frobenius complement. Then Q〈G〉 is a sim-
ple ring with finite dimension as a Q–algebra and with degree dividing |G|. Further,
Z〈G〉 is nontrivial, finitely generated and free as a Z–module; it is a Z–order in
Q〈G〉. Finally, Z(G)〈G〉 is nontrivial, finitely generated and free as a Z(G)–module
and is a Z(G)–order in Q〈G〉.

The last sentence of Theorem 12.2 is an immediate consequence of the previous
ones, which themselves were proved for each of the six types of Frobenius comple-
ments in Chapters 5 to 10. (Lemma 16.2 below gives a summary of some of the
results of these chapters involving the rational dimension and the degree of Q〈G〉.
It shows that the dimension is at most |G| and the degree divides [G : C]t.)

The next corollary to Theorem 12.2 uses the fact that the construction of
truncated group rings is functorial on the category of groups and injective homo-
morphisms.

12.3. Corollary. Suppose H is a subgroup of a Frobenius complement G.
Then the natural maps G −→ Z〈G〉, Z〈H〉 −→ Z〈G〉, Q〈H〉 −→ Q〈G〉, and
Z〈G〉 −→ Q〈G〉 are injective.

Proof. Theorem 12.2 says that Z〈G〉 is nontrivial and free as a Z–module, so
by Lemma 2.3 the map G −→ Z〈G〉 is injective. It also follows that Z〈G〉 −→ Q〈G〉
is injective. The unitary homomorphism Z〈H〉 −→ Z〈G〉 lifts to a unitary ring
homomorphism Q〈H〉 −→ Q〈G〉, which is injective since Q〈H〉 is simple and Q〈G〉
nontrivial. (Note that if H is trivial, then Z〈H〉 ∼= Z.) Hence Z〈H〉 −→ Z〈G〉 is
also injective.

It is perhaps worth recording a second corollary to Theorem 12.2 and the Direct
Product Lemma 2.9.

12.4. Corollary. A direct product of two nontrivial groups is a Frobenius
complement if and only if the two groups are Frobenius complements of relatively
prime orders.

57
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12.5. Remark and Notation. Let L = Q〈C′Z(C)〉. C′Z(C) is a normal
subgroup ofG since the center Z(C) and commutator subgroupC′ are characteristic
subgroups of the normal subgroup C. We let x, y denote an r–sequence for C; then
C′Z(C) = 〈xt, y〉 = 〈xty〉, and L = Q

[
xt, y

] ∼= Q[ζmn/t] by Theorem 3.2. We
will further assume that x and y have been chosen so that they are part of an
r–sequence for G if G is solvable (so that it has an r–sequence). Finally we use
Corollary 12.3 to identify H with a subset of Q〈H〉 and L with a subfield of Q〈H〉
for any Frobenius complement H with core C and, more generally, to identify Q〈J〉
with a subring of Q〈H〉 for any subgroup J of H .

The next theorem shows that the center of Q〈G〉 is an abelian extension of Q.
It also gives implicitly a representation of Q〈G〉 as a crossed product algebra [P,
§14.1, pp. 251–252]. It will be applied in the proof of Theorem 1.1 and in Chapters
13, 14, 15, and 17. Recall that a subfield E of Q〈G〉 containing Z is called strictly
maximal if [E : Z] (or, equivalently, [Q〈G〉 : E]) equals deg Q〈G〉 [P, p. 236].

12.6. Theorem. There is an element ζ of Z(G)〈G〉 such that ζ|G| = 1 and
E := Q[ζ] is a strictly maximal subfield of Q〈G〉 containing L. Moreover ζ can be
chosen so that for each η ∈ Gal(E/Z) there exists vη ∈ Z(G)〈G〉• such that for all

τ , ρ ∈ Gal(E/Z), vτvρv
−1
τρ ∈ 〈ζ〉 and τ is the restriction to E of conjugation by vτ .

12.7. Remark. The proof of Theorem 12.6 will show that ζ can be chosen of
order f := smn/t where s ≤ 6 and s divides [G : C]. f is of course a multiple of
the conductor of Z; the conductor can equal f (as when G is H48, or cyclic of order
not congruent to 2 modulo 4, or binary dihedral of order divisible by 8) or half f

(as when G is either H120 or cyclic or binary dihedral of other orders) or neither of
these values (as when G is H24 or the 1–complement with invariant (3, 4, 〈2+3Z〉)).

In the construction below of the vη of Theorem 12.6 we will always have v1 = 1
(so the associated factor set is normalized).

We now prove the above theorem.

Proof. Throughout the proof we let “i mod j” denote the remainder when i
is divided by j (for i, j ∈ Z with j > 0). The proof will be broken into eleven cases;
the only consolation the author can offer the reader is the fact that no further such
casework will be needed until Chapter 15.

Case 1: [G : C] = 1. We use Theorem 5.2 and its notation to identify Q〈G〉 with
QA. Then Q〈G〉 has degree t and center Lσ. Hence L = Q[ζmn/t] is itself a strictly
maximal subfield of Q〈G〉 and we set E = L and ζ = ζmn/t. The automorphism σ

on L is precisely conjugation by x; it clearly generates Gal(E/Z), so we set vσi = xi

whenever 0 ≤ i < t. If also 0 ≤ j < t, then

vσivσjv−1
σiσj = xixjx−((i+j) mod t) ∈ 〈xt〉

which is a subgroup of 〈ζ〉.
The remaining cases are similar to Case 1, but with various complications.
Case 2: [G : C] = 4 and G has reduced invariant S with |S| ≤ 2. In this case

we use the notation and results of Theorem 6.14 and identify Q〈G〉 with QB. The
hypothesis on S implies that v commutes with x and y and hence with ζmn/t. By
Theorem 6.15 Q〈G〉 has center (Lσ[v])σ1 and degree 2t, so that

E := L[v] = Q[ζ] ∼= Q[ζ2mn/t]



12. MAXIMAL ORDERS 59

is a strictly maximal subfield of Q〈G〉, where ζ = vζmn/t. Conjugation by x and
by u induce automorphisms σ and σ1 of E with orders t and 2, respectively. Both
fix Z (recall that x and v commute) and hence they generate the Galois group
Gal(E/Z). A typical element of the Galois group can be uniquely written in the

form τ = σiσj1 (where 0 ≤ i < t, 0 ≤ j < 2) and can be obtained by conjugation
by vτ := xiuj ; each of the elements vτvρv

−1
τρ can be written in the form

(
xiuj

)(
xi

′

uj
′)(
x(i+i′)mod tu(j+j′) mod2

)−1
,

which is a power of xt = ζn/t ∈ 〈ζ〉 since u2 = −1 is a power of xt, uxu−1 = xg,
and g ≡ 1 (mod t).

Case 3: [G : C] = |S| = 4, where S is the reduced invariant of G. Again we use
the notation of Theorem 6.14 and identify Q〈G〉 with QB. By Theorem 6.15 Q〈G〉
has degree 4t and center Lσ,σ0,σ1 , so in this case L is a strictly maximal subfield
and we again set E = L and ζ = ζmn/t. The Galois group of E/Z is generated
by σ (conjugation by x), σ0 (conjugation by v) and σ1 (conjugation by u) since
these homomorphisms of Q〈G〉 map E into itself, fix Z, and generate a group of
automorphisms of E of order 4t. Each element of the Galois group can be uniquely
written in the form τ = σiσj0σ

k
1 (where 0 ≤ i < t, 0 ≤ j < 2, 0 ≤ k < 2) and is

given by conjugation by vτ := xivjuk. Elements of Q〈G〉 of the form vτvρ(vτρ)
−1

can be written in the form

xivjuk xi
′

vj
′

uk
′(
x(i+i′)mod tv(j+j′)mod 2u(k+k′) mod2

)−1
,

which is a power of 〈ζ〉 since uxu−1 and vxv−1 are congruent to x modulo xt = ζn/t,

and both u2 = −1 and v2 = xn//2 are in 〈xt〉 ⊂ 〈ζ〉.
Case 4: [G : C] = 12 and 3 ∤ n. We now use the notation and results of

Theorem 7.11 and identify Q〈G〉 with

Q[i, j]⊗
(
Q[ζmn/t], σ, t, ζ

2
n/t

)
.

Then L = Q⊗Q[ζmn/t]. The center of Q〈G〉 is Q⊗Q[ζmn/t]
σ and the degree is 2t.

Let ζ = i⊗ ζ2
mn/t. Then

E := Q[i]⊗Q[ζmn/t] = Q[ζ] ∼= Q[ζ2mn/t]

is a strictly maximal subfield. The Galois group of E/Z is generated by conjugation
by j⊗ 1 (call it ρ) and conjugation by 1⊗ σ̂ (call it δ). Elements of Gal(E/Z) can
be uniquely written in the form τ = δiρk where 0 ≤ i < t, 0 ≤ k < 2; such τ is

the restriction to E of conjugation by vτ :=
(
1⊗ σ̂

)i(
j⊗ 1

)k
= jk ⊗ σ̂i. For any τ ,

η ∈ Gal(E/Z) the element vτvηv
−1
τη of Q〈G〉 can be written in the form

(
jk ⊗ σ̂i

)(
jk

′ ⊗ σ̂i′
)(

j(k+k
′) mod2 ⊗ σ̂(i+i′)mod t

)−1

which lies in

±〈1⊗ σ̂t〉 ⊂ 〈i⊗ ζ2
mn/t〉 = 〈ζ〉 .

Case 5: [G : C] = 12, 3|n, and G has trivial reduced invariant. We now use the
notation and results of Theorem 7.13, taking S = 1. We may identify Q〈G〉 with
QC. Let A = (−1 + u + v + vu)/2 and ζ = xtyvAz. As noted in the paragraph
after the statement of Theorem 7.13, the ring L[v,Az] is a cubic field extension of
L[v] = Q[ζmn/t, v] ∼= Q[ζ2mn/t] and Az is a root of unity of order 3(3n). Since Q〈G〉
has degree 2t and center Lσ[Az], it follows that

E := Q[ζ] = L[v,Az] ∼= Q[ζ6mn/t]
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is a strictly maximal field extension of Z. The automorphisms σ (conjugation by
x) and σ1 (conjugation by u) map E to itself, fix Z, and have orders t and 2,
respectively. Thus they generate Gal(E/Z). Each member of the Galois group can

be uniquely written in the form τ = σiσj1 (0 ≤ i < t, 0 ≤ j < 2) and such τ acts by
conjugation by vτ := xiuj. The elements of Q〈G〉 of the form vτvρv

−1
τρ are easily

checked to all be in 〈xt〉 ⊂ 〈ζ〉.
(The reader might note that the above case is one of the few in which the

element ζ is not in the image of the map G −→ Q〈G〉.)
Case 6: [G : C] = 12, 3|n, and G has nontrivial reduced invariant S. We again

use the notation of Theorem 7.13 and identify Q〈G〉 with QC. The degree of Q〈G〉
is 6t and the center is Lσ,τ , so

E := Q[ζ] = L[v] ∼= Q[ζ2mn/t]

is a strictly maximal subfield, where ζ = xtyv. We have automorphisms σ (conju-
gation by x), σ1 (conjugation by u) and τ1 (conjugation by Az, where A is defined
as in the previous case) which map E into itself and fix Z. (Note that conjugation
by Az fixes v and acts on xt and y exactly as τ does.) Since (Az)3 = z3 = xn//3,
then τ3

1 = σn//3, and so τ1 has order 3(3t) . Thus 〈σ, σ1, τ1〉 has order 6t, so it is the
Galois group of E/Z. Each element of the Galois group can be uniquely written

in the form η = σiσj1τ
k
1 where 0 ≤ i < t, 0 ≤ j < 2, 0 ≤ k < 3; such η is precisely

conjugation by vη := xiuj(Az)k. With ρ = σi
′

σj
′

1 τ
k′

1 (where 0 ≤ i′ < t, 0 ≤ j′ < 2,
0 ≤ k′ < 3) we have

ηρ = σ(i+i′+δ(n//3))mod tσ
(j+j′)mod 2
1 τk+k

′−3δ
1

where δ = 1 if k + k′ ≥ 3 and δ = 0 otherwise. Hence vηvρv
−1
ηρ equals

xiuj(Az)kxi
′

uj
′

(Az)k
′(
x(i+i′+δ(n//3))mod tu(j+j′)mod 2(Az)k+k

′−3δ
)−1

which is a power of xt and hence lies in 〈ζ〉. (Recall that zxz−1 = xg where g ≡ 1
(mod t); when δ = 1 use the fact that z3 = xn//3.)

(The above case is one of the few in which some vη is not in the image of
the natural map G −→ Q〈G〉. In this case we used conjugation by Az instead of
conjugation by z because the latter does not map E into itself.)

The next three cases deal with S4–complements. In each of these cases we use
the results and notation of Theorem 8.7 and we identify Q〈G〉 with QD. Then L
is identified with Q[xt, y].

Case 7: 3 ∤ n and G is an S4–complement with trivial reduced invariant. As
usual let σ ∈ Aut Q〈G〉 be conjugation by x. Then Q〈G〉 has degree 2t and center
Lσ[η], where η = (1− u)w. Let ζ = xtyw. Then

E := L[w] = Q[ζ] ∼= Q[ζ4mn/t]

is a strictly maximal subfield of Q〈G〉. The inner automorphisms σ and σ0 (conju-
gation by v) of Q〈G〉 map E into itself, fix Z, and have orders t and 2, respectively.
(Note that vwv−1 = w−1.) Thus they generate the Galois group of E/Z. A typical

element τ = σiσj0 (where 0 ≤ i < t, 0 ≤ j < 2) of Gal(E/Z) is conjugation by
vτ := xivj ; one easily checks that each vτvρ(vτρ)

−1 is in 〈xt〉 ⊂ 〈ζ〉.
Case 8: 3 ∤ n and G is an S4–complement with nontrivial reduced invariant.

Then the degree of Q〈G〉 is 4t and the center is Lρ,σ where σ is conjugation by x
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and ρ is conjugation by w. Let ζ = xtyu. Then

E := L[u] = Q[ζ] ∼= Q[ζ2mn/t]

is a strictly maximal subfield. The inner automorphisms σ0 (conjugation by v), σ
and ρ each map E into itself, fix Z, and have orders 2, t and 2, respectively, on
E. Thus they generate Gal(E/Z), a typical element of which can be written in

the form τ = σiσj0ρ
k where 0 ≤ i < t, 0 ≤ j < 2, 0 ≤ k < 2; τ is conjugation

by vτ := xivjwk. Elements of Q〈G〉 of the form vτvηv
−1
τη are all in 〈u, xt〉 ⊂ 〈ζ〉.

(Recall that vwv−1 = w−1.)
Case 9: 3|n and [G : C] = 24. Then Q〈G〉 has degree 4t and center (Lσ[Az])ρ

where, as before, A = (−1+u+v+vu)/2; σ is conjugation by x; and ρ is conjugation
by w. Then

E := L[u,Az] = Q[ζ] ∼= Q[ζ6mn/t]

(where ζ = xtyuAz) is a strictly maximal subfield of Q〈G〉. The inner automor-
phisms σ0 (conjugation by v), σ and ρ each map E to itself, fix Z, and have orders 2,
t and 2, respectively, on E. (Note that wAzw−1 = x−n//3(Az)2 and x−n//3 ∈ 〈xt〉
since 3 ∤ t.) Hence they generate the Galois group of E/Z. As in the previous

case, each τ = σiσj0ρ
k (where 0 ≤ i < t, 0 ≤ j < 2, 0 ≤ k < 2) is conjugation by

vτ := xivjwk and elements of Q〈G〉 of the form vτvηv
−1
τη are all in 〈u, xt〉 ⊂ 〈ζ〉.

Case 10: [G : C] = 60. We use Theorem 9.1 and its notation, so we may
identify Q〈G〉 with

E :=
(
Q[ζmn/t], σ, t, ζn/2t

)
⊗Q

[√
5, i, j

]
.

(We also use here the isomorphisms of Theorems 3.2 and 5.2D.) Q〈G〉 has degree

2t and center Q[ζmn/t]
σ ⊗Q

[√
5
]

and hence

E := Q[ζmn/t]⊗Q[β] = Q[ζ] ∼= Q[ζ5mn/t]

is a strictly maximal subfield of Q〈G〉, where ζ = ζmn/t ⊗ β (β is defined at the
beginning of Chapter 3). The inner automorphisms σ (conjugation by σ̂ ⊗ 1) and
σ0 (conjugation by 1⊗k) of Q〈G〉 map E into itself, fix Z, and have orders t and 2,

respectively, on E. (The key fact here is that kβk−1 = β∗ = β−1 by Lemma 3.4B.)
Hence σ and σ0 generate Gal(E/Z). A typical element of the Galois group has the

form τ = σiσj0 (where 0 ≤ i < t, 0 ≤ j < 2) and is given by conjugation by
vτ := σ̂i ⊗ kj . A routine computation shows all elements of Q〈G〉 of the form
vτvηv

−1
τη are in 〈ζn/t ⊗ 1〉 ⊂ 〈ζ〉.

Case 11: [G : C] = 120. Let E be the ring introduced in Case 10 above. We
may identify Q〈G〉 with (E , ρ, 2, 1 ⊗ i) where ρ0 ∈ Aut(Q[ζmn/t], σ, t, ζn/2t) maps

ζm and σ̂ to ζam and σ̂g, respectively; ρ1 ∈ Aut Q[i, j,
√

5 ] is the automorphism of
Lemma 3.6C; and ρ = ρ0 ⊗ ρ1 ∈ Aut E (Theorem 10.6). The degree of Q〈G〉 is 4t

and its center is Z =
(
Q[ζmn/t]

σ ⊗ Q
[√

5
])ρ

. Hence the field E of Case 10 is also

a strictly maximal subfield for Q〈G〉 in this case (recall that ρ1(
√

5 ) = −
√

5). A
routine computation using Lemmas 3.4 (A and B) and 3.6 shows that

(
iα−1

)
ρ1(β)

(
iα−1

)−1
= iα−1i−1β−1αi−1 = β2 .(11)

It follows that conjugation by (1⊗ iα−1)ρ̂ is an automorphism, call it ρ3, of Q〈G〉
which maps E into itself, fixes Z and has order 4. Also conjugation by σ̂ ⊗ 1 (call
it σ) maps E to itself, fixes Z, and has odd order t. Hence Gal(E/Z) = 〈σ, ρ3〉.
Each element τ = σiρj3 (where 0 ≤ i < t, 0 ≤ j < 4) of the Galois group is just
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conjugation by vτ :=
(
σ̂ ⊗ 1

)i(
(1 ⊗ iα−1)ρ̂

)j
. Let η = σi

′

ρj
′

3 where 0 ≤ i′ < t,
0 ≤ j′ < 4. Then

vτη = (σ̂ ⊗ 1)(i+i
′)modt((1⊗ iα−1)ρ̂)(j+j

′)mod4 .

Since (1 ⊗ iα−1)ρ̂(σ̂ ⊗ 1) = (σ̂ ⊗ 1)g(1⊗ iα−1)ρ̂, then

(
(1⊗ iα−1)ρ̂

)j
(σ̂ ⊗ 1)i

′(
(1⊗ iα−1)ρ̂

)j′(
(1⊗ iα−1)ρ̂

)−((j+j′)mod 4)

= (σ̂ ⊗ 1)i
′gj(

(1 ⊗ iα−1)ρ̂
)j+j′−((j+j′)mod4))

.

Now by Lemma 3.6 and Lemma 3.4A,
(
(1⊗ iα−1)ρ̂

)4
=
(
(1⊗ iα−1)(1⊗ iαi)(1⊗ i)

)2
= (1⊗−k)2 = −1 .

It follows easily that vτvηv
−1
τη ∈ ±〈σ̂t⊗1〉 ⊂ 〈ζ〉, which completes the proof of Case

11 and the theorem.

The proof of the above theorem gives us a specific representation of Q〈G〉 as
a crossed product algebra. We now prove a general result about maximal orders
in crossed product algebras. The following notation will be used. Suppose E/K
is a Galois field extension with Galois group H . Suppose Φ : H × H −→ E is a
normalized factor set (so Φ(1, 1) = 1). Then (E/K,Φ) denotes the central simple
K–algebra which as a vector space over E has a basis (u(σ) : σ ∈ H) such that

e1u(σ1)e2u(σ2) = e1σ1(e2)Φ(σ1, σ2)u(σ1σ2)

for all e1, e2 ∈ E and σ1, σ2 ∈ H [P, §14.1, p. 252]. Note that u(1) is the identity
since Φ is normalized.

12.8. Theorem. Suppose E/K is a Galois field extension with abelian Galois
group H, where E is an algebraic number field. Let d be a nonzero integer with
some power in the relative discriminant of E/Q. Suppose Φ : H × H −→ E is a
normalized factor set with image in (IntE Z[1/d])•. Then

∑
σ∈H

(
IntE Z[1/d]

)
u(σ)

is a maximal Z[1/d]–order in (E/K,Φ).

