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✆Definition:

An infinitesimal is a quantity which is smaller than any finite magnitude, but

not zero.

☛

✡

✟

✠
Modern Terminology:

An infinitesimal is a number x �= 0 such that |x| is less than every positive

number.

✞

✝

�

✆Question:

Is |x| < |x|?



✞

✝

�

✆What is the area of a circle?

Antiphon, approx 450 B.C.:

A circle is a polygon with a very large number (infinite) of vanishingly small

(infinitesimal) sides.
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Area computation:

Area of circle = (area of triangle) × (number of triangles)

=
1

2
(base of triangle) × (height of triangle) × (number of triangles)

=
1

2
(base of triangle) × (number of triangles) × (height of triangle)

=
1

2
(circumference of circle) × R

=
1

2
(2 × π × R) × R

= πR2

R
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✆Centuries of indecision on infinitesimals

Eudoxus (408-355 B.C.)

Method of exhaustion

Replaces infinitesimals with small, non-infinitesimal quantities, and a rigorous

proof technique

Archimedes (∼250 B.C.)

Most published proofs use exhaustion or compression

In The Method of Mechanical Theorems, explains how infinitesimal techniques can

be used for discovery
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Johannes Kepler (1615) Nova stereometria dolorium vinariorium

Still a part of the standard Calculus curriculum (under the heading “volumes of

rotation”), these arguments are awkward without infinitesimals; textbooks try,

but most instructors still just use infinitesimal arguments.

Many results duplicate those in The Method



Bonaventura Cavalieri (1635), Geometria indivisibilus

Replaced explicit infinitesimal arguments by axiomatic statements.

(1637), Excercitationes geometricae:

“Rigor is the affair of philosophy rather than mathematics.”



Isaac Barrow

Tangents to curves using infinitesimal methods.

(1664-7; published 1683) Several works speculating on the methodology used by

Archimedes.

Recent question: Barrow visited Constantinople at a time when the Archimedes

Palimpsest was there; did he have access to it?



Gottfried Wilhelm von Leibniz

(1684): Nova methodus pro maximis et minimis..., Acta Eruditorum

(1686): De geometria recondita et analysi indivisibilium et infinitorum, Acta

Eruditorum

Free use of infinitesimals. Viewed curves much as Antiphon, as composed of

infinitely many small segments.

(1700+) The two questions:

a) Are infinitesimals real?

b) Do infinitesimals lead to correct theorems?

are independent.



Isaac Newton

(1687): Principia Mathematica

Uses no infinitesimals in the proofs (not even fluxions).

(1691): De Quadratura Curvarum

Disavows infinitesimals.



George (Bishop) Berkeley

(1734): The Analyst

“The foreign Mathematicians...suppose finite Quantities to consist of Parts

infinitely little, and Curves to be Polygons, whereof the Sides are infinitely

little, which by the Angles they make one with another determine the

Curvity of the Line. Now to conceive a Quantity infinitely small, that is,

infinitely less than any sensible or imaginable Quantity, or any the least

finite Magnitude, is, I confess, above my Capacity. But to conceive a

Part of such infinitely small Quantity, that shall be still infinitely less

than it, and consequently though multiply’d infinitely shall never equal

the minutest finite Quantity, is, I suspect, an infinite Difficulty to any

Man whatsoever; and will be allowed such by those who candidly say

what they think; provided they really think and reflect, and do not take

things upon trust.”



Berkeley was reacting in part to criticisms of religion from mathematicians:

“But he who can digest a second or third Fluxion, a second or third

Difference, need not, methinks, be squeamish about any Point in Divinity.”



Berkeley considers the following derivation of the slope of the curve y = xn:

b

b

bb

x

o

(x + o)n − xn

Let o be an infinitesimal, then the slope is the change in y over the change in

x:

(x + o)n − xn

o
=

(xn + noxn−1 + n(n−1)
2

o2xn−2 + · · · ) − xn

o

=
noxn−1 + n(n−1)

2
o2xn−2 + · · ·

o

= nxn−1 +
n(n − 1)

2
oxn−1 + · · ·

Now, the second and subsequent terms are negligible since o is infinitesimal, so

we drop them, and the slope is nxn−1



Berkeley wrote in response:

