
Nonstandard Analysis and Groups (mainly results of G. Keller)

(I) GROUPS

1. H ⊆ G generates G if G is the smallest subgroup of G which contains
H.

2. If e ∈ H = H−1, then H generates G provided G =
⋃

n H
n

3. G is finitely generated provided there is a finite H which generates G.

4. A word w(x1, x2, . . . , xn) is an identity relation (or law) for G provided
∀a1, . . . , an ∈ G, w(a1, . . . , an) = e.

5. If L is a set of words, then V (L) =the variety for L=the class of all
groups satisfying every law in L.

6. If V is a variety of groups, Fn(V ) is the reduced free group on n
generators (ie, the quotient of Fn by all the laws defining V )

7. The group G is amenable if there is a nontrivial left-invariant finitely-
invariant measure on (G,P(G))

8. Theorem (F6olner): G is amenable if and only if:

∀A ⊆ G finite ∀r < 1∃E ⊆ G finite ∀a ∈ A
|E ∩ aE|

|E|
> r

9. EG: Z, SL(1,R), SL(2,R) are amenable; F2 is not amenable; a group
G ⊆ SL(n,R) of isometries of Rn is amenable if and only if F2 6⊆ G;
homomorphic images and subgroups of amenable groups are amenable.

10. Call a group G uniformly F 6olner, or uniformly amenable (UA) if |E| can
be chosen to depend only on |A| and r, that is, if there is a function
F : N × (0,1) → N such that

∀n ∈ N ∀A ⊆ G s.t. |A| < n ∀r < 1

∃E ⊆ G s.t. |E| < F(n, r) & ∀a ∈ A
|E ∩ aE|

|E|
> r
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11. A class D of groups is uniformly amenable if there is a single function
F : N × (0,1) → N that witnesses UA for all the groups in D

(II) Nonstandard Analysis

Start with a mathematical universe (superstructure) V , containing:

• All natural numbers 0,1,2, . . . ; real numbers
√
2, π, e, φ, . . . ; etc.

• The set N of natural numbers as an object; the set R of real num-
bers; etc.

• Every function from R to R, and the set of all such functions

• Your favorite groups, Banach spaces, etc

• Every other mathematical object we might want to talk about

• Closure under ε,P, etc.

• We call the elements of this mathematical universe standard.

Extend to a nonstandard mathematical universe ∗V :

• For every object A in V , there is a corresponding object ∗A in ∗V

• EG, ∗V has objects ∗N, ∗R, ∗ sin(x), etc.

• (For simplicity, we drop the stars from simple objects like numbers:
12 instead of ∗12 etc)

• There may (generally will) be many more objects in ∗V than in V

• An element of ∗V that is not in V is called nonstandard.

The extension should satisfy two important properties:

Transfer If S is a bounded first-order statement about objects in V , then
S is true in V if and only if it true in ∗V

For example, let (G, ·, e) be a multiplicative group; the following are true in
V :
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(∀x ∈ G)(∃y ∈ G)[(x · y = e) ∧ (y · x = e)]

(∀x ∈ G)[(x · e = x) ∧ (x · e = x)]

(∀x ∈ G)(∀y ∈ G)(∀z ∈ G)[(x · y) · z = x · (y · z)]
By transfer it follows:

(∀x ∈∗ G)(∃y ∈∗ G)[(x∗·y =∗ e) ∧ (y∗·x =∗ e)]

(∀x ∈∗ G)[(x∗·∗e = x) ∧ (x∗·∗e) = x)]

(∀x ∈∗ G)(∀y ∈∗ G)(∀z ∈∗ G)[(x∗·y)∗·z = x∗·(y∗·z)]

In other words, ∗G is also not only a ∗group, but also an actual group.

As another example, since 12 is an element of N, ∗12 is an element of
∗N.

Since we can think of the basic elements (like ∗12) of ∗V as just being
the same as their counterparts (like 12) in V , ∗N is a superset of
N.

Similarly, for any standard set A which is an object of V , the set ∗A in
∗V extends the set A.

Saturation:

A set a ⊆∗ V is internal if ∃b ∈ V a ∈∗ b (otherwise it is external)

For example, if A ∈ V then P(A) ∈ V , so ∗A ∈∗ P(A) holds, and ∗A is
internal.

Equivalently, a set a is internal if it can be defined from other internal
sets by a bounded first-order formula.