Proof. For any subfield F of E we will let I(F ) = IntF Z[1/d], the integral
closure of Z[1/d] in F . In particular we have I(Q) = Z[1/d].

Let A = (E/K,Φ). Note that
∑

σ∈H I(E)u(σ) is a subring of A and indeed
an I(Q)–order. By [Re, Theorem 10.5 (iii), p. 128] it suffices to show that∑
σ∈H I(E)u(σ) is a maximal I(K)–order in A. Now suppose p is any maximal

ideal of I(E). Then by [Re, Corollary 11.6, p. 134] it suffices to show that
I(K)p ⊗I(K)

∑
σ∈H I(E)u(σ) is a maximal I(K)p–order in Kp ⊗K A. Here and

below for any subring D of E we let Dp denote the completion of D in the p–adic
topology.

Let H0 denote the decomposition subgroup of H with respect to p and let
F = EH0 be the decomposition field. Let C = (E/F,Φ). (Strictly speaking Φ
should be replaced in this definition of C by its restriction to H0 × H0.) Let
f = [E : F ] and g = [F : K]. Now no power of d is in p, so p is unramified over Q
[R, Theorem 1, p. 202] and hence it is unramified over K. Thus g is the number
of extensions of I(K) ∩ p to a maximal ideal of I(F ) and f is the residue class
degree of p with respect to the extension E/K. Let ξ1, . . . , ξg be a set of coset
representatives in H for H/H0; then

ξ1(p) ∩ I(F ), . . . , ξg(p) ∩ I(F )
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are the g distinct extensions of p ∩ I(K) to I(F ).
A is free with basis u(ξ1), . . . , u(ξg) as a left C–module. (We identify C with

the subring
∑

σ∈H0
Eu(σ) of A.) Right multiplication by elements of A gives a map

θ0 : A −→ EndCA (so θ0(a)(b) = ba for all a, b ∈ A). The basis u(ξ1), . . . , u(ξg)
has associated with it a map θ1 : EndCA −→ Mg(C); for each γ ∈ EndCA,
θ1(γ) is the g × g matrix [aij ] where for all i ≤ g, γ(u(ξi)) =

∑g
j=1 aiju(ξj). Now

let Cp = (Ep/Kp,Φ) (note that H0 can be identified with the Galois group of
Ep over Fp = Kp). Then we have an inclusion map θ2 : Mg(C) −→ Mg(Cp).
The composition θ2θ1θ0 : A −→ Mg(Cp) is a ring homomorphism. (This is a
routine computation; let us briefly check multiplicativity. If θ1θ0(a) = [aij ] and
θ1θ0(b) = [bij ], then for all i ≤ g,

θ0(ab)(u(ξi)) = u(ξi)ab =
∑

k

aiku(ξk)b

=
∑

k

aik
∑

j

bkju(ξj) =
∑

j

(∑

k

aikbkj
)
u(ξj)

so

θ1θ0(ab) =

[∑

k

aikbkj

]
=
[
aij
][
bij
]

= θ1θ0(a)θ1θ0(b) .)

Let θ3 : Kp −→ Mg(Cp) be the natural homomorphism (map each a to a[δij ]
where δij denotes the usual Kronecker delta and [δij ] is therefore the g× g identity
matrix). Composing θ3 ⊗ θ2θ1θ0 with the multiplication map on Mg(Cp) yields a
homomorphism

θ : Kp ⊗K A −→Mg(Cp)

which is injective since Kp ⊗K A is simple, and surjective since

[Kp ⊗K A : Kp] = [A : K] = [E : K]2

= f2g2 = g2[Cp : Fp] = [Mg(Cp) : Kp] .

By [Jz, Theorem 1, p. 699] Λ :=
∑

σ∈H0
I(E)pu(σ) is a maximal I(K)p–order in

Cp and hence by [Re, Theorem 8.7, p. 110] Mg(Λ) is a maximal I(K)p–order in
Mg(Cp). Therefore it suffices to show that

I := θ
(
I(K)p ⊗I(K)

∑

σ∈H
I(E)u(σ)

)

contains Mg(Λ). This is clear if g = 1 (note that I(E)p = I(K)pI(E)), so suppose
g > 1. We will prove I ⊃ Mg(Λ) by showing that for all c ≤ g, h ≤ g, σ ∈ H0

and e ∈ I(E), the matrix eu(σ)Ech = [eu(σ)δicδjh] is in I, where Ech is the g × g
matrix with a 1 in the (c, h) position and with all other entries 0. So pick such c,
h, σ and e.

Suppose j and k are distinct positive integers less than or equal to g. Then ξ−1
j

and ξ−1
k represent distinct cosets of H/H0, so ξ−1

j (p) and ξ−1
k (p) restrict to distinct

ideals of I(F ). Thus there exists a ∈ I(F ) with a ∈ ξ−1
j (p) ∩ (1 + ξ−1

k (p)) (Chinese

Remainder Theorem). Thus ξj(a) − ξk(a) ∈ I(F ) \ p ⊂ I(F )•p = I(K)•p. (Since
E/K is abelian, each ξi maps F into itself and hence maps I(F ) into itself.) Thus
I contains the matrix

(
ξk(a)− ξj(a)

)−1
θ(1 ⊗ a− ξj(a)⊗ 1) .(12)
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Note that θ(1 ⊗ a) is the diagonal matrix whose ith component is ξi(a) (since
θ0(a)

(
u(ξi)) = u(ξi)a = ξi(a)u(ξi)

)
. Hence the matrix (12) is a diagonal matrix

whose jth term is
(
ξk(a)− ξj(a)

)−1(
ξj(a)− ξj(a)

)
= 0

and whose kth term is
(
ξk(a)− ξj(a)

)−1(
ξk(a)− ξj(a)

)
= 1 .

Taking the product of all these matrices for fixed k and for j = 1, . . . , g, j 6= k, we
see that Ekk is in I for all k ≤ g.

For each i ≤ g we have a bijection si in the symmetric group Sg such that
ξiξj = τijξsi(j) for all j ≤ g, where τij ∈ H0. Thus

u(ξi)
∑

j≤g
u(ξj) =

∑

j≤g
Φ(ξi, ξj)Φ(τij , ξsi(j))

−1u(τij)u(ξsi(j))

=
∑

j≤g
eju(τj)u(ξj)

for some ej ∈ I(E)• and some τj ∈ H0. Therefore I contains a matrix, namely
θ(1 ⊗∑j≤g u(ξj)), which for all i ≤ g and j ≤ g has (i, j)–entry of the form bu(ρ)

where b ∈ I(E)• and ρ ∈ H0. By multiplying such matrices on the right and left
by those of the form Eii we see I contains for all i and j a matrix of the form
bu(τ)Eij where b ∈ I(E)• and τ ∈ H0. In particular for some such b and τ we have
bu(τ)Ech ∈ I. Note that since H is abelian, for any a ∈ I(E), ρ ∈ H0 and i ≤ g,

u(ξi)au(ρ) = ξi(a)Φ(ξi, ρ)Φ(ρ, ξi)
−1u(ρ)u(ξi),

so θ
(
1 ⊗ au(ρ)

)
is a diagonal matrix with ξi(a)Φ(ξi, ρ)Φ(ρ, ξi)

−1u(ρ) in the (i, i)

position. Set ρ = στ−1 and

a = ξ−1
c

(
eΦ(ρ, τ)−1ρ(b)−1Φ(ρ, ξc)Φ(ξc, ρ)

−1
)
,

so that θ
(
1⊗ au(ρ)

)
bu(τ)Ech (∈ I) is a scalar multiple of Ech by the scalar

ξc(a)Φ(ξc, ρ)Φ(ρ, ξc)
−1u(ρ)bu(τ) = eu(σ) .

Thus eu(σ)Ech ∈ I, as was required to be shown.

Before proving Theorem 1.1 we set out the notation to be used in the proof,
since this notation will be used again in the next three chapters.

12.9. Remark and Notation. We let E = Q[ζ] be the maximal subfield of
Q〈G〉 and (vσ : σ ∈ H) be the subset of Q〈G〉 constructed in the proof of The-
orem 12.6, where H = Gal(E/Z). For any subfield K of Q〈G〉, let IK denote
IntK Z(G). Also let f and s be as in Remark 12.7. Finally, for all σ, τ ∈ H, let

Φ(σ, τ) = vσvτv
−1
στ . Then (vσ : σ ∈ H) is a basis for Q〈G〉 over E, Φ is a normal-

ized factor set [P, Lemma, p. 251], and we have an isomorphism

Υ : Q〈G〉 −→ (E/Z,Φ)

carrying each sum
∑
σ∈H eσvσ to

∑
σ∈H eσu(σ) (where eσ ∈ E for all σ ∈ H).

We now give the proof of Theorem 1.1.



12. MAXIMAL ORDERS 65

Proof. Theorems 12.2 and 12.6 above include all of Theorem 1.1 except for
the assertion that the Z(G)–order Z(G)〈G〉 is maximal in Q〈G〉. The discriminant
of E divides a power of |ζ| [R, 4B(2), p. 269]. Hence some power of |G| is in the
relative discriminant of E/Q. Since ζ is integral over Z, then Φ takes all of its values
in I•E . Therefore by the previous theorem, Λ :=

∑
σ∈H IEu(σ) is a maximal Z(G)–

order in (E/Z,Φ). By the choices of ζ and the vσ (σ ∈ H), the image of Z(G)〈G〉
under Υ contains Λ (note that IE = Z(G)[ζ]). Since Λ is a maximal Z(G)–order, it
follows that Z(G)〈G〉 is a maximal Z(G)–order in Q〈G〉.

The above proof of Theorem 1.1 yields the following corollary, which uses the
notation of the preceding remark.

12.10. Corollary. As an IE-module Z(G)〈G〉 has basis (vσ : σ ∈ H), and
there is a unique IE–algebra isomorphism from Z(G)〈G〉 to

∑
σ∈H IEu(σ) (a subring

of (E/Z,Φ)) mapping vσ to u(σ) for each σ ∈ H.

We end this chapter with a fundamental lemma which will be used frequently
(and often without citation) below. We use the notation of Remark 12.9.

12.11. Lemma. Let p be a maximal ideal of IQ. Then p is unramified in the
field extension E/Q and the characteristic p of IQ/p does not divide [E : Z].

Proof. Since by definition |G| is a unit in IQ, therefore p does not divide |G|,
and hence p divides neither |ζ| nor deg Q〈G〉 = [E : Z] (cf. Theorems 12.2 and
12.6). Thus p = pIQ is unramified in E/Q [R, 4B(1), p. 269].



CHAPTER 13

Isomorphism Classes of Frobenius Groups with

Abelian Frobenius Kernel

We will use notation of Notation 12.1 and Remark 12.9, so that in particular
G denotes a Frobenius complement with core C and core invariant ∆. We will also
write R := Z(G)〈G〉. We study in this chapter Frobenius groups with Frobenius
complement G and with abelian Frobenius kernel; it will be convenient to call such
groupsG–groups. Our object is to compute the set Iso(G) of all isomorphism classes
of G–groups in terms of the maximal ideals of the Dedekind domain IZ = IntZ Z(G).
To this end let S(G) denote the free abelian semigroup on the set P of nontrivial
powers of maximal ideals of IZ . Let S(G)/AutG denote the set of orbits of elements
of S(G) under the natural group action of AutG, the automorphism group of G.
(Elements of AutG induce automorphisms of Q〈G〉 which restrict to automorphisms
of IZ which, in turn, induce bijections of S(G).) Elements of S(G) will be written

as formal sums η =
∑
i≤τ ni(p

ki

i ) where τ > 0 and for each i ≤ τ , pi is a maximal

ideal of IZ , ni ≥ 0 (with some nj > 0), and ki > 0; every element of S(G) has such
a representation with all the ni equal to 1. The orbit in S(G)/AutG of η ∈ S(G)
will be denoted [η]. We will also denote the isomorphism class of a group H by [H ].

The next lemma will make it easier to state our main theorem for this chapter.

13.1. Lemma. [BrH, Theorem 8.2, p. 64]. Suppose H is a G–group with
Frobenius kernel M . Then M has a left R–module structure with gm = gmg−1 for
all g ∈ G and m ∈M .

Proof. Since G acts on M (by conjugation) and M and G have relatively
prime orders, then M has a Z(G)G–module structure with ĝm = gmg−1 for all
g ∈ G and m ∈ M . It therefore suffices to show that aG annihilates M (cf.
Notation 2.1). If 1 6= g ∈ G and m ∈M , then

ĝ
(( ∑

h∈〈g〉
ĥ
)
m
)

=
( ∑

h∈〈g〉
ĥ
)
m

since g〈g〉 = 〈g〉. Hence
(∑

h∈〈g〉 ĥ
)
m is indeed trivial (the action of G on M is

without fixed points since H is a Frobenius group). That is, aGM is trivial.

We now have the main result for this chapter.

13.2. Theorem. There is a bijection Ψ : Iso(G) −→ S(G)/AutG such that if
H is a Frobenius group with Frobenius complement G and abelian Frobenius kernel
M and if η =

∑
i≤τ ni(p

ki

i ) is in S(G), then Ψ([H ]) = [η] if and only if for all i ≤ τ
there exists a maximal ideal bi of R and an indecomposable R–module Mi such that
bi ∩ IZ = pi, bki

i is the annihilator of Mi, and M is isomorphic as an R–module to
the direct sum Mn1

1 ⊕ · · · ⊕Mnτ
τ .

66
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A constructive definition of the map Ψ appears in Remark 13.5.

13.3. Remark. Some language used informally in the Abstract and Introduc-
tion above will now be made precise. Suppose M and M∗ are R–modules (so
they are also G–modules). A G–semi-linear isomorphism from M to M∗ is an
ordered pair (f, λ) where λ ∈ AutG, f : M −→ M∗ is an additive bijection, and
f(gm) = λ(g)f(m) for all g ∈ G and m ∈M . Then the set of G–semi-linear isomor-
phism classes of finite R–modules is naturally bijective with the set of isomorphism
classes of G–groups. (Associate with each such R–module M the semidirect prod-
uct M ⋊G.) While the point of view expressed in this remark, which is close to the
spirit of [BrH], is not emphasized here, it is never far below the surface. The proof
of the assertion of bijectivity above is mechanical, at least when one uses the fact,
explained below in the proof of Theorem 13.2, that if two G–groups are isomorphic,
then they admit an isomorphism which maps G to itself.

We now collect some of the ideal theory needed for the proof of the above
theorem.

13.4. Lemma. (A) If a is either a maximal ideal of R or the annihilator of a
finite R–module, then a ∩ Z 6= {0}.

(B) If a is an ideal of R with a ∩ Z 6= {0}, then R/a is a finite principal ideal
ring, Qa = Q〈G〉, and a is finitely generated as a Z(G)–module.

(C) If a is the annihilator of a finite indecomposable R–module, then a is a
nontrivial power of a maximal ideal of R.

We are using the term “ideal” in the usual two–sided ring–theoretic sense. Part
(B) of the above lemma (together with the fact that R is a maximal order) implies
that the ideal a in (B) is a “two–sided R–ideal in Q〈G〉” in the sense of [Re, p.
193].

Proof. Recall from Theorem 12.2 that R is finitely generated and free as a
Z(G)–module (so any maximal ideal is nontrivial) and that Q〈G〉 is simple (so that
for any nontrivial ideal a of R, Qa = Q〈G〉). First suppose a is an ideal of R with
a ∩ Z 6= {0}, say with 0 < k ∈ a ∩ Z. Since R is a maximal order (Theorem 1.1),
it is a Dedekind prime ring [MR, Theorem 3.16, p. 148], and hence R/a is a
principal ideal ring [MR, Theorem 7.10(i), p. 164]. Without loss of generality the
integer k may be chosen relatively prime to the unit |G| of R, and hence R/Rk is
a homomorphic image of the finite ring ZkG. Thus R/a is finite, and also a/Rk is
finite. Since R, and hence Rk, are finitely generated as Z(G)–modules, therefore a

is finitely generated as a Z(G)–module. This completes the proof of (B).
Now suppose a is a maximal ideal. Just suppose that a∩Z = {0}. If 0 6= k ∈ Z,

then k + a must be a unit in R/a since otherwise it generates a nontrivial proper
ideal in a simple ring. Since Qa = Q〈G〉, therefore for any γ ∈ R we can write
nγ = mδ for some nonzero n, m ∈ Z and δ ∈ a. Then γ+a = (n+a)−1(mδ+a) = 0.
Thus R = a, contradicting the choice of a. Hence a ∩ Z 6= {0}.

Next suppose a is the annihilator of a finite R–module M . By Lagrange’s
theorem |M | ∈ Z ∩ a 6= {0}. This completes the proof of (A). It remains to
prove part (C), so suppose M is indecomposable. By [Re, Theorem 22.10, p.

193] (and parts (A) and (B) above), a can be written as a product bk11 · · · bkτ
τ of

nontrivial powers of distinct maximal ideals bi ofR, and this product is independent
of the order of the factors. Suppose τ > 1. Since maximal ideals are prime,
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b1 + b2 · · · bτ = R. Raising both sides of this equation to a sufficiently high power,
we deduce that R = bk11 + bk22 · · · bkτ

τ . M is an indecomposable R/a–module with

trivial annihilator and R/a is the direct sum of the ideals bk11 /a and bk22 · · · bkτ
τ /a.

Hence M decomposes nontrivially as the direct sum of bk11 M and bk22 · · · bkτ
τ M , a

contradiction. Hence τ = 1, and so a = bk11 .

The next two remarks give constructions and notations which are central to
the proof of Theorem 13.2. The first involves a constructive definition of the map
Ψ.

13.5. Remark. Let H be a G–group with Frobenius kernel M . By the Krull–
Schmidt Theorem [J1, p. 115] (and Lemma 13.1) we can write M as a direct sum
of indecomposable R–modules M = ⊕i≤τMi (uniquely up to isomorphism, except
for the order of the summands). By Lemma 13.4C the annihilator of each Mi is

a power bki

i of a maximal ideal bi of R. For each i ≤ τ , bi and ki are uniquely

determined by the annihilator bki

i [Re, Theorem 22.10, p. 193] and bi ∩ IZ is a
maximal ideal of IZ [Re, Theorems 10.5, p. 128, and 22.4, p. 191]. We write

ψ(H) =
∑

i≤τ

((
bi ∩ IZ

)ki
)
∈ S(G) .

Note that Ψ([H ]) = [ψ(H)].

13.6. Remark. Suppose M is a (left) R–module and σ ∈ AutR. Let σM
denote the R–module with the same additive group as M and with scalar multipli-
cation #σ given by the formula r#σm = σ−1(r)m for all r ∈ R, m ∈M . One easily
verifies that if a is the annihilator of M , then σ(a) is the annihilator of σM . Also
σ−1(σM) = M and if N is a second R–module, then σ(M ⊕N) = σM⊕σN . It fol-
lows that M is indecomposable if and only if σM is indecomposable. If τ ∈ AutG
we will often let τ also denote the automorphism of R induced by τ and let τM
denote the associated R–module.

13.7. Lemma. Suppose H and H∗ are G–groups and σ ∈ AutG. Then there
exists an isomorphism H −→ H∗ which restricts on G to σ if and only if ψ(H∗) =
σψ(H).

Proof. Suppose ϕ : H −→ H∗ is an isomorphism restricting on G to σ. We
use the notation of Remark 13.5. For each g ∈ G and m ∈M ,

ϕ(g#σm) = ϕ(σ−1(g)m) = ϕ
(
σ−1(g)mσ−1(g−1)

)

= gϕ(m)g−1 = gϕ(m) .

Thus ϕ induces an R–module isomorphism σM −→ ϕ(M). Note that ϕ(M) is the
Frobenius kernel of H∗. By the previous remark, σM1 ⊕ · · · ⊕ σMτ is the decom-
position of σM into indecomposable R–modules, and hence up to isomorphism it
is the decomposition of ϕ(M) into indecomposable R–modules. For each i ≤ τ ,

σ(bki

i ) = σ(bi)
ki is the annihilator of σMi, and so

ψ(H∗) =
∑

i≤τ
(σbi ∩ IZ )ki = σψ(H) .

Conversely, let us now suppose that ψ(H∗) = σψ(H). We continue to use the
notation of Remark 13.5 and similarly let M∗ = ⊕i≤τ∗M∗

i denote the Frobenius

kernel of H∗ and its decomposition into indecomposable R–modules. Let (b∗i )
k∗i
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denote the annihilator of M∗
i for each i ≤ τ∗. Our hypothesis then implies that

τ = τ∗ and, after reindexing the Mi, that hi = k∗i and σbi ∩ IZ = b∗i ∩ IZ for all
i ≤ τ∗. But then σbi = b∗i for all i ≤ τ [Re, Theorem 22.4, p. 191]. Hence σMi

andM∗
i are R/(b∗i )

ki–modules with the same trivial annihilator. Using Lemma 13.4
to apply [J, Theorem 44, p. 79] we deduce that σMi and M∗

i are isomorphic as
R/(b∗i )

ki–modules, and hence also as R–modules. Thus there is an R–module
isomorphism µ : σM −→ M∗. Define ϕ : H −→ H∗ by setting ϕ(mg) = µ(m)σ(g)
for all m ∈ M , g ∈ G. This map restricts to σ on G and it is a bijection since µ
and σ are bijections. It is also the required isomorphism since for all g, g′ ∈ G, m,
m′ ∈M we have

ϕ(mgm′g′) = ϕ(mgm′g−1gg′)

= µ
(
m(σ(g)#σm

′)
)
σ(gg′)

= µ(m)
(
σ(g)µ(m′)

)
σ(g)σ(g′)

= µ(m)σ(g)µ(m′)σ(g−1)σ(g)σ(g′)

= ϕ(mg)ϕ(m′g′) .