“Hitherto I have supposed that x flows, that x hath a real Increment,

that o is something. And I have proceeded all along on that Supposition,

without which I should not have been able to have made so much as one

single Step. From that Supposition it is that I get at the Increment

of xn, that I am able to compare it with the Increment of x, and that

I find the Proportion between the two Increments. I now beg leave to

make a new Supposition contrary to the first, i. e. I will suppose

that there is no Increment of x, or that o is nothing; which second

Supposition destroys my first, and is inconsistent with it, and therefore

with every thing that supposeth it. I do nevertheless beg leave to retain

nxn−1, which is an Expression obtained in virtue of my first Supposition,

which necessarily presupposeth such Supposition, and which could not

be obtained without it: All which seems a most inconsistent way of

arguing, and such as would not be allowed of in Divinity.”



And more:

“Leibnitz and his followers in their calculus differentialis making no man-

ner of scruple, first to suppose, and secondly to reject Quantities in-

finitely small...I shall now only observe as to the method of getting rid

of such Quantities, that it is done without the least Ceremony.”

As for the Leibnizian idea that correct theorems may be obtained even assuming

infinitesimals are not real:

“But then it must be remembred, that in such Case although you may

pass for an Artist, Computist, or Analyst, yet you may not be justly

esteemed a Man of Science and Demonstration.”

Concludes with several questions, among them:

“Whether it be necessary to consider Velocities of nascent or evanescent

Quantities, or Moments, or Infinitesimals? And whether the introducing

of Things so inconceivable be not a reproach to Mathematics?”



In the face of this and other criticism, mathematicians continued to use in-

finitesimals, because they worked. Notably:

Marquis de l’Hospital (1696) Analyse des Infiniments Petits pour l’Intelligence

des Lignes Courbes (first Calculus textbook)

“A curved line may be regarded as being made up of infinitely small

straight line segments”

“One can take as equal two quantities differing by an infinitely small

quantity”

Leonhard Euler (1748): Introductio in analysin infinitorum (and many other works)

Pretty much every other working mathematician of the day.



In the 19th century, matematicians sought for and found a way to give Calculus

a sound footing without the need for infinitesimals.

Contributors include Bernard Bolzano (∼1817), Jean Le Rond d’Alembert, En-

cyclopédie méthodique (177?) Augustin-Louis Cauchy, Cours d’analyse (1821),

and finally Karl Weierstrass (late 1870s) gave the ‘modern’ definition of limit.

Once infinitesimals were seen as unnecessary, mathematicians abandoned them

hastily, eg

Georg Cantor (1888/9): Claims to prove impossibility of infinitely small numbers,

labels infinitesimals a “cholera-bacillis” infecting mathematics.

Bertrand Russell (1901) calls them “unnecessary, erroneous, and self-contradictory”



✞

✝

�

✆Resurrection of infinitesimals

Abraham Robinson (1960): Seminars in Princeton and at the ASL annual meet-

ing

(1961): Nonstandard Analysis, Proc. Royal Acad. Sciences Amsterdam

Extended work of Skolem (1938), Los (1955), Schmieden and Laugwitz (1958),

et al, in which methods from Model Theory (a newish branch of mathematical

logic) were used to produce extensions of R containing infinitesimals.

The problem with these earlier extensions is that they did not include enough of

the structure of mathematical universe to be useful.

Robinson’s idea: extend all of mathematics at once to a larger model, and use

predicate logic to keep track of what’s true in the bigger model.



✞

✝

�

✆Construction of the nonstandard model

Start with a mathematical universe (superstructure) V , containing:

• All natural numbers 0,1,2, . . . ; real numbers
√
2, π, e, φ, . . . ; etc.

• The set N of natural numbers as an object; the set R of real numbers; etc.

• Every function from R to R, and the set of all such functions

• Your favorite groups, Banach spaces, etc

• Every other mathematical object we might want to talk about

• We call the elements of this mathematical universe standard.

0 1 2

e π 1+
√
2

17

N R

sin(x) ln(x) P(N)



Extend to a nonstandard mathematical universe ∗V :

• For every object A in V , there is a corresponding object ∗A in ∗V

• EG, ∗V has objects ∗
N, ∗

R, ∗ sin(x), etc.

• (For simplicitry, we drop the stars from simple objects like numbers: 12

instead of ∗12 etc)

• There may (generally will) be many more objects in ∗V than in V

• An element of ∗V that is not in V is called nonstandard.