Now, κ-saturation is the property:

If A is a set of sets with the finite intersection property, and |A| < κ,
then

⋂
A 6= ∅.

Equivalently, any set of statements of cardinality < κ about an object X
which is finitely satisfiable in ∗V , can all be simultaneously satisfied
by a single object in ∗V
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We will always assume that the model is κ−saturated for κ bigger than the
cardinality of every standard set (though much less saturation usually
suffices).

Saturation roughly means: Anything that can happen in ∗V , does happen.

Example: Consider the statements:

x is a real number

x > 0

x < 1

x < 1/2

x < 1/3

x < 1/4

...

Any finite set of these statements refers to a smallest fraction 1/N; but
then, x = 1

N+1 satisfies this finite set of statements.

It follows that there is a an element of ∗R, call it ε, such that

ε > 0

and, for every (standard) natural number N,

ε < 1/N

We have proved that ∗R contains nonzero infinitesimals, where

Definition: An infinitesimal is an element ε of ∗R such that

|ε| < 1/N

for every natural number N in N

Since ∗R (sometimes called the set of “hyperreal numbers”) is, like the
usual set of real numbers, closed under the basic arithmetic opera-
tions, it also contains negative infinitesimals (like −ε), infinite numbers
(like 1/ε), and many other objects:
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In particular, as we have seen there are elements of ∗N which are bigger
than every element of N; in other words, there are infinite integers.

Many applications are based on the ubiquity of “hyperfinite sets”

Definition: A set E in ∗V is hyperfinite if there is a ∗one-to-one correspon-
dence between E and {0,1,2, . . . , H} for some H in ∗N. Equivalently,
if the mathematical statement “E is finite” holds in ∗V .

Examples: 1. Every finite set is hyperfinite.

2. If H is an infinite integer, {0,1,2, · · · , H} = {n ∈ ∗N : n ≤ H} is
a hyperfinite subset of ∗N

3. If H is an infinite integer, {0, 1H ,
2
H , · · · ,

H−1
H ,1}is a hyperfinite

subset of ∗[0.1]

Theorem: If A is an infinite set in V then there is a hyperfinite set Â in
∗V such that every element of A is in Â

Proof: Consider the statements: (i) X is finite; (ii) a ∈ X (one such state-
ment for every element a of A)

Given any finite number of these statements, a corresponding fi-
nite number {a1, . . . , an} of elements of A are mentioned, so X =
{a1, . . . , an} satisfies those statements. By the saturation principle
there is therefore a set X in ∗V satisfying all the statements simul-
taneously; let Â be this X. a

Corollary: There is a hyperfinite set containing R.

“Nonstandard analysis is the art of making infinite sets
finite by extending them.” –M. Richter
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(III) BACK TO GROUPS

Goal: Theorem: let V be a variety of groups. Then V is UA iff V is
amenable.

Nonstandard motivation:

Let G be a group, and suppose the group ∗G is (externally) amenable.
That is, there is a measure µ : P(∗G) → R such that

(∀g ∈∗ G)[µ(E) = µ(aE)]

Then ν(A) := µ(∗A) is evidently a left-invariant measure on G. This proves:

Proposition: If ∗G is amenable then G is amenable.

Question: Does G amenable imply ∗G is amenable?

Answer: No. Example later.

Theorem: Let G be a group. TFAE: (1) G is UA; (2) ∗G is UA; (3) ∗G is
amenable.

Proof. (1 ⇒ 2) Let F witness UA of G. Claim: F witnesses UA of ∗G as
well. Let n, r be given, and let A ⊆∗ G with |A| < n. By transfer,
∗F :∗ N ×∗ (0,1) →∗ N witnesses ∗UA, so

∃E ∈∗ P(G), |E| ≤∗ F(n, r) & ∀a ∈ A
|E ∩ aE|

|E|
> r.

Note that an internal subset E of ∗G which has internal cardinality
≤∗ F(n, r) is externally finite with an actual, standard finite cardinality
less than F(n, r), since n and r are standard and ∗F(n, r) = F(n, r).
This proves the claim.

(2 ⇒ 3) is trivial.