This completes the proof of the lemma.

The above lemma is related to Lemma 11.1 of [BrH, p. 72].
If H and H∗ are G–groups, call them G–isomorphic if there is an isomorphism

H −→ H∗ which fixes G. In the next proposition we compute the set Iso(G)∗ of G–
isomorphism classes of G–groups. This is essentially the same thing as computing
the set of isomorphism classes of finite R–modules. The proof will use the fact that
if M is any R–module, then G acts on M (since G maps into R•) and hence we can
form the semidirect product M ⋊G.

13.8. Proposition. ψ induces a bijection from Iso(G)∗ to S(G).

Proof. Let H and H∗ denote G–groups. One checks that an isomorphism
ϕ : H −→ H∗ fixing G induces an R–module isomorphism of the Frobenius kernels
of H and H∗. Hence ψ(H) = ψ(H∗); this shows that ψ induces a well–defined
map Iso(G)∗ −→ S(G). Lemma 13.7 (applied with σ trivial) implies that this map
is injective. We now prove surjectivity. Any element η ∈ S(G) can be written in

the form
∑
i≤τ (p

ki

i ) where 1 ≤ τ ∈ Z and for all i ≤ τ , 0 < ki ∈ Z and pi is a
maximal ideal of IZ . Then there is a maximal ideal b1 of R with b1 ∩ IZ = p1

[Re, Theorem 22.4, p. 191]. Since b1 ∩ Z 6= {0}, then bk11 ∩ Z 6= {0}, so R/bk11

is a finite primary principal ideal ring; the radical is b1/b
k1
1 (Lemma 13.4). Thus

R/bk11 can be identified with a matrix ring Mu(B) where B is a completely primary

ring [J, Theorem 31, p. 71]. Then M1 := (R/bk11 )E11 is an indecomposable R/bk11 –
module with trivial annihilator ideal, where E11 is the u× u matrix [δi1δj1]. (After
all, E11M1

∼= B is an indecomposable B–module; we use here the analysis of [J,
pp. 78–79], adapted to left R–modules.) Then M1 is an indecomposable R–module

with annihilator bk11 . Similarly we can find indecomposable R–modules M2, . . . ,Mτ

whose annihilators bk22 , . . . , b
kτ
τ satisfy bi ∩ IZ = pi whenever 2 ≤ i ≤ τ . Let

M = M1⊕· · ·⊕Mτ . G acts on M without fixed points. (This follows from an easy
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argument from [BrH, p. 65]: if gm = m where 1 6= g ∈ G, m ∈M , then

m = gm = (1/|g|)(m+ gm+ · · ·+ g|g|−1m)

= (1/|g|)


∑

h∈〈g〉
h


m = 0m = 0 .)

Hence the semidirect product M ⋊ G is a Frobenius group with Frobenius kernel
M × 1 and Frobenius complement 1 × G. Identifying 1 × G with G we obtain a
G–group H with

ψ(H) =
∑

i≤τ
(pki

i ) = η .

This completes the proof of the proposition.

We are now ready to give the proof of Theorem 13.2.

Proof. First suppose ϕ : H −→ H∗ is an isomorphism of two G–groups. Then
ϕ(G) is a Frobenius complement of H∗, so there exists b ∈ H∗ with bϕ(G)b−1 = G.
Replacing ϕ by its composition with conjugation by b, we can assume without loss
of generality that ϕ restricts on G to an automorphism σ of G. Lemma 13.7 (and
Remark 13.5) then apply to say that ψ(H∗) = σψ(H). Hence the map Ψ is well–
defined; the same lemma applies to say it is injective. Finally Proposition 13.8 says
that Ψ is surjective.

The next theorem gives the group structures of the Frobenius kernels of G–
groups in terms of their images under the bijection of Theorem 13.2. Knowledge
of the orders of these groups will be needed in Chapter 15 when we compute the
number of G–groups with specified order.

13.9. Theorem. Suppose η =
∑
i≤τ
(
pki

i

)
∈ S(G) where each pi is a maximal

ideal of IZ . For each i ≤ τ let pi be the unique rational prime in pi and let fi
denote the ramification degree of pi in the field extension Z/Q. Then the Frobenius
kernel of any G–group J with Ψ([J ]) = [η] is isomorphic as a group to

M(η) :=
⊕

i≤τ

(
Z
p

ki
i

)fi deg Q〈G〉
.

The Frobenius kernel associated with η by Theorem 13.2 is the group M con-
structed in the proof of Proposition 13.8. Therefore in order to prove Theorem 13.9
it suffices to prove the following lemma which implies that M is the sum of the

components
(
Z
p

ki
i

)fi deg Q〈G〉
.

13.10. Lemma. Let k be a positive integer and p be a maximal ideal of IZ .
Then

(A) pR is a maximal ideal of R and (pR) ∩ IZ = p;

(B) IZ/pk is isomorphic as an additive group to Zf
pk where p is the unique ra-

tional prime in p and f is its residue class degree in Z/Q;
(C) R/pkR is isomorphic as a ring to Mdeg Q〈G〉(IZ/p

k).

Proof. By Corollary 12.10 R is a free IE–module of rank

deg Q〈G〉 = [Q〈G〉 : E] = [E : Z]
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with basis {vσ : σ ∈ Gal(E/Z)}. Also IE is a free IZ–module with basis 1, ζ,
ζ2, . . . , ζdeg Q〈G〉−1; after all, this set is clearly linearly independent over Z and it
spans IE as an IZ–module since 1, ζ, ζ2, . . . , ζf−1 spans IE as a Z(G)–module [R,
4B(3), p. 269] and the irreducible polynomial of ζ over Z has degree deg Q〈G〉
and coefficients in Z ∩ Z(G)[ζ] = IZ . Hence R is free of rank (deg Q〈G〉)2 as an

IZ–module and has a basis containing 1. It follows that (pkR) ∩ IZ = pk and that
R/pkR is free of rank deg Q〈G〉2 as an IZ/pk–module.

In particular, (pR) ∩ IZ = p. Hence we may regard IZ/p as a subring of
R/pR. Since (vσ : σ ∈ Gal(E/Z)) is a basis for R as an IE–module, therefore
pIE = (pR) ∩ IE , so we can also regard IE/pIE as a subring of R/pR. With this
understanding we now turn to proving that IZ/p is the center of R/pR.

Suppose ξ is in the center of R/pR. Write ξ =
∑

σ∈Gal(E/Z)

ξσvσ + pR, where

each ξσ is in IE . Then by hypothesis (ζ + pR)ξ = ξ(ζ + pR), so
∑

σ∈Gal(E/Z)

ζξσvσ + pR =
∑

σ∈Gal(E/Z)

ξσσ(ζ)vσ + pR .

Since the vσ form a basis for R as an IE–module, then {vσ + pR : σ ∈ Gal(E/Z)}
is a basis for R/pR as an IE/pIE–module. Hence ξσ(ζ − σ(ζ)) ∈ pR for all σ ∈
Gal(E/Z). Since

1 + x+ · · ·xf−1 =
∏

1≤i<f

(x− ζi) ,

therefore fζf−1 =
∏

1≤i<f

ζ−ζi+1. Since f is a unit in R (it is a factor of |G|), therefore

ζ − ζj is a unit in R whenever 2 ≤ j ≤ f. If 1 6= σ ∈ Gal(E/Z), then σ(ζ) = ζj

where 2 ≤ j < f. Thus ξσ ∈ pR when σ 6= 1. Hence we can write ξ = ξ0 + pR for
some ξ0 ∈ IE .

Now let p1, . . . , pg denote the maximal ideals of IE containing p, so that pIE =
p1 ∩ · · · ∩ pg (Lemma 12.11). For all σ ∈ Gal(E/Z) and j ≤ g, (vσ + pR)ξ =
ξ(vσ + pR), and hence

ξ0 − σ(ξ0) ∈ IE ∩ pR = pIE ⊂ pj ,

so ξ0 + pj = σ(ξ0) + pj . It follows that ξ0 + pj ∈ (IZ + pj)/pj ∼= IZ/p. (Note that
every automorphism of IE/pj fixing (IZ + pj)/pj is induced by one in Gal(E/Z).)
Thus there exists γ ∈ IZ with ξ0 + p1 = γ + p1. Also for each j ≤ g there exists
σ ∈ Gal(E/Z) with σ(p1) = pj . Then

ξ0 + pj = σ(ξ0) + pj = σ(ξ0 + p1) = σ(γ + p1) = γ + pj ,

so by Lemma 12.11

ξ0 − γ ∈
⋂

j≤g
pj = pIE .

Hence ξ = ξ0 + pIE = γ + pIE ∈ IZ/p . It follows that IZ/p is indeed the center of
R/pR.

Let q be a maximal ideal of IE containing p and Eq be a q–adic completion
of E. We can pick a p–adic completion Zp of Z contained in Eq, so Eq = ZpE.
The ramification index of Eq/Zp is trivial (apply Lemma 12.11). We may use the
map Υ of Remark 12.9 to identify Q〈G〉 with (E/Z,Φ), so the Schur index of
Zp⊗Z Q〈G〉 equals that of (Eq/Zp,Φ

′) (cf. [Re, Theorem 29.13, p. 248]; here Φ′ is
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the restriction of the map Φ.) By [Jz, Theorem 1, p. 699], this Schur index divides
the ramification index of Eq/Zp, so it is trivial. It follows from [Re, Theorem
22.14, p. 194] that pR is a maximal ideal of R. This completes the proof of (A).

A routine induction on k shows that if a1, . . . , af is a sequence of elements of
IZ representing a basis for IZ/p over Zp, then it also represents a basis for IZ/pk

as a Zpk–module. The assertion (B) is an immediate consequence.
It remains to prove (C). As in the surjectivity part of the proof of Proposi-

tion 13.8 we have an isomorphism θ : R/pkR −→ Mu(B) where B is a ring with
nilpotent radical a such that B/a is a division ring. Since B/a is finite, it is there-
fore a field. Mu(a) is an ideal of Mu(B) with factor ring isomorphic to Mu(B/a),
so Mu(a) is a maximal ideal of Mu(B). But pR/pkR is the only maximal ideal of
R/pkR. Hence θ maps pR/pkR onto Mu(a), so R/pR ∼= Mu(B/a) and

|B/a| = |center of Mu(B/a)| = |center of R/pR| = |IZ/p| .
Therefore

(deg Q〈G〉)2 = [R/pR : IZ/p]

= [Mu(B/a) : B/a] = u2 ,

so u = deg Q〈G〉. But

|B|u2

= |Mu(B)| = |R/pkR| = |IZ/pk|(deg Q〈G〉)2 ,

so |B| = |IZ/pk| = |IZ +pkR/pkR|. But θ must map IZ +pkR/pkR into the center
of Mu(B) and hence into the canonical image of B in Mu(B). Thus IZ/pk ∼= B,
and so R/pkR ∼= Mdeg Q〈G〉(IZ/p

k). This completes the proof of (C).

We end this chapter with two applications, the first to nonsolvable Frobenius
groups, and the second to Frobenius groups with nonabelian Frobenius kernel.

13.11. Example. We apply the above theory to find all thirteen of the iso-
morphism classes of nonsolvable Frobenius groups of order at most 106. Methods
of constructing these groups concretely are given in the next chapter. Since the
kernel and the core of the complement of a Frobenius group are solvable, therefore
a Frobenius group is nonsolvable if and only if its core index is 60 or 120 (since
A5 and S5 are the only nonsolvable types, cf. Definition 6.1) and hence only if its
Frobenius kernel is abelian. Let G be the Frobenius complement and M be the
Frobenius kernel of such a Frobenius group J = MG. We will use the notation of
this chapter associated with G. Let p denote any prime factor of |M | and let f be
the residue class degree of p in the field extension Z/Q. Note that p ≥ 7 since p
does not divide |G| = mn[G : C]. Also note that m = 1, since otherwise t is at
least 7 and hence deg Q〈G〉 is at least 14 (Theorems 9.1 and 10.6); this says |M | is
at least 714 (Theorem 13.9), contradicting that |J | ≤ 106.

Case 1: [G : C] = 120. Then 4 divides deg Q〈G〉 (Theorem 10.6C), so by
Theorem 13.9

106 ≥ |J | ≥ 2p4[G : C] ≥ 74 · 240 = 576,240 .

Since 2p4[G : C] is a factor of |J |, it must therefore equal it; hence p = 7. Thus
|M | = 74 and |G| = 2[G : C] (so n = 2). Thus G is isomorphic to H240, the unique
S5–complement with core of order 2 (cf. Theorem 10.6 and Example 4.3), and J is
the unique G–group associated with the maximal ideal of IZ = Z[1/30] generated
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by 7 (cf. Theorem 13.2; note that Z = Q
[√

5
]ρ

= Q). That there actually exists
such a group of order 576,240 also follows from the theorems cited above.

Case 2: [G : C] = 60 and f > 1. Then deg Q〈G〉 ≥ 2 and f ≥ 2, so by
Theorem 13.9, p4 ≤ |J |/|G| ≤ 106/120 < 104, so p = 7. Also

106 ≥ |J | ≥ 2[G : C](mn/2t)p4 = 288,120(mn/2t) .

Since any proper factor of mn/2t must be at least 11 (Theorem 9.1), therefore
mn/2t = 1, so n = 2. Hence |M | = p4 and 2 = deg Q〈G〉 = f . Thus G ∼= H120,
the unique A5–complement with two element core (Theorem 9.1) and J is the G–

group associated with the unique maximal ideal of IZ = Z
[
1/30,

√
5
]

containing 7
(Theorem 13.2). That there actually is such a group of order 288,120 follows from

the above cited theorems together with the fact that because
(
5
7

)
= −1, therefore

the residue class degree of 7 in Q
[√

5
]
/Q really is 2.

Case 3: [G : C] = 60, f = 1, and n 6= 2. Let q be an odd rational prime
dividing n. Since f = 1, the residue class degrees of p in the extensions Q[ζq]/Q
and Q

[√
5
]
/Q must be trivial (note that Z ⊃ Q

[
ζq,
√

5
]

by Theorem 9.1). Thus

p ≡ 1 (mod q) (so q < p) and 1 =
(
5
p

)
=
(
p
5

)
(by the quadratic reciprocity theorem),

so p ≡ ±1 (mod 5). Just suppose q ≥ 11. Then 106 ≥ |J | ≥ 120 · 11 · p2, so p ≤ 27.
This is impossible since no prime p congruent to ±1 modulo 5 and less than 27
has p − 1 divisible by a prime larger than 7. Hence q = 7. Since 120qp2 ≤ 106,
then p < 35. Thus p = 29. Since 120p2q = 706,440 divides |J | ≤ 106, it must
equal |J | and hence |G| = 120q and |M | = 292. Thus G must be the unique A5–
complement with core of order 14 (namely H120 × 〈ζ7〉, cf. Theorem 9.1) and J
is the unique G–group corresponding to the orbit in S(G)/AutG consisting of all
the maximal ideals of IZ containing the prime 29. (All these maximal ideals lie
in the same orbit since the automorphisms of G induce all the automorphisms of
Z = Q

[√
5, ζ7

]
. This can be proved directly, but it also follows immediately from

Theorem 15.7 below.) That such a group J of order 706,440 exists follows from the

fact that the prime 29 does indeed split in Q
[√

5, ζ7
]

and, of course, the theorems
cited above.

We now have our last, easiest, and most prolific case.
Case 4: [G : C] = 60, f = 1 and n = 2. Then deg Q〈G〉 = 2, Z = Q

[√
5
]

and, as in the previous case, since f = 1 we have p ≡ ±1 (mod 5). Because
2[G : C]pdeg Q〈G〉 ≤ |J | ≤ 106, therefore p ≤ 92, so p is one of the primes

11, 19, 29, 31, 41, 59, 61, 71, 79, 89 .(13)

Since |M | is a product of squares of the above numbers and |M | ≤ 106/2[G : C] ≤
8334, then |M | must actually be one of these squares. Hence G ∼= H120 and J must
be one of the ten isomorphism classes of G–groups associated by Theorem 13.2
with the orbits of the maximal ideals of IZ = Z

[
1/30,

√
5
]

containing one of the
ten primes in the list (13). (Note that each of these primes has two conjugate
extensions to IZ , and these ten pairs of extensions constitute ten separate orbits of
S(G)/AutG.) The proof that all ten such groups of orders 120p2 exist (p on the
list (13)) is routine.

The data in Example 15.3 below shows that the vast majority (that is, about
99.8%) of Frobenius groups of order at most 106 with abelian Frobenius kernel have
cyclic Frobenius complement. The following proposition suggests that the same may
be true for Frobenius groups of order at most 106 with nonabelian Frobenius kernel.
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13.12. Proposition. Suppose J is a Frobenius group of order at most 109

with noncyclic Frobenius complement and nonabelian Frobenius kernel. Then J
has Frobenius complement of order 171 and Frobenius kernel of order 76, or else
Frobenius complement of order 63 and Frobenius kernel of order either 212 or 218.

The noncyclic Frobenius complement of order 63 is discussed briefly just after
the statement of Theorem 17.6 below.

For the remainder of this chapter J will be as in the above proposition. G and
K will denote a Frobenius complement and the Frobenius kernel for J , respectively.
We use notation of this chapter in connection with G, so that G has core invariant
∆ = (m,n, 〈r〉). The proof of the proposition will show at least implicitly that
G is determined up to isomorphism by the order of J ; the order of J also gives
detailed information about the factors K/K ′,K ′/K ′′, . . . of the derived series of
K. For example if |J | ≤ 106, then G is the unique noncyclic Frobenius complement
of order 63 and K/K ′ ∼= K ′ ∼= Z2

6. The idea of the proof is that these factors are
abelian Frobenius kernels for the Frobenius complement G, and hence their possible
orders are determined by Theorem 13.9.

Proof. Since K is nonabelian, G must have odd order and hence is a noncyclic
Z–group. Let p be the largest prime divisor of t. Since p ∤ m and p is the order
of an element of Z•

m, there exists a prime divisor q of m with q ≡ 1 (mod p), so
that q ≥ 2p + 1. For any prime divisor ρ of |K| let f(ρ) denote the residue class
degree of ρ in the field extension Z/Q. We can write Q[ζmn/t] ⊃ Z ⊃ Q[ζn/t]
(Theorem 5.2). Thus the residue class degree |ρ + n/tZ| of ρ in Q[ζn/t]/Q divides

f(ρ), so n/t divides ρf(ρ) − 1. Hence p divides ρf(ρ) − 1, and so ρf(ρ) ≥ p+ 1 ≥ 4.
Note similarly that |ρ + mZ| divides the residue class degree |ρ + mn/tZ| of ρ in
Q[ζmn/t]/Q, and hence divides [Q[ζmn/t] : Z]f(ρ) = tf(ρ). Thus m, and hence q,

are divisors of ρtf(ρ) − 1.
Now let ρ be a prime such that K has a Sylow ρ–subgroup S which is not

abelian (there must be such a Sylow subgroup since K is nonabelian and nilpotent
[T, Theorem 1, p. 579]). Set f = f(ρ). Since S′ 6= S′′, therefore by Theorem 13.9

|K| ≥ |S/S′||S′/S′′| ≥ ρ2tf ,

so

|J | = mn|K| ≥ p2qρ2tf ≥ p2(2p+ 1)ρ2pf .(14)

We use the inequality (14) repeatedly. Since ρf ≡ 1 (mod p), if p ≥ 5, then ρf ≥ 6,
so 109 ≥ |J | ≥ 52 ·11·610, a contradiction. Thus p = 3. Hence by the choice of p, t is
a power of 3. Recall that ρf ≥ 4. Hence if 9 divides t, then 109 ≥ |J | ≥ 418 > 109.
Therefore t = 3. Thus by the inequality (14), 109 ≥ 9 · 7 · ρ6f , so ρf ≤ 13. But
ρf ≡ 1 (mod 3) and if ρ = 2, then 2 = |ρ+ 3Z| divides f . Hence either ρ = 2 and
f = 2; or ρ = 7 and f = 1; or ρ = 13 and f = 1.

First suppose that ρ = 13 and f = 1. As proved above, q is a divisor of 133−1,
whence q = 61 and 109 ≥ 9 · 61 · 136, a contradiction. Thus ρ 6= 13. Hence n/t
divides either 22 − 1 or 71 − 1, whence n/t = 3. Thus n = 9 in all cases.