0 1 2

e π 1∗+∗√2
17

∗
N

∗
R

∗ sin(x) ∗ ln(x) ∗P(N)



The extension should satisfy two important properties:

Transfer If S is a statement1 about objects in V , then S is true in V if and

only if it true in ∗V

For example, since the following is true in V :

For any x and y in R, x + y = y + x

then in ∗V it follows:

For any x and y in ∗
R, x∗+y = y∗+x

1(Technically, a “statement” is a first-order bounded-quantifier formula in a language with constants and func-

tion/predicate symbols from V .)



In particular, since (for example) 12 is an element of N, ∗12 is an element of
∗
N.

Since we can think of the basic elements (like ∗12) of ∗V as just being the

same as their counterparts (like 12) in V , ∗
N is a superset of N.

Similarly, for any standard set A which is an object of V , the set ∗A in ∗V
extends the set A.

Remark: We might imagine a standard mathematician living in universe V , and

a nonstandard mathematician living in ∗V . The transfer principle says that

both these mathematicians experience exactly the same true statements. The

reason this is possible is that they both speak the same language - the

language of V . In particular, the ‘nonstandard’ mathematician will not be able

to refer to any particular element of ∗V that is not the ∗−image of an

element of V .



Saturation Suppose that S is a collection of statements about an object X,
and that for every finite subcollection of S there is an object in ∗V for which

they hold; then there is an object in ∗V for which all the statements in S

hold at the same time.

Roughly means: Anything that can happen in ∗V , does happen.

I have not explained how such a nonstandard model is created. We now know

many ways to construct such models; all employ straightforward techniques

from mathematical logic, and none is especially difficult.



Example: Consider the statements:

x is a real number

x > 0

x < 1

x < 1/2

x < 1/3

x < 1/4
...

Any finite set of these statements refers to a smallest fraction 1/N; but then,

x = 1
N+1 satisfies this finite set of statements.

It follows that there is a an element of ∗
R, call it ε, such that

ε > 0

and, for every (standard) natural number N,

ε < 1/N



We have proved that ∗
R contains nonzero infinitesimals, where

Definition: An infinitesimal is an element ε of ∗
R such that

|ε| < 1/N

for every natural number N in N

How does this avoid internal contradictions?

For example, the following statement, called the Archimedean Property, is true

for the usual real numbers:

☛

✡

✟

✠
For every positive real number x there is an N in N such that Nx > 1.

By the transfer property,

☛

✡

✟

✠
For every positive x in ∗

R there is an N in ∗
N such that Nx > 1.

Note that this is true for our ε as well; while Nε < 1 for every N in N, there

will be elements of ∗
N which are less than 1/ε!



Since ∗
R (sometimes called the set of “hyperreal numbers”) is, like the usual set

of real numbers, closed under the basic arithmetic operations, it also contains

negative infinitesimals (like −ε), infinite numbers (like 1/ε), and many other

objects:

In particular, as we have seen there are elements of ∗
N which are bigger than

every element of N; in other words, there are infinite integers.



Some notation:

If two numbers x and y differ by an infinitesimal, write x ≈ y

The set of infinitesimals is therefore {x in ∗
R : x ≈ 0}.

It turns out that every finite hyperreal s differs infinitesimally from some unique

standard real r; call r the standard part of s, r = st(s).

In other words, st() takes any finite hyperreal to the closest standard real

number.



Example Return to the problem of finding the slope of the curve y = xn (i.e.,
d
dx(x

n))

Recall the computation:

(x + o)n − xn

o
=

(xn + noxn−1 + n(n−1)
2

o2xn−2 + · · · ) − xn

o

= · · · some algebra · · · = nxn−1 +
n(n − 1)

2
oxn−2 + · · ·

For any given value of x and o, this will be a hyperreal number. If x is a

standard real number, and o an infinitesimal, then all the terms but the first

one are infinitesimal, so the standard part of this expression is just nxn−1.

In a nonstandard developement of Calculus, one can therefore just define the

derivative of a function f at a (standard) real number x by:

d

dx
f(x) = st(

f(x + ε) − f(x)

ε
), where ε ≈ 0, ε �= 0

provided this standard part is defined and does not depend on the choice of

ε ≈ 0.