(3 ⇒ 1) Let n ∈ N, r < 1 be given. We need to define F(n, r). Let
m ∈∗ N \ N. By amenability of ∗G and the F 6olner condition,

∀A ∈ P(G)|A| < n ⇒ ∃E ∈ P(G), |E| finite & ∀a ∈ A
|E ∩ aE|

|E|
> r.
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Since any subset of ∗G with (standard) finite cardinality is internal,
and any finite set has cardinality less than m, it follows that

∃m ∈∗ N∀A ∈∗ P(G)|A| < n ⇒ ∃E ∈∗ P(G), |E| finite & ∀a ∈ A
|E ∩ aE|

|E|
> r.

By transfer, there is a standard finite m that works for this n and
r; put F(n, r) := m.

Corollary A subgroup or homeomorphic image of a UA group is UA.

Proof. If H is a subgroup of G, and G is UA, then ∗G is amenable, ∗H must
(as an external group) be amenable, so H is UA. A similar argument
works for homeomorphic images (since the homeomorphic image of an
amenable group is amenable).

Theorem Let G be a set of groups; then G is uniformly amenable iff ∗G

is amenable.

Proof. (⇒) If F witnesses UA for G then it witnesses amenability for every
G ∈∗ G as in the proof of the last theorem.

(⇐) Fix n ∈ N, r < 1 be given. We need to define F(n, r). and
m ∈∗ N \ N. By amenability of ∗G and the F6olner condition, m
witnesses

∃m ∈∗ N ∀G ∈∗ G ∀A ∈∗ P(G)|A| < n ⇒ ∃E ∈∗ P(G), |E| finite & ∀a ∈ A
|E ∩ aE|

|E|
> r

as above. By transfer, there is a standard finite m that works for
this n and r; put F(n, r) := m.

Proposition If V is a variety of groups and G ⊆ V then ∗G ⊆ V

Proof Let ` : w(x1, . . . , xn) be a law for V , that is, ` ∈ L where V = V (L).
Now,

∀G ∈ G ∀g1, . . . , gn ∈ G [w(g1, . . . , gn) = e]

so by transfer,

∀G ∈∗ G ∀g1, . . . , gn ∈ G [w(g1, . . . , gn) = e]

so every G ∈∗ G satisfies `. Since ` was arbitrary in L, ∗G ⊆ V .
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Corollary Let V be a variety of groups. Then V is UA iff V is amenable.

Proof. (⇐) is trivial. (⇒) Let F = N×(0,1)N be the set of all functions
from N × (0,1) to N. Suppose V is not UA, then for every F ∈ F

there is a GF ∈ V such that F does not witness UA for GF . Let
G = {GF}F∈F . Clearly G is not UA, so ∗G is not amenable. But
∗G ⊆ V by the last proposition, so V is not amenable.
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An example

Let G = {π ∈ Permutations(N) : ∃N ∈ N ∀x > N π(x) = x}.
Claim 1: G is amenable. One way to see this is to note that ev-

ery finitely-generated subgroup of G is finite, so trivially amenable, and by
standard nonsense this implies that G is amenable. Or, use Følner: Let
A = {a1, . . . , an} ⊂ G, r < 1. For some sufficiently large N and all x < N and
i ≤ n, ai(x) = x. let E = {0, . . . , M}, where M > (N + r + 1)/(1 − r). Now, if

a ∈ A then E ∩ aE ⊇ {N+ 1, . . . , M}, so |E∩aE|
|E| ≥ (M − N − 1)M + 1 > r by the

choice of M.

Claim 2: ∗G is not amenable. It suffices to find F2 ⊆∗ G, where F2 is
freely generated by {a, b}. Let M ∈∗ N \ N, let F̂ be the (internal) set of
all words of length at most M from {a, b, a−1, b−1}. Write F̂ = {f0, . . . , fH−1}
(where H is the internal cardinality of F̂ , and f0 = e), and identify this set
with {0, . . . , H − 1}.

Let F̂a = {g ∈ F̂|ag ∈ F̂}, and F̂b = {g ∈ F̂|bg ∈ F̂}. There is an internal
bijection â : F̂ → F̂ such that â(g) = ag for every g ∈ F̂a. Same for b̂. Note
F2 ⊆ F̂a ∩ F̂b. By the identification above, â, b̂ ∈∗ G. Claim: if w(x, y) is a
word and fi ∈ F2, then w(a, b)fi = fw(â,b̂)(i). The proof is an easy induction on

the length of w. It follows that if w(â, b̂) = id then w(a, b) = e, and this
proves that â and b̂ generate a free group.

Thus, G is an example of a group which is amenable but not UA.
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