Now consider the case that ρ = 7 and f = 1. Since m divides 73 − 1, therefore
m = 19. Now suppose |K| has a prime divisor ρ′ other than ρ. As noted above

(ρ′)f(ρ′) ≥ 4, so 109 ≥ 9 · 19 · 76 · 43, a contradiction. Hence |K| = 73i where i ≥ 2.
Since 109 ≥ |J |, we must have i = 2, so |G| = mn = 171 and |K| = 76.
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Finally suppose ρ = 2 and f = 2. Then m divides ρ3f − 1 = 63, so m = 7
and |G| = 63. Suppose |K| has a prime divisor ρ′ other than ρ. Since 109 ≥
|J | ≥ 63 · 46 · (ρ′)3f(ρ′), therefore (ρ′)f(ρ′) < 16. However there is no such prime

power which also satisfies the congruences (ρ′)f(ρ′) ≡ 1 (mod 3) and (ρ′)3f(ρ′) ≡ 1
(mod 7). Hence |K| = 26i for some i ≥ 2 with 109 ≥ 63 · 26i. Hence i is 2 or 3, as
was required to be shown. This completes the proof of the proposition.



CHAPTER 14

Concrete Constructions of Frobenius Groups

We continue to use the notation set out in the first two sentences of the pre-
vious chapter, so that in particular G will denote a Frobenius complement and
R = Z(G)〈G〉. The construction of Frobenius groups with abelian Frobenius kernel
in that chapter (cf. the proof of Proposition 13.8 and Lemma 13.10C) was not
concrete in the sense that it depended on the choice, for each power a of a maximal
ideal of IZ , of an isomorphism R/aR −→Mdeg Q〈G〉(IZ/a), but there was no indica-
tion of how to actually construct such isomorphisms. What is really needed is some
explicit construction of an indecomposable R–module with annihilator aR and this
is precisely the purpose of the first lemma below. It yields in Theorem 14.2 a con-
crete way of representing every G–group. We also give here explicit constructions,
which use little or nothing beyond elementary number theory, of all the Frobe-
nius groups whose Frobenius complement is either H120 (∼= SL(2, 5)) or a binary
dihedral group. These constructions can be read independently of each other.

The next lemma shows for any power a of a maximal ideal of IZ how to put an
R–module structure on IE/aIE (or, more precisely, on an IE–module M(a) which is
naturally isomorphic to it), so that it becomes an indecomposable R–module with
annihilator aR. Recall that the elements vτ (τ ∈ Gal(E/Z)) form a basis for R as
an IE–module (cf. Corollary 12.10).

14.1. Lemma. Let p be a maximal ideal of IZ and let q be a power of a maximal
ideal of IE with q ∩ IZ = pk where 0 < k ∈ Z. Let Ed denote the decomposition
field for p in the field extension E/Z.

(A) Gal(E/Z) is the internal direct sum of a subgroup G which is disjoint from
Gal(E/Ed) and a cyclic group 〈τ〉 containing Gal(E/Ed). Let γ = [Ed : Eτ ].

(B) There exists η ∈ IE such that NE/Ed
(η) ≡ v

|τ |
τ (mod q). Let ηi = η if

i = γ and let ηi = 1 otherwise.
(C) The natural IE–module structure on M(pk) :=

⊕
ρ∈G

⊕
1≤i≤γ IE/ρτ

iq ex-
tends uniquely to an R–module structure such that for all

A :=
(
aρ,i + ρτ iq : ρ ∈ G, 1 ≤ i ≤ γ

)
∈M(pk)(15)

we have

vτA =
(
τ(aρ,iρ(ηi))vτvρv

−1
τ v−1

ρ + ρτ i+1q
)
i,ρ

(16)

and for all µ ∈ G,
vµA =

(
µ(aρ,i)vµvρv

−1
µρ + ρµτ iq

)
i,ρ
.(17)

Moreover, with this R–module structure M(pk) is indecomposable with annihilator
pkR.

In Part (B) above NE/Ed
denotes the norm map from E to Ed. Similarly we

have the norm map NE/Eτ : E −→ Eτ . The choice of η in Part (B) corresponds to

76
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the choice of a and b in the construction of all Frobenius groups whose Frobenius
complement is either the quaternion group (Example 1.3), a binary dihedral group
(Lemma 14.3), or H120 (Lemma 14.7). As the proof of the above lemma will
show, the group G and the group element 〈τ〉 in Part (A) can be chosen almost
canonically. G can also be chosen to have order at most 2. Indeed in all but three of
the eleven cases of the proof of Theorem 12.6 G can be taken to be trivial, in which
case the formula (16) simply says that vτA =

(
τ(aρ,iηi) + τ i+1q

)
i,ρ

and formula

(17) says vµA = A. The R–module M(pk) is determined up to isomorphism by pk

independently of the above choices since it is indecomposable with annihilator pkR.
Before giving the proof of the lemma we record as a corollary to the lemma

and Theorem 13.2 the construction of all G–groups.

14.2. Theorem. The G–group corresponding to the orbit of any
∑

1≤i≤ρ(p
ki

i )

in S(G) under the bijection Ψ of Theorem 13.2 is the semidirect product
( ⊕

1≤i≤ρ
M(pki

i )
)

⋊G .(18)

We now prove Lemma 14.1.

Proof. Let f := [E : Ed] and let p be the unique rational prime in p. By
Lemma 12.11 p is unramified in E/Z and p does not divide f .

(A) When Gal(E/Z) is cyclic we can simply take G = 1. When Gal(E/Z) is
not cyclic, then it is generated by an element σ of odd order together with two
distinct elements σ0 and σ1 of order 2 (cf. the proof of Theorem 12.6). Since
Gal(E/Ed) is cyclic, it cannot contain 〈σ0, σ1〉. If it is disjoint from 〈σ0, σ1〉, then
we can set τ = σ and let G = 〈σ0, σ1〉; finally if Gal(E/Ed) contains exactly one
nontrivial element ρ of 〈σ0, σ1〉, then we can let τ = σρ and let G be generated by
any element of 〈σ0, σ1〉 not in 〈ρ〉.

(B) By Theorem 12.6, v
|τ |
τ ∈ 〈ζ〉 ⊂ IE . Since τ is just conjugation by vτ , then

v
|τ |
τ is in Ed. Let a denote the radical of q. Since norm maps for extensions of finite

fields are surjective, then there exists η′ ∈ IE with NE/Ed
(η′) ≡ v|τ |τ (mod a). Since

p ∤ f , Hensel’s Lemma implies that there exists η′′ ∈ Ed∩IE with (η′′)fNE/Ed
(η′) ≡

v
|τ |
τ (mod q). It suffices to set η = η′η′′ since then NE/Ed

(η) = (η′′)fNE/Ed
(η′).

(C) Note that |τ | = fγ. Since Gal(E/Ed) is contained in 〈τ〉, it is generated
by τγ , so τγ(q) = q. Thus the value assigned to vτA in equation (16) is indeed
in M(pk). Further, {ρτ i : ρ ∈ G, 1 ≤ i ≤ γ} is a complete set of representatives
for Gal(E/Z)/Gal(E/Ed). Therefore M(pk) is isomorphic to IE/p

kIE , so its or-
der is |IZ/pk|deg Q〈G〉, which is the order of the indecomposable R–module with
annihilator pkR (cf. Theorems 13.2 and 13.9). Let ω : IE −→ EndIZ/pk M(pk)

be the natural multiplication map (recall that M(pk) is an IE–module). De-
fine Vτ and for each µ ∈ G a map Vµ in EndIZ/pk M(pk) taking each A as in
Equation (15) to the quantities in Equation (16) and Equation (17), respectively.
Note that {viτvµ : 0 ≤ i < fγ, µ ∈ G} is a basis for R as an IE–module since
{vτ iµ : 0 ≤ i < fγ, µ ∈ G} is a basis for R as an IE–module and by Theorem 12.6

for each i and µ we have viτvµ = δvτ iµ for some unit δ ∈ IE . Hence we can define

an additive map Ω : R −→ EndIZ/pk M(pk) taking each aviτvµ to ω(a)V iτ Vµ (for
a ∈ IE , 0 ≤ i < |τ | and µ ∈ G). Suppose that µ, δ ∈ G and that b ∈ IE ; let A be as
in Equation (15). Routine computations show that Ω(vµb) = Ω(vµ)Ω(b) and that
Ω(vτ b) = Ω(vτ )Ω(b). Similarly Ω(vµ)Ω(vτ ) = Ω(vµvτ ) and Ω(vδ)Ω(vµ) = Ω(vδvµ).
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(Note that Ω(vδvµ) = Ω(vδvµv
−1
δµ )Ω(vδµ) and Ω(vµvτ ) = Ω(vµvτv

−1
µ v−1

τ )Ω(vτvµ).)

We further claim that Ω(v
|τ |
τ ) = Ω(vτ )

|τ |. A straightforward computation shows
that

V γτ (A) =
(
τγ(aρ,i)τ

iρ(η)

γ−1∏

j=0

τ j(vτvρv
−1
τ v−1

ρ ) + ρτ iq : ρ ∈ G, 1 ≤ i ≤ γ
)

(note that τ j(ηγ+i−j) is τ i(η) if i = j and is 1 otherwise). The product

NE/Eτ (vρvτv
−1
ρ v−1

τ ) =

|τ |−1∏

j=0

vjτvρvτv
−1
ρ v−1

τ v−jτ

telescopes to ρ(v
|τ |
τ )v

−|τ |
τ . Thus by the choice of η we have modulo ρq

ρ(NE/Ed
(η))NE/Eτ (vτvρv

−1
τ v−1

ρ ) ≡ ρ(v|τ |τ )(ρ(v|τ |τ )v−|τ |
τ )−1 ≡ v|τ |τ .

One now can use the above formula for V γτ (A) to show that as claimed Ω(vτ )
|τ |(A) =

V γfτ (A) is equal to
(
aρ,iτ

i(NE/Ed
(ρη))NE/Eτ (vτvρv

−1
τ v−1

ρ ) + ρτ iq
)
ρ,i

= Ω(v|τ |τ )(A) .

A tedious but straightforward computation using the formulas proved above
shows that Ω preserves multiplication; this says that M(pk) has the required R–
module structure.

It remains to show that M(pk) has annihilator pkR and is indecomposable as
an R–module. Since pk ⊂ µq for all µ ∈ Gal(E/Z), then clearly the annihilator
contains pkR and hence it has the form pjR for some j ≤ k (cf. Lemma 13.10(A)).
Since pj is in the annihilator, therefore

0 = pj
(
1 + ρτ iq

)
i,ρ

=
(
pj + ρτ iq

)
i,ρ
,

so pj ∈ q∩IZ = pk, so j ≥ k. Thus j = k. Hence pkR is indeed the annihilator, and
so M(pk) must be a sum of indecomposable R–modules whose annihilators contain
pkR, and at least one of these modules must have annihilator equal to pkR. This
one will then have the same order as M(pk), as was observed at the beginning of
this proof of part (C). Hence M(pk) is in fact indecomposable.

We now give a more elementary construction of the Frobenius groups whose
Frobenius complement is the binary dihedral group

G = D4m = 〈ζ2m, j〉
where m ≥ 2. We may identify R with the ring of real quaternions Z

[
1/2m, ζ2m, j

]

(cf. Theorem 3.2); then IZ = Z
[
1/2m, ζ2m + ζ−1

2m

]
. To see this one can argue

directly or apply Theorem 5.2D when m is odd (whence G is a 1–complement with
invariant (4,m, 〈−1〉)) and apply Theorem 6.15 when m is even (whence G is a
V4–complement with reduced invariant 〈(1,−1)〉). It will be useful to keep in mind
that

(
ζ2m − ζ−1

2m

)2
= −4 +

(
ζ2m + ζ−1

2m

)2 ∈ IZ .
Suppose that 0 < k ∈ Z and that p is a maximal ideal of IZ . For each m, p

and k let us fix a choice of a and b as in the following lemma.
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14.3. Lemma. There exists a, b ∈ IZ/pk with a2 + b2 =
(
ζ2m − ζ−1

2m

)2
+ pk.

There exists a unique IZ/pk–algebra isomorphism

θ : R/pkR −→M2(IZ/p
k)

mapping (ζ2m−ζ−1
2m)+pkR and j+pkR to A :=

[
a b
b −a

]
and J :=

[
0 1
−1 0

]
, respectively.

Before proving this lemma, we state the main result for D4m–groups.
Let N(pk) denote the set of 2 × 1 column matrices with entries from IZ/pk

considered as a left R–module (scalar multiplication by r ∈ R is left multiplication
by the matrix θ(r+ pkR)); we may also consider the additive group N(pk) a D4m–
module via the injection D4m −→ R.

14.4. Theorem. The Frobenius groups with Frobenius complement isomorphic
to D4m are exactly the groups isomorphic to a semidirect product of the form

(
k⊕

i=1

N(ai)

)
⋊D4m

where
k∑
i=1

ai is in S(D4m).

The proofs of Lemma 14.3 and Theorem 14.4 will be combined.

Proof. When k = 1, the existence of a and b in Lemma 14.3 follows from
the fact that the quadratic form x2 + y2 is universal in any finite field of odd
characteristic. The existence in the general case follows from the k = 1 case and

the local squares theorem. (If a2
0 + b20 ≡

(
ζ2m− ζ−1

2m

)2
(mod p), then ζ2m− ζ−1

2m− b20
is a square modulo p, and hence a square modulo any power of p. This argument
assumes a0 is a p–adic unit, which is true without loss of generality since ζ2m− ζ−1

2m

is a p–adic unit.) Since

ζ2m =
1

2

(
ζ2m − ζ−1

2m

)
+

1

2

(
ζ2m + ζ−1

2m

)
,

the pair 1, ζ2m−ζ−1
2m is a basis for Z[1/2m, ζ2m] as an IZ–module. Thus 1, ζ2m−ζ−1

2m,

j,
(
ζ2m − ζ−1

2m

)
j is a basis for R as an IZ–module. Hence

1 + pkR, ζ2m − ζ−1
2m + pkR, j + pkR,

(
ζ2m − ζ−1

2m

)
j + pkR

is a basis for R/pkR as an IZ/pk–module. Therefore there is a unique IZ/pk–linear
function

θ : R/pkR −→Mdeg Q〈G〉(IZ/p
k)

taking the four elements of the above basis respectively to 1, A, J and AJ (here
we have denoted by 1 the 2× 2 identity matrix). Since

det




1 0 1 0
0 1 −1 0
a b b −a
−b a a b


 = 2(a2 + b2) ∈ (IZ/p

k)• ,

the matrices 1, A, J and AJ are linearly independent over IZ/pk and hence the map
θ is injective; it is surjective since its domain and codomain have the same number of
elements (Lemma 13.10C). Finally, θ preserves multiplication since A2 = (a2+b2)·1,
J2 = −1 and AJ = −JA. This completes the proof of the lemma. The theorem
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then follows from Theorem 13.2 and the construction in Proposition 13.8 of the

Frobenius group associated with any
∑k
i=1(ai) ∈ S(D4m).

14.5. Remark. Note that D8 = 〈i, j〉 is just the quaternion group. In this
case IZ = Z[1/2] and the maximal ideals of IZ are generated by the odd rational
primes. For any odd prime power pk we can identify the additive group M(pk) of
Example 1.3 with N

(
(pZ[ 12 ])k

)
. One checks that the actions of D8 on M(pk) in

Example 1.3 and Lemma 14.3 are identical. (Please note that in this case ζ2m −
ζ−1
2m = 2i, so the a and b of Example 1.3 can be taken to be exactly half the a and
b of Lemma 14.3.) Hence the groups constructed in Example 1.3 are well–defined
and comprise all the Frobenius groups with Frobenius complement isomorphic to
D8 (note that all such groups have abelian kernel since D8 has even order). The
uniqueness assertion of Example 1.3 follows from the fact that IZ = Z[1/2] has no
nontrivial automorphisms, so each orbit of S(D8)/AutD8 is a singleton.

A corollary of Example 1.3 describes the orders of some Frobenius kernels.

14.6. Corollary. The set of orders of all Frobenius kernels of Frobenius
groups with Frobenius complement 〈i, j 〉 is exactly the set of odd square integers
larger than 1. The order of the Frobenius kernel of any Frobenius group whose
Frobenius complement is not a Z–group is an odd square.

Proof. The first sentence follows from the fact that the order of each inde-
composable module M(pk) of Example 1.3 is the square p2k. The second sentence
follows from the first and the fact that by inspection (from Chapters 6 to 10) all
Frobenius complements other than Z–groups contain an isomorphic copy of 〈i, j〉,
and hence the Frobenius kernels of Frobenius groups with such complements are
also Frobenius kernels of Frobenius groups with complement 〈i, j〉.

For the remainder of this chapter we let G = H120 (cf. Chapter 3) and identify

R and IZ with Z[1/30,
√

5, i, j] and Z[1/30,
√

5], respectively (Theorem 3.2). Let P
denote the set of all nontrivial powers pk 6= 1 of rational primes p > 5. (As usual,
p will be used only to denote a prime number.) The notation introduced in the
next lemma will be used in our construction of all Frobenius groups with Frobenius
complement G = H120.

14.7. Lemma. Suppose q = pk ∈ P. Pick a = a(q), b = b(q) and s = s(q) in
Zq with a2 + b2 = −1, and 30s = 1. If p ≡ 1 or 4 (mod 5), let A = Zq and pick
c = c(q) ∈ A with c2 = 5 + qZ. If p ≡ 2 or 3 (mod 5), let A = Zq[X ]/(Y ) and
c = X + (Y ) where Y = X2 − (5 + qZ). Then there are R–modules M(q+) and
M(q−), both with additive group A⊕A, such that for all (γ, δ) ∈ A⊕A,

1

30
(γ, δ) = (sγ, sδ), i(γ, δ) = (aγ + bδ, bγ − aδ), j(γ, δ) = (δ,−γ)

and
√

5(γ, δ) = (cγ, cδ) in M(q+)

and
√

5(γ, δ) = (−cγ,−cδ) in M(q−) .

Before proving the above lemma we state our main theorem on Frobenius groups
with complement G = H120. We need a bit more notation. Let FreeP denote the
set of all maps from P to the set of nonnegative integers with finite support (i.e.,
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FreeP is the free abelian monoid on the set P). Let P0 denote the set of all proper
prime powers pk in P with p ≡ 1 or 4 (mod 5) and let P1 = P \ P0. We give the
set of all maps P0 −→ Z the lexicographic order (so m > n if for some q0 ∈ P0 we
have m(q0) > n(q0) and m(q1) = n(q1) whenever q0 > q1 ∈ P0).

14.8. Theorem. For any m and n in FreeP, not both zero, the semidirect
product

J(m,n) :=
(
⊕q∈P

(
M(q+)m(q) ⊕M(q−)n(q)

))
⋊H120(19)

is a Frobenius group with Frobenius complement isomorphic to H120. Moreover any
Frobenius group with Frobenius complement isomorphic to H120 is isomorphic to
J(m,n) for exactly one choice of m and n in FreeP, not both zero, with m|P0 ≥
n|P0 and n|P1 = 0.

For example all Frobenius groups with complement H120 and order 114 · 120
are isomorphic to exactly one of the semidirect products

M(11+)2 ⋊G , (M(11+)⊕M(11−)) ⋊G , M(112+) ⋊G .

Let us describe these groups more concretely. Since 11 ≡ 1 (mod 5) we have
M(11±) = Z2

11 and M(112+) = Z2
121 and we can choose a(11i), b(11i), c(11i),

s(11i) (i = 1, 2) so that for all (γ, δ) ∈ Z2
11

1

30
(γ, δ) = (7γ, 7δ),

√
5(γ, δ) = (±4γ,±4δ),

i(γ, δ) = (7γ + 4δ, 4γ − 7δ), j(γ, δ) = (δ,−γ)
and for all (γ, δ) ∈ Z2

121,

1

30
(γ, δ) = (−4γ,−4δ),

√
5(γ, δ) = (±48γ,±48δ),

i(γ, δ) = (15γ + 4δ, 4γ − 15δ) and j(γ, δ) = (δ,−γ)
(the signs depend on whether we are in M(11i+) or M(11i−)). The semidirect
product M(11+) ⋊G is the H120–group of minimal order; it is an easy exercise (at
least with a table of primes less than 1000) to find the 92 isomorphism classes of
H120–groups with order at most 120·106. (M(991+)⋊G, which has order 120·9912,
is the one of maximum order.)

We have the following analogue to Corollary 14.6.

14.9. Corollary. The set of natural numbers which are the orders of the
Frobenius kernels of Frobenius groups with Frobenius complement H120 is the set S
of all squares n 6= 1 relatively prime to 30 such that pn is a fourth power for all
primes p ≡ 2 or 3 (mod 5). The order of the Frobenius kernel of any nonsolvable
Frobenius group is a member of S.