To make this practical, one needs arithmetic rules for manipulating infinitesimals

(and infinite real numbers); these are actually quite simple to state and use.

EG (from Elementary Calculus by H.J. Keisler)



Other notions from Calculus become equally simple.

For example, the following standard definition of continuity (from any modern

Calculus text) is meant to capture the intuitive idea that a function’s graph

does not have a break at x:

Definition - Weierstrassian

f is continuous at x provided for every ε > 0 there is a δ > 0 such that

whenever y is a real number with 0 < |y − x| < δ, f(y) − f(x)| < ε.

It is often hard for freshmen to parse this expression! Compare with:

Definition - nonstandard

f is continuous at x provided whenever y ≈ x, f(y) ≈ f(x).



☛

✡

✟

✠
Applications outside of Calculus

The nonstandard model has turned out to be a surprisingly useful construct,

not just for the foundations of mathematics, but for research in many areas

of pure and applied mathematics.

The general practice of using these large models for work in mathematics has

come to be called “nonstandard analysis” (after the Robinson’s article and a

later book), though it should be emphasized (for Bishop Berkeley’s sake) that

while the methodology is not classical, the results it is used to prove are

classical (and, in particular, true).

The most interesting applications are based on the ubiquity of “hyperfinite sets”

(Definition: A set E in ∗V is hyperfinite if there is a ∗one-to-one correspondence

between E and {0, 1,2, . . . , H} for some H in ∗
N. Equivalently, if the formal

statement “X is finite” holds for E in ∗V .)



Lemma: If A is an infinite set in V then there is a hyperfinite set Â in ∗V such

that every element of A is in Â

Proof: Consider the statements: (i) X is finite; (ii) a is in X (one such statement

for every element a of A)

Given any finite number of these statements, a corresponding finite number

{a1, . . . , an} of elements of A are mentioned, so X = {a1, . . . , an} satisfies

those statements. By the saturation principle there therefore a set X in ∗V
satisfying all the statements simultaneously; let Â be this X.

Corollary: There is a hyperfinite set containing R.

“Nonstandard analysis is the art of making infinite sets finite by ex-

tending them.” –M. Richter



The advantage of hyperfinite sets is that we can use finitary counting methods

with them, even if they are infinite.

The duality between discrete/hyperfinite and continuous/infinite has been exploited

in areas such as:

• Stochastic analysis (Brownian motion is the standard part of a random

walk on a hyperfinite time line; stochastic differential equations are solved

as difference equations against these random walks)

• Mathematical economics (hyperfinite sets of infinitesimal traders)

• Mathematical physics (eg, “Loeb measure” solutions of the Boltzmann equa-

tion)

• Number theory (“approximate” N by the set {0,1, . . . , H}, H infinite integer)

• Probability theory (probability measures are built as counting measures on

hyperfinite sets)

• 9th grade philosophy of mathematics:

– Zeno’s Paradoxes (W.I. McLaughlin, Scientific American, Nov. 1994)

– 0.99999 · · · = 1

– Dartboard problem



☛

✡

✟

✠
Final thoughts

• The initial objections to infinitesimals were ontological; are infinitesimals real?

• The ‘modern’ solution doesn’t resolve this question, only shows that they can

be introduced formally - a very Leibnizian solution.

• What a given infinitesimal “is”, as an object, depends on how the nonstandard

model is constructed.

• This has been raised as an objection to nonstandard analysis, but post-

Dedekind the same question can be raised with respect to the real numbers!

• (In fact, the nonstandard model can be used to define R from the rational

numbers.)



• From the point of view of a mathematical logician, there has been a fun-

damental shift in the nature of mathematics over the centuries: from being

about numbers and geometric objects, to being about statements about num-

bers and geometric objects, and finally (in the 20th century) to being about

statements about mathematics.

• It is difficult to maintain a Platonist view of mathematical objects like the

real line when faced with this shift.

• On the other hand, nearly all mathematicians adopt the useful fiction in

practice that such mathematical objects (and far more esoteric ones) are

‘real’; there is no reason not to do this with infinitesimals as well.

• Infinitesimals represent an opportunistic approach to mathematical argument

- use anything that works. However, whereas the infinitesimal arguments of

Archimedes et al were just used for discovery, the same arguments in the

modern context constitute a complete and correct proof.