Proof. The first sentence follows from Theorem 14.8 and the fact that |M(q±)|
equals q2 if q ∈ P0 and equals q4 otherwise. The second sentence follows from the
first and the fact that a Frobenius group is nonsolvable if and only if its Frobenius
complement contains an isomorphic copy of H120.

We now prove Lemma 14.7 and Theorem 14.8.

Proof. Theorem 13.2 describes theG–groups in terms of the maximal ideals of
IZ and their associated indecomposable R–modules. Each of these maximal ideals
intersects down to a maximal ideal of Z[1/30], and hence to an ideal generated by
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a rational prime larger than 5. Now let us fix a proper prime power q = pk ∈ P.
Let Ip denote the ring of p–adic integers. Ip contains a square root of 5 if and only
if Zq has an element with square 5 + qZ, and hence if and only if p ≡ 1 or 4 (mod

5) (by quadratic reciprocity
(

5
p

)
=
(
p
5

)
). In this case we let

√
5, as an element of

Ip, denote the square root of 5 mapping to c (cf. Lemma 14.7) under the natural
homomorphism Ip −→ Zq. Then in all cases we have a unique isomorphism

Ip[
√

5 ]/qIp[
√

5 ] −→ Zq[c]

taking the coset of
√

5 to c. Let σ be the unique nontrivial automorphism of IZ
(so σ(

√
5 ) = −

√
5); σ is induced by an element of AutG by Lemma 3.6. We have

an embedding ρ : IZ −→ Ip[
√

5 ] with ρ(
√

5 ) =
√

5. Since p is unramified in the

extension Q[
√

5 ]/Q [R, A2, p. 169], then

p = p(p) := ρ−1
(
pIp[
√

5 ]
)

and σp

are exactly the extensions of pZ[1/30] to a maximal ideal of IZ (they are equal if

p ≡ 2 or 3 (mod 5)), and p(q) := p(p)k is equal to ρ−1
(
qIp[
√

5 ]
)

[Re, Theorem
5.1(ii), p. 68]. Thus there is an isomorphism

θ1 : IZ/p
k −→ Zq[c]

carrying the coset of
√

5 to c. We will lift θ1 to an isomorphism on R/(pR)k

essentially by tensoring with Z[i, j].
Since Z[i, j] is free as a Z–module we have a natural isomorphism

Z[i, j]⊗ IZ / Z[i, j]⊗ pk −→ Z[i, j]⊗ IZ/pk .(20)

The inclusion maps induce an isomorphism

Z[i, j]⊗ IZ −→ R

which can be used to translate (20) into an isomorphism

R/Rpk −→ Z[i, j]⊗ IZ/pk .

Composition with 1⊗ θ1 gives an isomorphism

θ2 : R/(Rp)k −→ Z[i, j]⊗ Zq[c]

mapping the cosets of 1/30,
√

5, i and j to 1⊗ s, 1⊗ c, i⊗ 1 and j⊗ 1, respectively.
There is an isomorphism of Zq[c]–algebras

θ3 : Z[i, j]⊗ Zq[c] −→M2(Zq[c])

mapping i⊗ 1 and j⊗ 1 to

I :=

[
a b
b −a

]
and J :=

[
0 1
−1 0

]
,

respectively. After all, there is an isomorphism of Zq[c]–modules taking the basis 1,
i⊗1, j⊗1, ij⊗1 to the basis 1, I, J , IJ and this map preserves multiplication since
I2 = J2 = −1 and IJ = −JI. The composition of θ2 and θ3 gives an isomorphism

R/(Rp)k −→M2(Zq[c]) .
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It follows that Rp is a maximal ideal of R (consider the k = 1 case) and hence that
R/(Rp)k is a finite primary principal ideal ring (Lemma 13.4). Thus as argued in
the proof of Theorem 13.2

B := M2(Zq [c])

[
1 0
0 0

]

is an indecomposable R–module with annihilator Rpk = (Rp)k. The isomorphism
B −→ A2 taking each

[
γ 0
δ 0

]
in B to (γ, δ) puts an isomorphic R–module structure

on A2, which can be checked to be exactly the structure claimed for M(q+). The
automorphism σ of IZ has an extension to an automorphism of R fixing i and j; we
will also denote this extension by σ. One checks that the scalar multiplication on
σM(q+) is exactly that claimed for M(q−); thus there is such an R–module and
it is indecomposable with annihilator σ(Rpk) = Rσ(p)k (cf. Remark 13.6). This
completes the proof of Lemma 14.7 and the calculation of the annihilators of the
R–modules M(q±) for q ∈ P. From the proof of Proposition 13.8 it follows that all
the groups J(m,n) are H120–groups. Note that given m and n in FreeP (not both
zero),

ψ(J(m,n)) =
∑

q∈P

(
m(q)(p(q)) + n(q)(σp(q))

)

=
∑

q∈P0

(
m(q)(p(q)) + n(q)(σp(q))

)
+
∑

q∈P1

(
m(q) + n(q)

)
(p(q))

= σ


∑

q∈P0

(
n(q)(p(q)) +m(q)(σp(q))

)
+
∑

q∈P1

(
m(q) + n(q)

)
(p(q))


 .

It follows that everyH120–group is isomorphic to one of the form J(m,n) for somem
and n (not both zero) in FreeP (Proposition 13.8) and in fact for such m and n with
m|P0 ≥ n|P0 and n|P1 = 0 (Theorem 13.2). Now suppose J(m,n) is isomorphic to
J(m′, n′) where m|P0 ≥ n|P0, m

′|P0 ≥ n′|P0 and n|P1 = n′|P1 = 0. Then either
ψ(J(m,n)) equals

ψ(J(m′, n′)) =
∑

σ∈P

m′(q)(p(q)) + n′(q)(σp(q))

or it equals

σψ(J(m′, n′)) =
∑

σ∈P

n′(q)(p(q)) +m′(q)(σp(q)) .

In the first case m = m′ and n = n′. In the second m|P0 = n′|P0, m
′|P0 = n|P0,

m|P1 = m′|P1 and n|P1 = n′|P1 = 0. Then by hypothesis

m|P0 ≥ n|P0 = m′|P0 ≥ n′|P0 = m|P0 ,

so once again on all of P we have m = m′ and n = n′. This completes the proof of
the uniqueness part of the theorem.



CHAPTER 15

Counting Frobenius Groups with Abelian

Frobenius Kernel

Let G be a Frobenius complement and k be an integer, k > 1. Let Iso(G, k) de-
note the set of isomorphism classes of Frobenius groups with Frobenius complement
G and with abelian Frobenius kernel of order k. (The set Iso(G) of Chapter 13 is
the disjoint union of these sets Iso(G, k).) In this chapter we show how the number
of elements of Iso(G, k) can be computed from the factorization k = pa1

1 · · · p
aρ
ρ

of k into a product of powers of distinct rational primes p1, . . . , pρ, together with
the basic numerical invariants developed in Chapters 5 to 10 which determine the
isomorphism class of G, namely, the core invariant ∆, the core index [G : C], and
if [G : C] = 4, 12, 24 or 120, the reduced invariant S. When [G : C] = 1 or 60,
it is convenient to set S equal to the trivial subgroup of Z•

m × Z•
n. We again use

the notation of Chapter 12 and specifically that of Notation 12.1 and Remarks 12.5
and 12.9, so E = Q[ζ] ⊃ Z.

Let B denote the image of Gal(E/Z) under the natural isomorphism AutE −→
Z•

f . We now state a formula for |Iso(G, k)| in terms of f, k, S, ∆ and B. In

Remark 15.13 below we will show how to compute f and B from ∆, [G : C] and S.
As in [BrH, p. 75] if 0 < v ∈ Z, we let P (u, v) denote 0 if u is not a nonnegative
integer and let it denote the coefficient of xu in the power series expansion of
∞∏
i=1

(1 − xi)−v otherwise. Also, if i ≤ ρ and j ∈ Z•
f , then let d(pi, j) denote the

subgroup of Z•
f generated by B, j, and pi + fZ. Finally, let δ denote (|S|, 3) and let

B0 denote the kernel of the natural homomorphism Z•
f −→ Z•

(n/t,δt).

15.1. Theorem. The number of elements of Iso(G, k) is

1

|B0|
∑

j∈B0

ρ∏

i=1

P

(
ai

d(pi, j)
,
φ(f)

d(pi, j)

)
.(21)

The reader can consult [BrH, Lemma 11.12 and Remark 11.13C, pp. 77–78]
for a combinatorial interpretation of P (u, v) as a kind of partition function and for
effective methods of computing it. The next remark indicates that the appearance
of a partition function in this context is to be expected.

15.2. Remark. Consider the case that G is the cyclic group 〈ζn〉, n > 1. Then
f = n and E = Q[ζn] = Z, so B is trivial and B0 = Z•

n. Then the formula (21)
becomes

1

φ(n)

∑

j∈Z•
n

ρ∏

i=1

P

(
ai

d(pi, j)
,
φ(n)

d(pi, j)

)

84
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which is the formula in [BrH, Theorem 11.7, p. 75] for the number of isomorphism
classes of metabelian Frobenius groups with kernel and complement of orders k and
n, respectively. Actually the formula of [BrH] also applies when n = 1 to give that
the number of isomorphism classes of abelian groups of order k is

ρ∏

i=1

P (ai, 1) ;

this standard result [H, Corollary, p. 115] follows from the fundamental theorem
of finite abelian groups.

15.3. Example. The following table, constructed using the above theorem,
Remark 15.13 and Example 13.11, gives the number of isomorphism classes of non-
metabelian Frobenius groups J with abelian Frobenius kernel subject to restrictions
on the core index I of a Frobenius complement of J and on the order |J | of J .

|J | ≤ 105 |J | ≤ 5× 105 |J | ≤ 106

I = 1 100 268 395
I = 4 151 422 605
I = 12 23 59 84
I = 24 6 18 25
I = 60 2 8 12
I = 120 0 0 1
TOTAL 282 775 1122

The number of metabelian Frobenius groups is discussed in Remark 11.13(A)
of [BrH] (there are 568,220 with order at most one million).

The above calculations were very much simplified by some easy consequences
of the fact that we were only considering Frobenius groups of order at most one
million; this implies, for example, that if the Frobenius group has core index greater
than one, then in fact the core is cyclic, and if the core index is one, then the degree
of the rational truncated group ring of the Frobenius complement is at most 4.

The proof of Theorem 15.1 will proceed in a sequence of lemmas. In these
lemmas ZAutG will denote the subfield of Z fixed under all the automorphisms of
Z induced by automorphisms of G. (Each automorphism of G induces an auto-
morphism of Q〈G〉 and hence an automorphism of its center Z. Note that Z itself
is the fixed ring of Q〈G〉 under the inner automorphisms of G.) Our first task is to
calculate ZAutG. We begin with a slight refinement of part of Lemma 6.8.

15.4. Lemma. Suppose that σ ∈ AutG and σ(x) = ycxh where c ∈ Zm and
h ∈ Z•

n. Then h ≡ 1 (mod δt).

Proof. Suppose δ 6= 1, since otherwise the lemma follows trivally from Lemma
6.8. Then [G : C] = 12, 3 divides n (so 3 · 3t divides n), and S is nontrivial. We
have σ(y) = yb for some b ∈ Z•

m. Suppose u, v, x, y, z is an r–sequence for G with
invariant (a, g). Then u1 := σ(u), v1 := σ(v), x1 := σ(x), y1 := σ(y), z1 := σ(z)
is also an r–sequence for G with the same invariant. Proceeding as in the proof of
Lemma 7.15 we set z1 = γxfzj where γ ∈ 〈u, v, y〉, j is 1 or 2, and f ∈ Zn. Since

yab = σ(zyz−1) = xf zjybz−jx−f = yba
jrf

,
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therefore 1 = aj−1rf . Next, modulo 〈u, v, y〉 we have

xh(n//3) ≡ σ(xn//3) ≡ σ(z3) ≡ (xf zj)3 ≡ xf(1+gj+g2j)xj(n//3) .

Hence

h(n//3) ≡ f(1 + gj + g2j) + j(n//3) (modn) .(22)

One more such computation. Again modulo 〈y, u, v〉 we have

xgh ≡ σ(zxz−1) ≡ xf zjxhz−jx−f ≡ xhgj

so gj−1 ≡ 1 (mod n).
Now suppose j = 2. Then by the last congruence, g is trivial. Since S 6= 1,

therefore 3 divides |a|. Since 1 = aj−1rf , then the order of a divides the order
of r, namely t. Hence 3|t. Since a3 = rn//3 (Lemma 7.8), then the order of a is
3 · 3t (note 3t is the order of rn//3), which does not divide t. This contradiction
shows j = 1. Hence rf = 1, so f ≡ 0 (mod 3t). By Lemma 7.8 g ≡ 1 (mod 3), so
1 + g + g2 ≡ 0 (mod 3). Hence by the congruence (22)

(n//3)(h− 1) ≡ f(1 + g + g2) ≡ 0 (mod 3 · 3t) ,
so h ≡ 1 (mod 3 · 3t) as claimed.

15.5. Lemma. There exists an r–sequence x, y for the core of G such that for
every d ∈ Z•

m and e ∈ Z•
n with e ≡ 1 (mod δt), there exists an automorphism

τ ∈ AutG with τ(y) = yd and τ(x) = xe.

Proof. The argument breaks into several cases. Write e = q+nZ where q ∈ Z,
so q ≡ 1 (mod ([G : C], 2)t).

Case 1 : [G : C] = 1. Since e ≡ 1 (mod t), then for any r–sequence x, y, we
have xeydx−e = (yd)r. It follows that there is an endomorphism of G taking x, y
to xe, yd. Since G = 〈xe, yd〉, this endomorphism is the required automorphism.

Case 2 : [G : C] = 4. Let u, v, x, y be an r–sequence for G with invariant
(a, g, c, h). There is an endomorphism of G mapping u, v, x, y to u, vq, xe, yd

respectively; this map is surjective and hence is the required automorphism. (The
point here is that u, vq, xe, yd is an r–sequence for G with the same invariant
as u, v, x, y and hence is a set of generators for G satisfying the same relations
as u, v, x, y. For example one computes that since q is odd, hq = h and hence
vqxev−q = xeh

q

= (xe)h.)
Case 3 : [G : C] = 12 and 3 ∤ n. We use the notation of Theorem 7.11. By the

first case there is an automorphism τ of 〈x0, y0〉 taking x0, y0 to xe0, y
d
0 . Then the

automorphism 1⊗ τ of G := H24 × J maps x = (−1, x0) and y = (1, y0) to xe and
yd, as required.

In the next three cases we have [G : C] = 12 and we let u, v, x, y, z be an
r–sequence for G with invariant (b, h).

Case 4 : [G : C] = 12, 3 divides n, S = 1 and e ≡ 1 (mod 3). Since S = 1,
therefore b = 1 and h = 1 (cf. Lemma 7.8), so z commutes with x and y. One
checks that u, v, xe, yd, zq is an r–sequence for G with invariant (b, h). (That
zquz−q = vu and zqvz−q = u follows from the hypothesis that e ≡ 1 (mod 3).)
Then by Lemma 7.9 G has an automorphism taking x and y to xe and yd.

Case 5 : [G : C] = 12, 3 divides n, S = 1 and e 6≡ 1 (mod 3). As in the previous
case (b, h) is trivial. Since 3 divides n, therefore q ≡ 2 (mod 3). Hence −vu, −v,
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xe, yd, zq is an r–sequence for G with trivial invariant. Hence by Lemma 7.9 G
admits an automorphism taking x, y to xe, yd.

Case 6 : [G : C] = 12, 3 divides n, and S 6= 1. Then δ = 3, so e ≡ 1 (mod 3t).
As in the previous case, it suffices to show u, v, xe, yd, zq is an r–sequence with
invariant (b, h). There exists i ∈ Z with q = 1 + 3it, so by Lemma 7.8

bq = b(b3)ti = b(rn//3)ti = b ;

hence zqydz−q = (yd)b
q

= (yd)b. The rest is routine.
In the next three cases we have [G : C] = 24 and we let u, v, w, x, y, z be an

r–sequence for G with invariant (b, h).
Case 7 : [G : C] = 24 and 3 ∤ n. By Proposition 8.6 it suffices to show that

u, v, w, xe, yd, z is also an r–sequence for G with invariant (b, h), and this can
be verified by routine computations. (Recall that z3 = xn//3 = 1 since 3 does not
divide n and that z commutes with x and y.)

Case 8 : [G : C] = 24, 3|n, and e ≡ 1 (mod 3). In this case it suffices to verify
that u, v, w, xe, yd, zq is an r–sequence for G with invariant (b, h). In Case 4 we
saw that u, v, xe, yd, zq was an r–sequence for 〈u, v, x, y, z〉. The rest is transparent
except for the equality wzqw−1 = (xe)−n//3v(zq)2. To verify this write q = 1 + 3i
(where i ∈ Z) and recall that h ≡ −1 (mod 3n) by Lemma 8.4. Note that

−(n//3) + ih(n//3) ≡ −(n//3)− 3i(n//3) + 2i(n//3) (modn) .

Hence

wzqw−1 = wzxi(n//3)w−1 = x−n//3vz2xih(n//3)

= x−n//3x−3i(n//3)vz2x2i(n//3) = (xe)−n//3v(zq)2 .

Case 9 : [G : C] = 24, 3|n and e ≡ 2 (mod 3). In this case it suffices to observe
that −v, −u, wz2, xe, yd, zq is an r–sequence for G with invariant (b, h). Since
h ≡ −1 (mod 3n), then h(n//3) ≡ −n//3 (mod n). Writing q = 2 + 3i we therefore
have

(wz2)(zq)(wz2)−1 = wz2xi(n//3)w−1

= (x−n//3vz2)2xihn//3 = (x2+3i)−(n//3)(−u)x(n//3)2iz4

= (xe)−n//3(−u)(zq)2 .
The remaining verifications are routine.

Case 10 : [G : C] = 60. We use the notation of Theorem 9.1 and assume
G = J×H120. As in the first case J has an automorphism τ taking x0 and y0 to xq0
and yd0 , respectively. Then the automorphism τ × 1 of J ×H120 maps x = (x0,−1)
and y = (y0, 1) to xe and yd, respectively.

Case 11 : [G : C] = 120. Let µ be the automorphism of Z〈J ×H120〉 induced
by the automorphism τ × 1 of the previous case. Then without loss of generality G
is the S5–complement constructed in Theorem 10.6 and µ commutes with ρ. This
implies that µ induces an automorphism of G fixing ρ̂.

15.6. Lemma. ZAutG ⊂ L.

Proof. We use the notation and the division into cases of the proof of Theo-
rem 12.6. In Cases 1, 3, 4, 6 and 8 we have L ⊃ Z, so there is nothing to prove.
We now consider the remaining cases. For any τ ∈ AutG we also let τ denote the
automorphism of Q〈G〉 that it induces.
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Case 2 : [G : C] = 4 and |S| ≤ 2. There exists τ ∈ AutG mapping an r–
sequence u, v, x, y to u, −v, x, y. Thus ZAutG ⊂ Zτ ⊂ L[v]τ = L. Here Zτ has
denoted the set of elements of Z fixed by the automorphism of Z induced by τ .

Case 5 : [G : C] = 12, 3|n and S = 1. If u, v, x, y, z is an r–sequence for
G, then u, v, x, y, z1+n is an r–sequence for G with the same trivial invariant.
Hence there exists τ ∈ AutG mapping the first r–sequence to the second. Hence
τ(Az) = Azn+1 6= Az since zn = (xn//3)n/3 6= 1. Since Az satisfies a cubic
polynomial over L we have

ZAutG ⊂ Zτ ⊂ L[Az]τ = L .

Case 7 : [G : C] = 24, 3 ∤ n, S = 1. If u, v, w, x, y, z is an r–sequence for G,
then u, v, −w, x, y, z is an r–sequence with the same invariant, so some τ ∈ AutG
maps the first r–sequence onto the second. Then τ(η) = −η, so ZAutG ⊂ Zτ ⊂
L[η]τ = L.

Case 9 : [G : C] = 24 and 3|n. Let u, v, w, x, y, z be an r–sequence for G.
Note that

wzn+1w−1 = (vz−1)n+1 = vz−1(vz−1vz−1vz−1)n/3

= vz−1(z−3)n/3 = v(zn+1)−1 .

It follows easily that u, v, w, x, y, zn+1 is an r–sequence for G with the same
invariant; hence there exists τ ∈ AutG mapping the first to the second. As in Case
5 we then have ZAutG ⊂ L[Az]τ = L.

Case 10 : [G : C] = 60. If ψ0 is the automorphism of Lemma 3.6A, then 1×ψ0

is an automorphism of G = J × H120; the induced automorphism of Q〈G〉 maps√
5 to −

√
5. Thus

ZAutG ⊂
(
Q[ζmn/t]⊗Q

[√
5
])1×ψ0 ⊂ L .

Case 11 : [G : C] = 120. The automorphism 1×ψ0 of J ×H120 in the previous
case extends to the automorphism 1 ⊗ ρ1 of E = Q〈J × H120〉, which commutes
with ρ and hence induces an automorphism τ of G fixing ρ̂. Thus

ZAutG ⊂
(
Q[ζmn/t]⊗Q

[√
5
])τ ⊂ L .

15.7. Theorem. ZAutG is a cyclotomic extension of Q generated by a primi-
tive (n/t, δt)th root of unity.

Proof. We let x, y be as in Lemma 15.5, and we identify xt with ζn/t and
y with ζm, so that L = Q[ζmn/t] (cf. Remark 12.5). We begin by justifying the
inclusions

Q[ζ(n/t,δt)] ⊂ ZAutG ⊂ LAutG ⊂ LH(23)

where H is the image of the canonical homomorphism

θ : Z•
m × ker

(
Z•
n −→ Z•

δt

)
−→ AutL

which for each a ∈ Z•
m and g ∈ ker

(
Z•
n −→ Z•

δt

)
has

θ(a, g)(ζm) = ζam and θ(a, g)(ζn/t) = ζgn/t .

First suppose τ ∈ AutG. Then by Lemmas 6.8 and 15.4, τ(y) = ya and
τ(x) = ybxh where a ∈ Z•

m, b ∈ Zm and h ∈ ker
(
Z•
n −→ Z•

δt

)
. In all cases δt
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divides n (as noted earlier, δ 6= 1 only if 3 divides n, cf. Remark 7.4). Since h ≡ 1
(mod δt),

hn/(n/t, δt) = h(n/δt)(δt/(n/t, δt))

≡ (n/δt)(δt/(n/t, δt)) ≡ n/(n/t, δt) (modn) .

Hence by Lemma 6.7

τ(ζ(n/t,δt)) = τ(xn/(n/t,δt))

= (ybxh)n/(n/t,δt) = xhn/(n/t,δt)

= xn/(n/t,δt) = ζ(n/t,δt) .

Thus justifies the first inclusion of the display (23). The second inclusion follows
from Lemma 15.6; and the third is immediate from Lemma 15.5. It now suffices to
show that

φ(mn/t) = |H |φ((n/t, δt)) ,

since this will imply that the inclusions of display (23) are all equalities.
We next show that the sequence

1 −→ 1× ker
(
Z•
n → Z•

[n/t,δt]

) ψ−→ Z•
m × ker

(
Z•
n → Z•

δt

) θ−→ H −→ 1

is exact, where ψ is the inclusion map. (Recall that n is a multiple of δt and hence is
a multiple of the least common multiple [n/t, δt] of n/t and δt.) If g ∈ ker

(
Z•
n −→

Z•
[n/t,δt]

)
, then θ

(
(1, g)

)
(y) = y and θ

(
(1, g)

)
(xt) = xtg = xt since g ≡ 1 (mod n/t)

by hypothesis. This shows that the image of ψ is contained in the kernel of θ. Now
suppose (a, g) ∈ ker θ. Then ya = y and xtg = xt, so a = 1 and g ≡ 1 (mod n/t).
By the choice of g we have g ≡ 1 (mod δt), so g ≡ 1 (mod [n/t, δt]). Thus (a, g) is
in the image of ψ. This proves the exactness of the above sequence. We conclude
that

|H |φ(n)/φ
(
[n/t, δt]

)
= φ(m)φ(n)/φ(δt) .

Hence it suffices to show that

φ(n/t)φ(δt) = φ
(
[n/t, δt]

)
φ
(
(n/t, δt)

)
.

Recall that for any positive integer z we let z0 denote the product of the distinct
rational prime divisors of z, so that

φ(z) = zφ(z0)/z0(24)

[NZ, Theorem 2.16, p. 48]. Let q = (n//t)0. Since t0 divides n/t (Lemma 5.3(A)),
we have [n/t, δt]0 = t0q = (n/t)0 (recall that if δ 6= 1 then δ = 3 divides n). Also
note that (n/t, δt)0 = (δt)0. Therefore

φ
(
[n/t, δt]

)
φ
(
(n/t, δt)

)

=
[n/t, δt]φ

(
[n/t, δt]0

)

[n/t, δt]0

(n/t, δt)φ
(
(n/t, δt)0

)

(n/t, δt)0

=
(n/t)φ

(
(n/t)0

)

(n/t)0

δt φ
(
(δt)0

)

(δt)0

= φ(n/t)φ(δt) .

This completes the proof of Theorem 15.7.
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We now turn more directly toward the proof of Theorem 15.1. The argument
will parallel and generalize that of [BrH, §11]. Let Z1 be a field lying between E
and Z, and set G = Gal(Z1/ZAutG). For each σ ∈ G let Iσ = Zσ ∩ IZ . We also
let Pσ denote the set of nonzero primary ideals of Iσ and let Sσ denote the free
abelian semigroup on the set Pσ. For example, if σ fixes Z, then Iσ = IZ , Pσ = P
and Sσ = S(G) (cf. the first paragraph of Chapter 13). In general Iσ, Pσ and Sσ
depend only on the restriction of σ to Z. If q ∈ Pσ, let

P (q) = {p ∈ P : p ∩ Iσ = q} .
Finally, if η ∈ Sσ, let

η ⊗ IZ =
∑

p∈P
η(p ∩ Iσ)p ∈ S(G) .

(We are viewing elements of Sσ as functions from Pσ to the set of nonnegative
integers having nontrivial finite support.)

15.8. Lemma. For all σ ∈ G and p ∈ P
P (p ∩ Iσ) = {τp : τ ∈ 〈σ〉} .

Proof. Let a and b be maximal ideals of IZ and let i and j be positive integers.
By Lemma 12.11 no maximal ideal of Iσ ramifies in IZ . Thus ai ∩ Iσ = (a ∩ Iσ)i.
Therefore, if ai ∩ Iσ = bj ∩ Iσ, then i = j and a∩ Iσ = b∩ Iσ, so τ(a) = b for some
τ ∈ Gal(Z/Zσ) = 〈σ|Z〉. Hence, if bj ∈ P (ai ∩ Iσ), then bj ∈ {τ(ai) : τ ∈ 〈σ〉}.
Thus P (ai ∩ Iσ) ⊂ {τ(ai) : τ ∈ 〈σ〉}; the reverse inclusion is transparent.

15.9. Theorem. There exists a |G| : 1 covering of S(G)/AutG by the set
U :=

⋃
σ∈G
{σ} × Sσ mapping each pair (σ, η) to the orbit of η ⊗ IZ .

Proof. By Galois theory both G = Gal(Z1/ZAutG) and AutG induce the
same set of automorphisms of Z. Hence the natural actions of G and AutG on S(G)
have exactly the same set of orbits. Now pick σ ∈ G and γ ∈ S(G). Let H denote
the stabilizer of γ with respect to the action of G on S(G); then |[γ]| = [G : H ].
Since G is abelian, H is also the stabilizer of any element of [γ]. We now show
σ ∈ H if and only if γ = η ⊗ IZ for some η ∈ Sσ. First, if γ = η ⊗ IZ for some
η ∈ Sσ, then

σ(γ) =
∑

p∈P
η(σ−1(p) ∩ Iσ)σ(σ−1(p))

=
∑

p∈P
η(p ∩ Iσ)p = γ ,

so σ ∈ H . Next suppose σ ∈ H . Then
∑

p∈P
γ(σ−1(p))p =

∑

p∈P
γ(p)p ,

so

γ(p) = γ(σ−1(p)) = γ(σ−2(p)) = . . . .

Thus for each p ∈ P , the function γ is constant on

{τ(p) : τ ∈ 〈σ〉} = P (p ∩ Iσ)
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(Lemma 15.8). Hence we can unambiguously define ησ ∈ Sσ by setting ησ(p∩Iσ) =
γ(p) for all p ∈ P . Clearly, ησ is the unique element of Sσ with γ = ησ ⊗ IZ , as
claimed. The |H | elements (σ, ησ) of U (where σ ranges over H) are exactly the
elements (τ, η) of U such that γ = η ⊗ IZ . Since [γ] has [G : H ] elements, there are
exactly [G : H ]|H | = |G| elements of U mapping to [γ].

15.10. Lemma. Suppose (σ, η) ∈ U . The order of the Frobenius kernel of the
Frobenius group associated with [η ⊗ IZ ] ∈ S(G)/AutG by the map Ψ of Theo-
rem 13.2 is

Γη :=
∏

q∈Pσ

|Iσ/q|η(q)[Z:Zσ] deg Q〈G〉 .

Proof. By Theorem 13.9 the Frobenius kernel, call it M , of the Frobenius
group associated with the orbit of

η ⊗ IZ =
∑

q∈Pσ

∑

p∈P (q)

η(q)p

has order
∏

q∈Pσ

∏

p∈P (q)

|IZ/p|η(q) deg Q〈G〉 .

Consider any q ∈ Pσ and p ∈ P (q). Write p = ai where a is a maximal ideal of IZ .
Since a is unramified in Z/Zσ we have

q = p ∩ Iσ = ai ∩ Iσ = (a ∩ Iσ)i

and [Z : Zσ] = fg where f is the residue class degree of a in Z/Zσ and

g =
∣∣{b ∈ P : b is maximal and b ∩ Iσ = a ∩ Iσ}

∣∣
=

∣∣{bi ∈ P : b is maximal and bi ∩ Iσ = q}
∣∣

= |P (q)| .
Note that f depends only on a ∩ Iσ and hence on q. Therefore

|IZ/p| = |IZ/a|i = |Iσ/Iσ ∩ a|if = |Iσ/q|f

so that

|M | =
∏

q∈Pσ

|Iσ/q||P (q)|fη(q) deg Q〈G〉

=
∏

q∈Pσ

|Iσ/q|[Z:Zσ]η(q) deg Q〈G〉 = Γη .

We continue to use the notation of the previous lemma.

15.11. Lemma. Let σ ∈ G. Then

∣∣{η ∈ Sσ : Γη = k}
∣∣ =

ρ∏

i=1

P

(
ai

f(pi)[Z : Zσ] deg Q〈G〉 , g(pi)
)

where for each rational prime p we let f(p) denote the residue class degree of p in
Zσ/Q and g(p) denote the number of maximal ideals of Iσ containing p.
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Proof. For each rational prime p let ∆(p) denote the set of maximal ideals of
Iσ containing p, so that g(p) = |∆(p)|. Let η ∈ Sσ. Then

η =
∑

p

∑

a∈∆(p)

∞∑

j=1

η(aj)aj

where the first sum is over all rational primes p not dividing |G|. Then

Γη =
∏

p

∏

a∈∆(p)

∞∏

j=1

∣∣Iσ/aj
∣∣η(aj)[Z:Zσ] deg Q〈G〉

by the previous lemma. Since |Iσ/aj| = pjf(p), therefore

Γη =
∏

p

∏

a

∏

j

pjf(p)η(aj)[Z:Zσ] deg Q〈G〉 =
∏

p

ph(p)

where

h(p) =
∑

a∈∆(p)

∞∑

j=1

jf(p)η(aj)[Z : Zσ] deg Q〈G〉 .

Hence Γη = k =
ρ∏
i=1

pai

i if and only if η(aj) = 0 whenever a maximal ideal a of Iσ

contains a rational prime equal to none of the pi (i ≤ ρ) and for all i ≤ ρ

ai = f(pi)[Z : Zσ] deg Q〈G〉
∑

a∈∆(pi)

∞∑

j=1

jη(aj) .

But for each i ≤ ρ the number of solutions in integers xj,a (where a ∈ ∆(pi) and
j ≥ 1) of the equation

ai
f(pi)[Z : Zσ] deg Q〈G〉 =

∑

a∈∆(pi)

∞∑

j=1

jxj,a

is exactly

P

(
ai

f(pi)[Z : Zσ] deg Q〈G〉 , g(pi)
)

(cf. [BrH, Lemma 11.12C, p. 77]). Hence the number of η =
ρ∑
i=1

∑
a∈∆(pi)

∞∑
j=1

η(aj)aj

with Γη = k is exactly

ρ∏

i=1

P

(
ai

f(pi)[Z : Zσ] deg Q〈G〉 , g(pi)
)
.

15.12. Theorem. With f(pi) and g(pi) as in Lemma 15.11,

∣∣Iso(G, k)
∣∣ =

1

|G|
∑

σ∈G

ρ∏

i=1

P

(
ai

f(pi)[Z : Zσ] deg Q〈G〉 , g(pi)
)
.
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Proof. Let Γη be as in the previous two lemmas. By Theorems 13.2 and 15.9
there exists a |G| : 1 cover of Iso(G) by U , so

|G||Iso(G, k)| = |{(σ, η) ∈ U : Γη = k}| .
The previous lemma then implies that

|Iso(G, k)| = 1

|G|
∑

σ∈G

ρ∏

i=1

P

(
ai

f(pi)[Z : Zσ] deg Q〈G〉 , g(pi)
)
.

The above theorem takes a very natural form when we pick Z1 = Z, so G =
Gal(Z/ZAutG) and [Z : Zσ] = |σ|. In the following proof of Theorem 15.1, however,
we will take Z1 = E.

Proof. Let Z1 = E, so G = Gal(E/ZAutG). By Theorem 15.7 the image of
G under the natural isomorphism AutE −→ Z•

f is exactly

B0 = ker Z•
f −→ Z•

(n/t,δt)

where δ = (3, |S|). We now prove that if i ≤ ρ and if σ ∈ G corresponds to j ∈ B0,
then

f(pi)[Z : Zσ] deg Q〈G〉 = d(pi, j)

and hence

d(pi, j)g(pi) = [Z : Zσ]f(pi)g(pi) deg Q〈G〉
= [E : Z][Z : Zσ][Zσ : Q] = φ(f) .

Theorem 15.1 will then follow immediately from Theorem 15.12. The order of B is
deg Q〈G〉, and [Z : Zσ] is the order of the coset σGal(E/Z) in

Gal(E/ZAutG)/Gal(E/Z) ∼= Gal(Z/ZAutG) .

Hence [Z : Zσ] is the order of jB in B0/B. Finally f(pi) is the order of (pi+fZ)〈B, j〉
in

Z•
f /〈B, j〉 ∼=

(
Z•

f /B
)
/
(
〈B, j〉/B

)

∼= Gal(Z/Q)/Gal(Z/Zσ) ∼= Gal(Zσ/Q) .

Thus [Z : Zσ]f(pi) deg Q〈G〉 is the order of the subgroup of Z•
f generated by B, j,

and p+ fZ, i.e., d(pi, j). This completes the proof of Theorem 15.1.

15.13. Remark. The reduction to elementary number theory of the computa-
tion of |Iso(G, k)| requires a description of how to compute f and B in terms of the
numerical invariants ∆, [G : C] and S for G. Both f and Gal(E/Z) are computed
in the proof of Theorem 12.6. In particular if we write f = smn/t, then we have
s = 1, 2, 1, 2, 6, 2, 4, 2, 6, 5, 5 in the Cases 1 through 11, respectively. By inspection
then

s = (5, [G : C]) if either [G : C] = |S| = 4 or [G : C] ∈ {1, 60, 120};
s = 4 if [G : C] = 24, |S| = 1 and 3 ∤ n; and

s = 2(3//|S|, n, [G : C]) otherwise.
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The description of B in terms of ∆, [G : C] and S is a bit more complicated.
Let

(a, g, c, h) ∈ Z•
m × Z•

n × Z•
m × Z•

n

denote (1, 1, 1, 1) if [G : C] = 1 or 60; let it be an invariant for G if [G : C] = 4; and
let it be such that c = 1, h = 1 and (a, g) is an invariant for G otherwise. Such a
4–tuple is easily constructed from [G : C], ∆ and S (cf. Theorems 6.14, 7.13A, 8.7A
and 10.6A) and except when [G : C] is 4 or 12 is unique. Let q = 5 if [G : C] ≥ 60
and otherwise let q denote [G : C]0, the product of the distinct prime divisors of
[G : C]. Let µ = 2120/[G:C] if [G : C] ≥ 60, µ = (−1)4/[G:C] if [G : C] ≤ 4, and
µ = (3f)

2 + 83f·24/[G:C] if [G : C] = 12 or 24. By the Chinese Remainder Theorem
there exist unique r∗, g∗ and h∗ in Z•

f with r∗ ≡ r (mod m); r∗ ≡ 1 (mod f/m);

g∗ ≡ a (mod m); g∗ ≡ g (mod (f/m)//q); g∗ ≡ µ (mod qf); and, finally, h∗ ≡ c

(mod m) and h∗ ≡ h (mod f/m) if [G : C] = 4, and h∗ ≡ (−1)[G:C]+1 (mod 2f) and
h∗ ≡ 1 (mod f//2) if [G : C] 6= 4. We now claim that in all cases,

B = 〈r∗, g∗, h∗〉 .(25)

To prove formula (25), one simply translates the case–by–case descriptions of a set
of generators for Gal(E/Z) in the proof of Theorem 12.6 into a set of generators
for B using the following simple principle. Suppose that τ ∈ Aut Q[ζf] and that f is
the product of three pairwise relatively prime positive integers b1, b2, b3. For each
i ≤ 3, let ηi be a bthi root of unity in Q[ζf] and suppose τ(ηi) = ηei

i . If e ∈ Z is a
solution to the set of congruences x ≡ ei (mod bi) (for i = 1, 2, 3), then e + fZ is
the image of τ under the natural isomorphism Aut Q[ζf] −→ Z•

f . We illustrate the
use of this fact to calculate B in two of the cases from the proof of Theorem 12.6
and leave the remaining cases to the reader.

Case 6 : [G : C] = 12, 3|n and |S| > 1. In this case s = 2, q = 6, g ≡ 1
(mod (6t)n) (by Lemma 7.8), 6f = 3n/t · 4, (a, g) is an invariant for G with respect
to an r–sequence u, v, x, y, z, and by Euler’s theorem

µ = 32
f + 83φ(3f) ≡ 1 (mod 6f) .

We factor f in three ways

m · (f/m) = (2f) · (f//2) = m · 6f/m · (n/t)//6 .
The above factors are the orders, respectively, of the elements

y, vxt, v, yx2t, y, xt(n//3)v, xt(6n) .

Gal(E/Z) is generated by σ, σ1 and τ1. Since σ(y) = yr and σ(vxt) = vxt, then
σ maps to r∗. Since σ1(v) = v−1 and σ1(yx

2t) = yx2t, then σ1 maps to h∗. Note
g ≡ 1 (mod 3n), so gt(n//3) ≡ t(n//3) (mod n), and hence τ1 fixes xt(n//3)v. Also
τ1(y) = ya and τ1(x

t6n) = (xt6n)g, so τ1 maps to g∗. Thus Gal(E/Z) maps to
〈r∗, g∗, h∗〉.

Case 11 : [G : C] = 120. Then µ = 2, s = q = 5 and f = 5mn/t. We factor f in
two ways:

m · f/m = m · n/t · 5 .
The factors of f above are respectively the orders of

ζm ⊗ 1, ζn/2t ⊗−β, ζm ⊗ 1, ζn/2t ⊗−1, 1⊗ β .
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Gal(E/Z) is generated by σ and ρ3. Since σ(ζm⊗1) = (ζm⊗1)r and σ
(
ζn/2t⊗−β

)
=

ζn/2t⊗−β, σ is mapped to r∗. On the other hand ρ3(ζm⊗1) = ρ(ζm⊗1) = (ζm⊗1)a,
ρ3(ζn/2t⊗−1) = ρ(ζn/2t⊗−1) = (ζn/2t⊗−1)g and by equation (11) in Chapter 12

ρ3(1⊗ β) = (1⊗ iα−1)(1 ⊗ ρ1(β))(1 ⊗ iα−1)−1 = (1⊗ β)2 .

Thus ρ3 maps to g∗. Since 2f = 2, then h∗ = 1. Hence B is indeed generated by
r∗, g∗ and h∗.



CHAPTER 16

Isomorphism Invariants for Frobenius

Complements

We now study combinations of isomorphism invariants of Frobenius comple-
ments which determine those groups up to isomorphism. Our object is to prove
Theorem 1.6 of the Introduction, and to investigate the extent to which a Frobenius
complement G is determined by its truncated group ring Z(G)〈G〉. For A either a
group or ring, let [A] be the isomorphism class of A (in the appropriate sense).

We continue to use the notation of Notation 12.1 and Remark 12.5, so that in
particular G will denote a Frobenius complement with core C and core invariant
(m,n, T ). We let S denote the signature of G. Set k = |C′Z(C)|; thus k = mn/t
and L ∼= Q[ζk] (cf. Remark 12.5).

16.1. Theorem. [G] is determined by any of the following four collections of
data:

(D1) |C| and [Z(G)〈G〉];
(D2) [G : C] and [Z(G)〈G〉];
(D3) |G|, |C|, and [Z];
(D4) |G|, |C|, and S.

Theorem 1.6 is of course equivalent to the assertion that [G] is determined by
the data in (D4). We begin the proof of Theorem 16.1 with four lemmas. The first
simply assembles some material that can be read off of Theorems 5.2D, 6.15, 7.11,
7.13C, 8.7C, 9.1, and 10.6C.

16.2. Lemma. For each of the six possible values of [G : C], the corresponding
values of deg Q〈G〉/t and [Q〈G〉 : Q]/φ(mn) are as indicated below.

[G : C] = 1 4 12 24 60 120
[Q〈G〉 : Q]/φ(mn) = 1 4 (n, 3)4 (n, 3)8 8 16

deg Q〈G〉/t = 1 2 or 4 2 or 2(n,3) 2 or 4 2 4

Our second lemma relates the integer units in Z(G)〈G〉 to the order of G. Its
proof involves a (somewhat implicit) construction of bases for integral truncated
group rings of Frobenius complements as Z–modules.

16.3. Lemma. Let p be a rational prime. Then p ∈ Z(G)〈G〉• if and only if p
divides the order of G.

Proof. First suppose that as a Z–module Z〈G〉 has a basis of the form
γ1, γ2, . . . , γs where γ1 = 1. This is also a basis for Z(G)〈G〉 considered as a Z(G)–
module. If p is a unit in Z(G)〈G〉, then for some integers ai and bi with each bi

96
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dividing some power of |G| we have

p((a1/b1)γ1 + · · ·+ (as/bs)γs) = 1γ1

so pa1/b1 = 1. Thus p divides |G|. On the other hand if p divides |G| then p is a
unit in Z(G)〈G〉 by the definition of the truncated group ring.

We complete the proof of the lemma by verifying the supposition of the first
sentence of the proof. If G is cyclic of order n, then Z〈G〉 ∼= Z[ζn], which has
basis 1, ζ, . . . , ζφ(n)−1. Lemma 3.5 implies that B := {1, i, j,α} is a basis for
Z[H24] ∼= Z〈H24〉 and that B + βB is a basis for Z[H120] ∼= Z〈H120〉. Thus the
supposition is valid in these three cases; it follows that it is valid in all cases since
in Chapters 5 through 10 we constructed all integral truncated group rings of Frobe-
nius complements from those of these three cases by the processes of forming tensor
products and of forming the “cyclic extensions” of Albert’s Theorem 2.5; both these
constructions clearly preserve the property of having a basis including the element
1.

The next lemma shows how the signature S of G determines the reduced in-
variant (if there is one) and core invariant of G. Recall that if the core index of G is
4, 12, 24, or 120, then invariants (and reduced invariants) for G, usually associated
with r–sequences of G, have been defined (cf. Definitions 6.4, 7.2, 8.1 and 10.1).

16.4. Lemma. Let θ : Z•
m×Z•

n −→ Z•
mn be the canonical isomorphism and set

T1 = θ
(
T × 〈1 + nZ〉

)
. If [G : C] = 4, 12, 24 or 120 select an invariant for G.

Define

B = 〈1 +mnZ〉 if [G : C] = 1 or 60;

= 〈θ(a, g), θ(b, h)〉 if [G : C] = 4 and

(a, g, b, h) is the selected invariant for G;

= 〈θ(a, g)〉 if [G : C] = 12, 24, or 120

and (a, g) is the selected invariant for G .

Then S is generated by T1 and B. Moreover T1 is exactly the set of elements of S
of order dividing t. If G = C then B is trivial; if 3 divides |S| and [G : C] = 12
then S is cyclic of order 3t and B is the Sylow 3–subgroup of S; and in all other
cases B is the Sylow 2–subgroup of S.

Proof. T1 is the image of C under the map G −→ Z•
mn of Definition 1.4, so

T1 ⊂ S. If [G : C] = 1 or 60 then T1 = S since G is generated by C together
with some elements of G commuting with every element of C (cf. Theorem 9.1 for
the case [G : C] = 60). Now suppose [G : C] = 4 and u, v, x, y is an r–sequence
for G with invariant (a, g, b, h). Then S is generated by T1 and the images of u
and v in S, namely θ(a, g) and θ(b, h), respectively. Thus S is generated by B and
T1; the set of elements of S of order dividing the odd number t is T1; and B is
the Sylow 2–subgroup of S. Next suppose [G : C] = 12. Say u, v, x, y, z is an
r–sequence for G having the selected invariant (a, g). Since u and v commute with
x and y, S is generated by T1 and the image of 〈z〉 in S, namely B =

〈
(a, g)

〉
.

First consider the case that 3 does not divide |S|. Then (a, g) is trivial, so 3 ∤ t,
B = 1, and S = T1. Next suppose 3 divides |S| but not t. Then a3 = rn//3 = 1,
so (a, g) has order exactly 3. That is, T1 has order prime to 3 and B has order 3.
Finally suppose 3 divides t. Since a3 = rn//3 6= 1, then (a, g) has order 3(3t) and
θ−1(S) =

〈
(r, 1), (a, g)

〉
=
〈(
r3t , 1

)
, (a, g)

〉
. Since

∣∣r3t
∣∣ = t//3 is relatively prime to
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∣∣(a, g)
∣∣ = 3(3t), then S is cyclic of order 3t. One easily checks now in all cases with

[G : C] = 12 that T1 is the set of elements of S of order dividing t and B is the
Sylow 3–subgroup of S.

Next consider the case that [G : C] = 24. If u, v, w, x, y, z is an r–sequence
with the selected invariant (a, g), then we have B =

〈
θ(a, g)

〉
, which is the image

of w in S. Since u, v and z commute with x and y, this says S is generated by T1

and B. Since t is odd and |B| a 2–power, then B is the Sylow 2–subgroup of S and
T1 the set of elements of S of order dividing t. Finally suppose that [G : C] = 120.
We may assume our group G and selected invariant (a, g) are those constructed in
Theorem 10.6. Then S is again generated by T1 and the image of ρ̂ in S, namely
B =

〈
(a, g)

〉
. And again T1 is the set of elements of S of order dividing t and B is

the Sylow 2–subgroup.

The next lemma relates the signature S to the center Z of Q〈G〉.

16.5. Lemma. The diagram

G −−−−→ Z•
mn

δ

y
yρ

AutL −−−−→ Z•
k

commutes, where the top map is that of Definition 1.5, the bottom map is the
canonical isomorphism, the right–hand map is the canonical one, and the left–
hand map is induced by conjugation by elements of G (if g ∈ G and η ∈ L, then
δ(g)(η) = gηg−1). Moreover the image of δ is Gal(L/L ∩ Z) and the restriction of
ρ to S is injective.

Before proving this lemma we state a corollary which begins to suggest how spe-
cial are S (when compared to other subgroups of Z•

mn) and Z ∩L (when compared
to other subfields of cyclotomic extensions of Q).

16.6. Corollary. S is isomorphic to Gal(L/L ∩ Z), and both have a cyclic
subgroup of index at most 2. (S is not cyclic if and only if G is a V4–complement
with reduced invariant of order 4.)

The isomorphism of the corollary is immediate from Lemma 16.5; the rest of
the corollary follows from the analysis of S in Lemma 16.4.

We now prove Lemma 16.5.

Proof. Let x, y be an r–sequence for C, so
〈
xty
〉

=
〈
xt, y

〉
= Z(C)C′

is a normal subgroup of G and L = Q
[
xty
]
. Then conjugation by elements of G

induces automorphisms of
〈
xty
〉

and hence of L which clearly leave L ∩ Z fixed.

If γ ∈ Lδ(G) then γ ∈ Z since the image of G −→ Q〈G〉 generates Q〈G〉 as a
Q–module. Hence by Galois theory δ(G) = Gal(L/L ∩ Z). We next argue that ρ
is injective on S. Suppose otherwise. Then S has an element s of prime order p in
the kernel of ρ. We use the notation of Lemma 16.4. Write s = θ(c, f). Now ρ is
clearly injective on T1, so s 6∈ T1. Hence by Lemma 16.4 either [G : C] = 12, p = 3,
and 3 does not divide t; or p = 2 and [G : C] = 4, 24, or 120. In all cases s is in B
and hence f ≡ 1 (mod tn) (Lemmas 6.9, 6.11, 7.8, and 8.4). Our hypothesis says
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c ≡ 1 (mod m) and f ≡ 1 (mod n/t). But then f ≡ 1 (mod n), contradicting that
s = θ(c, f) has order p. Hence ρ is injective on S.

Finally suppose g ∈ G maps to r1 and r2 under the maps G −→ Z•
k of the

diagram factoring through δ and ρ, respectively. Then by definition yr1 = gyg−1 =
yr2 and xr1t〈y〉 = gxtg−1〈y〉 = xr2t〈y〉. Hence r1 ≡ r2 (mod m) and r1 ≡ r2 (mod
n/t), so r1 = r2. That is, the diagram commutes.

We are now ready to give the proof of Theorem 16.1.

Proof. Let S denote the image of S under the function ρ : Z•
|C| −→ Z•

k of

Lemma 16.5. Consider a fifth set of isomorphism invariants:

(D5) |G|, |C|, |Z(C)C′|, and S .

We will show that the data in (D5) determine [G] and that

(D1) −→ (D2) −→ (D3) −→ (D5)←− (D4)

where “(Di) −→ (Dj)” means the data in (Di) determines that in (Dj).
An inspection of Lemmas 16.2 and 16.3 shows precisely how |C| and [Z(G)〈G〉]

determine [G : C], so (D1) −→ (D2): [G : C] = 1 if and only if [Q〈G〉 : Q] = φ(|C|);
[G : C] = 4 if and only if [Q〈G〉 : Q] = 4φ(|C|) and either 3 divides |C| or
3 6∈ Z(G)〈G〉•; [G : C] = 12 if and only if either [Q〈G〉 : Q] = 12φ(|C|) or else
[Q〈G〉 : Q] = 4φ(|C|), 3 does not divide |C|, and 3 ∈ Z(G)〈G〉•; [G : C] = 24 if
and only if either [Q〈G〉 : Q] = 24φ(|C|) or else [Q〈G〉 : Q] = 8φ(|C|) and either
5 6∈ Z(G)〈G〉• or 5 divides |C|; [G : C] = 60 if and only if [Q〈G〉 : Q] = 8φ(|C|),
5 ∈ Z(G)〈G〉•, and 5 does not divide |C|; [G : C] = 120 if and only if [Q〈G〉 : Q] =
16φ(|C|).

Now we prove (D2) −→ (D3). It suffices to show how |C| is determined by
[G : C] and [Z(G)〈G〉]. The key observations are given in

Claim 1. (A) Suppose [G : C] = 12. Then 3 divides n if and only if 3 divides
deg Q〈G〉 or Z has a primitive cube root of unity.

(B) Suppose [G : C] = 24. Then 3 divides n if and only if some quadratic field
extension of Z has a primitive 9th root of unity.

Proof of Claim 1. (A) If 3 does not divide n, then Z is isomorphic to a subfield
of Q[ζk] which has no primitive cube roots of unity (Theorem 7.11) and 3 does not
divide the degree of Q〈G〉 (Lemma 16.2). Now suppose 3 divides n and 3 does not
divide deg Q〈G〉. By Theorem 7.13 and the paragraph following it, the invariant of
G must be trivial and hence Z has a root of unity of order 3(3n). Thus Z has a
primitive cube root of unity, as required.

(B) Suppose 3 divides n. G has a unique subgroup H which is an A4–comple-
ment with the same core as G. By Theorem 8.7C the center of Q〈H〉 is an extension
of Z of degree at most 2. H has trivial invariant, so by Theorem 7.13 the center
of Q〈H〉 has a root of unity of order 3(3n) and hence a primitive 9th root of unity.
Now suppose 3 does not divide n. Again by Theorem 8.7C, Z is isomorphic to a
subfield of E

[√
2
]
, where E is the center of Q〈H〉. By Theorem 7.11, Z is then

isomorphic to a subfield of Q[ζk, ζ8] = Q[ζ4k] since ζ8 +ζ−1
8 =

√
2. Now Q[ζ9, ζ4k] is

an extension of Q[ζ4k] of degree 6, and hence no subfield of Q[ζ4k] has a quadratic
extension containing ζ9. Thus Z has no quadratic extension with a primitive 9th
root of unity. This completes the proof of Claim 1.
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We now apply the identity

|C| = φ(|C|)|C|0/φ(|C|0)
(cf. formula (24) in Chapter 15) to the computation of |C| in terms of [G : C]
and [Z(G)〈G〉]. By Lemma 16.3 |G|0 is the product of the distinct rational primes
in Z(G)〈G〉•. Then a routine computation using Claim 1 above and Lemma 16.2
shows that

|C| = |G|0[Q〈G〉 : Q]/(φ(|G|0)δ)
where δ = 1 if [G : C] = 1; δ = 4 if [G : C] = 4; δ = 12 if [G : C] = 12 and either
3 divides deg Q〈G〉 or Z has a primitive cube root of unity; δ = 6 if [G : C] = 12
and 3 does not divide deg Q〈G〉 and Z has no primitive cube root of unity; δ = 12
if [G : C] = 24 and no quadratic extension of Z has a primitive 9th root of unity;
δ = 24 if [G : C] = 24 and some quadratic extension of Z has a primitive 9th root
of unity; δ = 15 if [G : C] = 60; and δ = 30 if [G : C] = 120.

Our next task is to show (D3) −→ (D5). We need the following technical result.
Claim 2. The degree of Q〈G〉 is 6t if and only if [G : C] = 12, 3 divides |C|,

and Z does not have a root of unity of order 3(3|C|).
Proof of Claim 2. By Lemma 16.2 we may assume without loss of generality

that [G : C] = 12 and 3 divides |C|. Then by Theorem 7.13 the degree is 6t if and
only if the reduced invariant of G is nontrivial. In this case Z is isomorphic to a
subfield of Q[ζk], which clearly has no root of unity of order 3(3n). On the other
hand if the reduced invariant is trivial, Z is isomorphic to K[z(1− u− v− vu)] (in
the notation of Theorem 7.13) which has −z(1− u − v − vu)/2 as a root of unity
of order 3(3n). This completes the proof of Claim 2.

We now show how k = |Z(C)C′| is determined by |G|, |C|, and [Z]. First
suppose |G| = |C|. Then by Lemma 16.2 and the definition of degree, the square
of the degree of Q〈G〉 is

t2 = [Q〈G〉 : Q][Z : Q]−1 = φ(|C|)/[Z : Q] ,

so that

|Z(C)C′| = |C|/(φ(|C|)/[Z : Q])
1
2 .

The other cases are similar but a bit more complex. Set ξ = 3 if |G| = 12|C|, 3
divides |C|, and Z has no root of unity of order 3(3|C|), and let ξ = 1 otherwise.

Since |G| 6= |C|, then t is odd and hence by Claim 2 and Lemma 16.2, t2 =
ξ−2(deg Q〈G〉)2//2, which by the definition of degree and Lemma 16.2 equals

ξ−2[Q〈G〉 : Q][Z : Q]−1//2

= ξ−2
(
φ(|C|)/[Z : Q]

)(
[Q〈G〉 : Q]/φ(|C|)

)
//2

= ξ−2(3, |C|, |G|/|C|)(φ(|C|)/[Z : Q])//2 .

This shows t, and hence k = |Z(C)C′| = |C|/t, are both determined by |C|, |G|,
and [Z].

It remains to show that S is determined by |G|, |C|, and [Z].
By Theorem 12.6 (and Remark 12.7) Q〈G〉 has a subfield W containing Z and

L which is isomorphic to a subfield of U := Q[ζ60k]. By Galois theory each subfield
V of W is isomorphic to only one subfield, call it V1, of U . Thus for example L1 is
Q[ζk], the unique subfield of U isomorphic to L. Since any homomorphismW −→ U
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preserves intersection of subfields of W , then L1 ∩ Z1 is the unique subfield of U
isomorphic to L ∩ Z. Thus the image of the natural map

Gal(L1/L1 ∩ Z1) −→ Z•
k

depends only on [Z] and k = |Z(C)C′| and it equals the image of

Gal(L/L ∩ Z) −→ Z•
k

which by Lemma 16.5 is exactly the image of S in |Z•
k|. This completes the proof

that (D3) −→ (D5).
The penultimate step in the proof of Theorem 16.1 is to show that (D4) −→

(D5). This amounts to showing how k = |Z(C)C′| is determined by |G|, |C| and
S. If |G| = |C| then k = mn/t = |C|/|S|. Now suppose |G| 6= |C|. If |G|/|C| 6= 12
or 3 does not divide |S|, then by Lemma 16.4 t = |S|//2, so

k = |C|/
(
|S|//2

)
.

Finally suppose |G|/|C| = 12 and 3 divides |S|. Then by Lemma 16.4 t = |S|/3, so
k = 3|C|/|S|.

It remains to show that [G] is determined by the data in (D5), i.e., by |G|,
|C|, k = |Z(C)C′| and S. With δ as in Lemma 16.5 we clearly have

〈
xty
〉δ(C) ⊃〈

xt
〉
; indeed we have equality since if for some s ∈ Z (yxt)s = x(yxt)sx−1, then

ysxts = yrsxts, so s(r − 1) ≡ 0 (mod m). Then s ≡ 0 (mod m) (recall that
(r−1,m) = 1), so (yxt)s ∈ 〈xt〉. For any integer j let Sj denote the set of members

of S of order dividing j. Note t = |C|/k and hence St is determined by the data in
(D5). By Lemmas 16.4 and 16.5, St is the image of δ(C) in Z•

k under the canonical
isomorphism AutL −→ Z•

k and hence
∣∣{γ ∈ 〈ζk〉 : γs = γ for all s ∈ St

}∣∣

=
∣∣〈xty〉δ(C)

∣∣ =
∣∣〈xt〉

∣∣ = n/t

is determined by the data in (D5), as are n = (n/t)t, m = |C|/n, and

T = image of St under the map Z•
k −→ Z•

m .

If |G|/|C| = 1 or 60, this says [G] is determined by the data in (D5) (cf. Theorem 5.2
and 9.1). The same conclusion can be drawn for all other possible values of |G|/|C|
since if |G|/|C| is 4, 12, 24, or 120, then the reduced invariant of G is precisely the
image of S2, S3(3n), S2, or S2 under the canonical maps from Z•

k into Z•
m × Z•

n//t,

Z•
m × Z•

n//6t, Z•
m × Z•

n//6t, or Z•
m × Z•

n//6t, respectively (cf. Lemma 16.4). We are

using Theorems 6.5, 7.3, 8.2, and 10.2, which say that such a Frobenius complement
is determined up to isomorphism by its core index, core invariant, and reduced
invariant. This completes the proof of Theorem 16.1.



CHAPTER 17

Schur Indices and Finite Subgroups of Division

Rings

A formula is established here for the Schur index of the rational truncated group
ring of a 1-complement in terms of its invariant. The next two propositions show
that the problem of computing the degree and index of Q〈G〉 for any Frobenius
complement G can be regarded as an extension of the problem of finding all finite
subgroups of division rings (i.e., finite subgroups of the groups of multiplicative
units of division rings), since the finite subgroups of division rings are exactly the
Frobenius complements whose rational truncated group rings have index and degree
equal. (Recall that a central simple algebra is a division ring if and only if its degree
equals its index.)

17.1. Proposition. [SW, Theorem 2.1.2, p. 45]. A nontrivial finite subgroup
of a division ring is a Frobenius complement.

Proof. Let D be a division ring and H be a nontrivial finite subgroup of
D•. Suppose D has finite characteristic p; then the image of the canonical unitary
homomorphism ZH −→ D is a finite ring without zero divisors, and hence is a finite
field by Wedderburn’s Theorem on finite division rings. Thus H is cyclic (this is
essentially the argument of [H1, Theorem 6, p. 122]). It follows from Corollary 3.3
that H is a Frobenius complement. Now suppose D has characteristic zero. By
Lemma 2.4 we have a unitary homomorphism Z〈H〉 −→ D, so Z〈H〉 cannot be a
torsion Z–module. Hence H is a Frobenius complement (Lemma 2.2).

17.2. Proposition. (Cf. [Am, Theorem 3, p. 364.].) A Frobenius comple-
ment G is a finite subgroup of a division ring if and only if Q〈G〉 is a division
ring.

Proof. Sufficiency follows from Corollary 12.3. Now suppose G is a subgroup
of a division ring D. Without loss of generality we may suppose G is not cyclic
(cf. Theorem 3.2), so D has characteristic zero (argue as in the preceeding proof or
apply [H1, Theorem 6, p. 122]). Then the canonical homomorphism Z〈G〉 −→ D
(Lemma 2.4) extends to a unitary homomorphism Q〈G〉 −→ D, which is injective
since Q〈G〉 is simple. Therefore Q〈G〉 has no zero divisors, and hence by Wedder-
burn’s theorem on simple algebras it must be a division ring.

The above propositions suggest that rational truncated group rings can provide
a convenient setting for studying finite subgroups of division rings. We use them
now in a proof (with no claim of originality) of Amitsur’s theorem [Am, Corollary
4, p. 384] that there is only one nonsolvable finite subgroup of a division ring.

17.3. Theorem. H120 is the only (up to isomorphism) nonsolvable finite sub-
group of a division ring.

102
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Proof. Suppose H is an nonsolvable finite subgroup of a division ring. By
Theorem 17.1 H is a Frobenius complement and hence without loss of generality
H has a subgroup of index s ≤ 2 of the form H120 × J where J is a Z–group of
order relatively prime to 30 [Pa, Theorem 18.6, p. 204]. It suffices to show s and
J are trivial.

First suppose J 6= 1, so it is also a Frobenius complement. Suppose J has
invariant (m,n, 〈r〉) and x, y is an r–sequence for J . Then J0 := H120 × 〈x〉 is a
subgroup of H ; let

C := Q〈J0〉 ∼= Q
[
i, j,
√

5
]
⊗Q[ζn]

(cf. the Direct Product Lemma 2.9 and Theorem 3.2). By Theorem 17.2, C is
a division ring. Now C is clearly the quaternion algebra

(−1,−1
E

)
over the field

E := Q
[√

5, ζn
]

(note that 5 does not divide n, so
√

5 6∈ Q[ζn]). Since C is a

division ring, the quadratic form (−1)X2 +(−1)Y 2 does not represent 1 over E [L,
Theorem 2.7, p. 58]. Thus the field E has level 4, so the residue class degree f for
the prime 2 in the extension E/Q is odd [L, Proposition 2.11, p. 307]. (Since n > 5,
E is not formally real.) But this is impossible, since the residue class degree for

the prime 2 in the extension Q
[√

5
]
/Q is clearly 2 (after all, Q

[√
5
]

is the splitting

field of x2 + 3x+ 1 and a root of this polynomial induces a quadratic extension of
Z2). Hence J must be trivial.

Just suppose s = 2. Then H may be identified with H240 (cf. Example 4.3 and
Theorem 10.2), so Q〈H240〉 has no zero divisors (Theorem 17.2). But this is false
since (

1− γψ̂
)(

1 + γψ̂
)

= 1− γ
(
ψ̂γψ̂−1

)
i = 1− γψ(γ)i = 0

where γ =
((

2 +
√

5
)
/5
)
(3j + 4k). Hence s = 1, as claimed.

In the next theorem the computation of the index of the rational truncated
group ring Q〈G〉 of a 1-complement G is reduced to tractable calculations in ele-
mentary number theory. We use the notation of Notation 6.2 for the remainder of
this chapter.

17.4. Theorem. Let G be a 1-complement with invariant (m,n, 〈r〉). For each
prime divisor p of m let

f(p) = LCM
[
|p+ n/tZ|, |〈p+m//pZ, r +m//pZ〉|/|r +m//pZ|

]

and let

δ = GCD
{
|r +m//pZ|(pf(p) − 1) : p | m

}
.

Then Q〈G〉 has index 1 if m = 1; index 2 if m 6= 1, n/t = 2 and −1 ∈ 〈r〉; and
index n/(n, δ) otherwise.

In the statement of the above theorem all subgroups are multiplicative sub-
groups and all orders of elements are multiplicative, not additive, orders. Before
proving the above theorem we consider some applications.

17.5. Remark. Suppose G is a 1–complement and k is the degree of Q〈G〉
divided by its index. Then Q〈G〉 is isomorphic to a ring of k × k–matrices over a
division ring, so G is isomorphic to a subgroup of the group of invertible elements
of such a ring. Thus k measures how close G is to being a finite subgroup of a
division ring; k equals 1 if and only if G is a finite subgroup of a division ring (cf.
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Theorem 17.2). We will call k the reduced degree of G. Here is a table giving,
subject to restrictions on the order of the Frobenius complements, the number
of isomorphism classes of 1–complements, the number of these which are finite
subgroups of division rings, the average of their reduced degrees (rounded to two
decimal places), and the maximum of their reduced degrees. (The words emphasized
in the previous sentence correspond to the labels in the table below.)

order isomorphism classes subgroups average maximum
≤ 10,000 20,509 13,197 1.60 16
≤ 50,000 119,868 66,825 1.85 32
≤ 100,000 256,349 134,161 1.98 64

The numbers of isomorphism classes were computed using Proposition 11.1;
the computations of the reduced degrees were made using the previous theorem
and Theorem 5.2D.

We next apply Theorem 17.4 to prove a variant of Shirvani’s characterization
of the Z–groups which are finite subgroups of division rings [SW, Theorem 2.1.5, p.
47]. Among such groups are the cyclic groups and the binary dihedral groups D4m

where m is odd. We now find all the others. By Proposition 17.1 we can without
loss of generality focus our attention on 1-complements.

17.6. Theorem. Suppose G is a 1-complement with invariant (m,n, 〈r〉) which
is neither a cyclic nor a binary dihedral group. Then G is a finite subgroup of a
division ring if and only if for all prime divisors p of m and q of |r + pZ|, q does
not divide |r +m//pZ|, and |p + qqn/tZ| is larger than (

qn/t

q , p+1
2 , 2) and does not

divide |p+ ρZ| for any rational prime ρ which divides mn but not p|r + pZ|.
Consider an example. For all positive integers i and j one can check that

there is a unique Frobenius triple of the form (7i, 3j+1, T ); it has T = 〈27i

+ 7iZ〉
and |T | = 3. Since 7 6≡ 1 (mod 3 · 3j), then the 1-complement with invariant

(7i, 3j+1, 〈27i

+ 7iZ〉) is a finite subgroup of a division ring. Not only is the group
of this type of order 63 the unique noncyclic subgroup of a division ring of minimal
odd order (which gives Amitsur’s answer [Am, Theorem 6, p.374] to a question of
Herstein [H1]), it is the unique noncyclic Frobenius complement of minimal odd
order.

The proof of Theorem 17.6 gives more compact (but less elementary) criteria
for a 1-complement to be a finite subgroup of a division ring than that above (e.g.,
see formula (26)). In Remark 17.7 we discuss further the divisibility conditions of
the theorem above and their connections with those of [SW, Theorem 2.1.5(c), p.
47].

Proof. The symbol p will always denote a prime factor of m, and q and
ρ will always denote primes. We use the notation and results of Theorem 17.4
and Proposition 11.1A. In particular, t = |r| is the least common multiple of the
t(p) := |r + pZ|. We will several times use implicitly below the observation that
if q divides t(p), then Z•

p has an element of order q, so q divides p − 1 and hence
|p+ qsZ| is a power of q for all positive integers s.

First suppose n/t = 2 and −1 ∈ 〈r〉. Then Q〈G〉 has index 2. Since G is not
binary dihedral, the degree t of Q〈G〉 is not 2, so G is not a finite subgroup of a
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division ring (Proposition 17.2). Now t is a power of 2 (since n0 divides n/t), so
4 divides t and hence there exists some p with 4 dividing p − 1. The validity of
the theorem follows in this case since for any q dividing t(p) we have qqn/t = 4, so

|p+ qqn/tZ| = 1 ≤ (
qn/t

q , p+1
2 , 2).

Now suppose that either n/t 6= 2 or −1 /∈ 〈r〉, so the index of Q〈G〉 is n/(n, δ).
Then G is a finite subgroup of a division ring if and only if t = n/(n, δ), and
hence if and only if (n, δ) = n/t. Now n/t divides (n, δ) since for every p it divides
p|p+n/tZ| − 1. Moreover any prime power dividing (n, δ) which is relatively prime
to t divides n/t. Hence G is a finite subgroup of a division ring if and only if for
all prime divisors q of t, qqn/t ∤ δ, i.e., there exits some p with

qqn/t ∤ |r +m//pZ|(pf(p) − 1) .(26)

Since qn/t divides pf(p) − 1, the condition (26) is equivalent to the condition that

q ∤ |r + m//pZ| and qqn/t ∤ pf(p) − 1. The relation q ∤ |r + m//pZ| implies that
p is in fact the unique prime divisor of m with t(p) divisible by q. Hence G is a
finite subgroup of a division ring if and only if for all p and for all divisors q of t(p)
we have q ∤ |r + m//pZ| and |p + qd+1Z| ∤ f(p) where we have set qd = qn/t; or
equivalently, q ∤ |r +m//pZ| and

|p+ qd+1Z| ∤ LCM
[
|p+ n/tZ|, |p+m//pZ|

]
= |p+ nm/tpmZ| .(27)

Because |p + qd+1Z| is a prime power, the assertion (27) is valid if and only if
|p + qd+1Z| ∤ |p + ρmn/tZ| for every ρ dividing mn//p. Now for each such ρ,
|p+ ρmn/tZ| is the product of |p+ ρZ| and a power of ρ. Hence the condition (27)

is equivalent to saying that |p + qd+1Z| ∤ |p + ρZ| whenever ρ divides mn but not
pt(p) and that

|p+ qd+1Z| ∤ |p+ qdZ| .(28)

It remains to prove that the condition (28) is equivalent to

|p+ qd+1Z| > c where c =
(
qd−1,

p+ 1

2
, 2
)
.(29)

Assume condition (28). Then (29) follows trivially if c = 1, so suppose c 6= 1. Then
p ≡ 3 (mod 4) and 4 divides qd. Therefore |p+qdZ| is at least 2, so |p+qd+1Z| is at
least 4, which is larger than c. Now suppose the condition (29) is valid. Condition
(28) is obvious if qd = 2 and p ≡ 3 (mod 4), so suppose otherwise. Let a be
maximal with qa dividing pc − 1. By the choice of c, either q is odd or a ≥ 2. An
easy induction argument now shows that for all i ≥ 0 we can find an integer si not

divisible by q such that pcq
i

= 1 + qa+isi. By our hypothesis (29), a < d+ 1. Since

pcq
d−a

= 1 + qdsd−a and pcq
d+1−a

= 1 + qd+1sd+1−a, therefore

|pc + qd+1Z| = qd+1−a > |pc + qdZ| .
The validity of the assertion (28) follows readily (note that c|pc + qeZ| = |p+ qeZ|
whenever d ≤ e ∈ Z).

17.7. Remark. We sketch the connections between the divisibility conditions
of the above theorem and those of Shirvani’s characterization of these groups [SW,
Theorem 2.1.5(c), p. 47]. Proofs are routine and are left to the reader.

(A) The condition that q does not divide |r +m//pZ| for all p and q as in the
above theorem is equivalent to the condition that the numbers |r+ pZ| as p ranges
over the prime divisors of m are pairwise relatively prime. This is equivalent to the
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condition that G has the kind of decomposition G0×· · ·Gs found in [SW, Theorem
2.1.5(c), p. 47].

(B) The condition that |p+ qqn/tZ| > (qn/t/q, (p+ 1)/2, 2) corresponds to the
conditions on “α” in [SW, Theorem 2.1.5(c), p. 47].

(C) The assertion that |p+qqn/tZ| does not divide |p+ρZ| for all prime divisors
ρ of mn which do not divide pt(p) is equivalent (in the presence of the conditions of
(A) and (B) above, which imply that |p+ qqn/tZ| = q|p+ qn/tZ|) to the divisibility
condition in the last sentence of [SW, Theorem 2.1.5(c), p. 47].

The remainder of this chapter is devoted to the proof of Theorem 17.4. We
identify Q〈G〉 with the crossed product algebra (L/K,Φ) where L = Q[ζmn/t];
K = Lσ where σ ∈ AutL fixes ζn/t and maps ζm to ζrm; and Φ is the factor set

on 〈σ〉 with Φ(σi, σj) equal to ζn/t if i + j ≥ t and equal to 1 otherwise, where i
and j range over the nonnegative integers less than t (cf. Remark 12.9 and Case
1 of the proof of Theorem 12.6). The index of Q〈G〉 is the least common multiple
of the local indices, i.e., the indices of the rings Kp ⊗K Q〈G〉 where p ranges over
the primes of K [Re, Theorem 32.19, p. 280]. Hence the index of Q〈G〉 is the least
common multiple of the indices of the crossed product algebras

Ap := (Lp/Kp,Φp) ,

where p ranges over the primes of L, Lp denotes the completion of L at p, Kp

denotes the closure of K in Lp, and Φp denotes the restriction of Φ to the Galois
group of Lp/Kp, which can be identified with a subgroup of 〈σ〉 [Re, Theorem
29.13, p. 248]. We begin by considering an infinite prime p of L. If p is a real prime
(so n = 2 and L = Q) or else restricts to a complex prime of K, then Ap has index
1. Now suppose it is complex but restricts to a real prime of K. Then n/t = 2
(otherwise K, which contains ζn/t, could not have a real prime). Let F = Kp ∩ L.
Since [Lp : Kp] = [C : R] = 2, then [L : F ] = 2. But L/K is a cyclic extension.

Hence Lσ
t/2

= F and σt/2 extends uniquely to an automorphism τ of Lp/Kp. The
only nontrivial automorphism of C/R is complex conjugation, which takes any m–

th root of unity to its inverse. Hence ζ−1
m = σt/2(ζm) = ζr

t/2

m . Thus rt/2 = −1.
In Ap we have u(τ)2 = Φ(σt/2, σt/2)u(1) = ζn/t = −1, and u(τ)γu(τ)−1 = τ(γ)
is the complex conjugate of γ (defined with respect to p) for any γ ∈ Lp. (We
are using here the crossed product notation introduced in the paragraph preceding
Theorem 12.8.) Thus Ap

∼= H and hence Ap has index 2. We end this discussion

of real primes of K by showing that if m 6= 1, n/t = 2, and rt/2 = −1, then K
does indeed have a real prime. After all we then have σt/2(ζm) = ζ−1

m , so σt/2 is

complex conjugation. Thus K = Lσ ⊂ Lσt/2 ⊂ R, so K has a real prime.
We now consider a finite prime p of L. p extends a rational prime, say p. Let us

denote the residue class degree and ramification index of (the restriction of) p with
respect to a field extension E1/E2, where L ⊃ E1 ⊃ E2 ⊃ Q, by f(E1/E2) and
e(E1/E2), respectively. If p does not divide mn, then p is unramified and hence Ap

has index 1 [Jz, p. 699]. Now suppose p divides n. By [R, 4B(5), p. 269]

e(L/Q) = φ(pmn/t) = φ(pn/t) = e(Q[ζn/t]/Q) .

Hence e(L/Q[ζn/t]) = 1, so e(L/K) = 1. Thus again L/K is unramified, so Ap has
index 1. Finally suppose p | m. Then p does not divide t = [L : K], so the extension
L/K is tamely ramified. Since the automorphism group 〈σ〉 of L/K is cyclic, then
θ := σt/e(L/K) must be a generator of the inertia group of L/K with respect to p.
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Let ϕ be a Frobenius automorphism for L/K. Observe that u(θ)e(L/K) = ζn/t and

u(ϕ)u(θ)u(ϕ)−1u(θ)−q = (u(θ)e(L/K))−(q−1)/e(L/K)

where q = pf(K/Q) since all the u(σi) (0 ≤ i < t) commute. (Note that e(L/K)
divides q − 1 since it divides ([L : K], e(L/Q)) = (t, φ(pm)) = (t, p − 1).) Since
Lp/Kp is tamely ramified and by definition Φp takes its values in the group of units
of the valuation ring of Lp, then by [Jz, Theorem 2, p. 700] the index of Ap is the
order of the image in the residue class field L̄ of Lp of the multiplicative group

〈ζ(q−1)/e(L/K)
n/t , ζ

(qf(L/K)−1)/e(L/K)
n/t 〉 = 〈ζ(q−1)/e(L/K)

n/t 〉 = 〈ζs〉

where s = (n/t)/
(
n/t, (q − 1)/e(L/K)

)
. The factorization of Xs − 1 in L induces

the factorization of Xs − 1 in L̄. But because the characteristic p of L̄ does not
divide s, Xs − 1 factors into distinct linear factors in L̄. Therefore the group 〈ζs〉
injects into L̄, so the index of Ap is

n/t(
n/t, (q − 1)/e(L/K)

) =
n(

n, t(q − 1)/e(L/K)
) .(30)

Next we turn to the calculation of q = pf(K/Q) and of e(L/K). The ramification
index e(L/K) is the order of the inertia group I(L/K) of p with respect to the
extension L/K, and this group is the intersection of the inertia group I(L/Q) of p

with respect to L/Q and the Galois group 〈σ〉. We will treat as identifications the
natural isomorphisms

Aut Q[ζmn/t] −−−−→ Aut Q[ζpm ]×Aut Q[ζmn/tpm
]

y
y

Z•
mn/t −−−−→ Z•

pm
× Z•

mn/tpm

(31)

(the top map is induced by restriction). The inertia and decomposition groups
of p with respect to the extension L/Q map under the top isomorphism of the
commutative diagram (31) into the direct product of the corresponding groups with
respect to the extensions Q[ζpm ]/Q and Q[ζmn/tpm

]/Q. We can pick s ∈ Z with
s ≡ r (mod m) and s ≡ 1 (mod n/t). Then 〈σ〉 is identified with 〈(s + pmZ, s +
mn/tpmZ)〉 and I(L/Q) with Z•

pm
× 1 [R, 4B(5), p. 269], so |I(L/Q)| = φ(pm).

The intersection of these two groups is generated by σ|s+mn/tpmZ|, so

e(L/K) = t/(t, |s+mn/tpmZ|) .
Since |s+mn/tpmZ| = |r +m//pZ| and

t = |r| = LCM
[
|r + pmZ|, |r +m//pZ|

]
,

then

e(L/K) = |I(L/K)| = |r + pmZ|/(|r + pmZ|, |r +m//pZ|)
and

t/e(L/K) = |r +m//pZ| .(32)

Now let D(L/Q) and D(L/K) denote the decomposition groups of p with respect to
the indicated field extensions. Then D(L/Q) corresponds under our identification
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(31) to Z•
pm
× 〈p + mn/tpmZ〉 (the decomposition group of p with respect to the

field extension Q[ζmn/tpm
]/Q is generated by the Frobenius automorphism). Hence

|D(L/Q)| = φ(pm)|p+mn/tpmZ| .

D(L/K) is the intersection of D(L/Q) and 〈σ〉, so it is generated by σi and has
order t/i where i is the order of the coset of s + mn/tpmZ in the factor group
Z•
mn/tpm

/〈p + mn/tpmZ〉. Thus i = dmn/tpm
(p, s)/|p + mn/tpmZ|. Here we are

letting dµ(j, k) denote the order of the subgroup Dµ(j, k) := 〈j+µZ, k+µZ〉 of Z•
µ

for any integers j and k relatively prime to the positive integer µ. Hence

|D(L/K)| = t|p+mn/tpmZ|/dmn/tpm
(p, s) .

Combining these ramification group calculations we obtain

f(K/Q) =
|D(L/Q)||I(L/K)|
|I(L/Q)||D(L/K)| =

dmn/tpm
(p, s)

|r +m//pZ| .

Now let us consider the restriction to Dmn/tpm
(p, s) of the natural homomorphism

Z•
mn/tpm

−→ Z•
n/t. Since s+mn/tpmZ is in the kernel, then the image is 〈p+n/tZ〉

and the kernel is D := Dmn/tpm
(s, p|p+n/tZ|). Since the generators of D are trivial

modulo n/t, it follows that

dmn/tpm
(p, s) = |p+ n/tZ||D| = |p+ n/tZ|dm//p(s, p|p+n/tZ|) .

The order of the coset of p + m//pZ in the factor group Z•
m//p/〈s + m//pZ〉 is

j := dm//p(p, s)/|s+m//pZ|, so the order of the coset of p|p+n/tZ| +m//pZ in the
factor group is

j

(j, |p+ n/tZ|) =
dm//p(s, p

|p+n/tZ|)

|s+m//pZ| .

Hence

dm//p(s, p
|p+n/tZ|) =

|s+m//pZ|dm//p(p, s)
(dm//p(p, s), |s+m//pZ||p+ n/tZ|) .

Because r ≡ s (mod m) we can deduce that

f(K/Q) =
dm//p(p, s)|p+ n/tZ||s+m//pZ|(

dm//p(p, s), |p+ n/tZ||s+m//pZ|
)
|r +m//pZ|

= LCM
[
dm//p(p, s), |p+ n/tZ||s+m//pZ|

]
/|r +m//pZ|

= f(p) .

Hence by formulas (30) and (32) the index of Ap is

n/
(
n, (pf(p) − 1)|r +m//pZ|

)
.

We can now give the index of Q〈G〉. If m = 1, then Q〈G〉 ∼= L is abelian, so
its index is indeed 1. Next suppose that m 6= 1, n/t = 2, and rt/2 = −1. Then we
have seen that K has a real prime and the local index at any such prime is 2. On
the other hand by equation (30) the local index at any finite prime divides n/t = 2.
Thus the index of Q〈G〉 is exactly 2. Finally suppose that neither of the above two
cases occurs. Then K has no real primes, so the index of Q〈G〉 is the least common
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multiple of the indices of the rings Ap as p ranges over finite primes which extend
rational primes p dividing m. That is, the index is

LCM
{ n(
n, |r +m//pZ|(pf(p) − 1)

) : p | m
}

=
n

(n, δ)
.

This completes the proof of Theorem 17.4.
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