Nonstandard Analysis and Groups (mainly results of G. Keller)

(I) GROUPS

- 1. $H \subseteq G$ generates G if G is the smallest subgroup of G which contains H.
- 2. If $e \in H = H^{-1}$, then H generates G provided $G = \bigcup_n H^n$
- 3. G is finitely generated provided there is a finite H which generates G.
- 4. A word $w(x_1, x_2, ..., x_n)$ is an identity relation (or law) for G provided $\forall a_1, ..., a_n \in G, w(a_1, ..., a_n) = e$.
- 5. If L is a set of words, then V(L) =the variety for L=the class of all groups satisfying every law in L.
- 6. If V is a variety of groups, $F_n(V)$ is the reduced free group on n generators (ie, the quotient of F_n by all the laws defining V)
- 7. The group G is amenable if there is a nontrivial left-invariant finitely-invariant measure on $(G,\mathcal{P}(G))$
- 8. Theorem (F ϕ Iner): G is amenable if and only if:

$$\forall A \subseteq G \text{ finite } \forall r < 1 \exists E \subseteq G \text{ finite } \forall a \in A \frac{|E \cap aE|}{|E|} > r$$

- 9. EG: \mathbb{Z} , $SL(1,\mathbb{R})$, $SL(2,\mathbb{R})$ are amenable; F_2 is not amenable; a group $G \subseteq SL(n,\mathbb{R})$ of isometries of \mathbb{R}^n is amenable if and only if $F_2 \nsubseteq G$; homomorphic images and subgroups of amenable groups are amenable.
- 10. Call a group G uniformly Fqlner, or uniformly amenable (UA) if |E| can be chosen to depend only on |A| and r, that is, if there is a function $F: \mathbb{N} \times (0,1) \to \mathbb{N}$ such that

$$\forall n \in \mathbb{N} \ \forall A \subseteq G \text{ s.t. } |A| < n \ \forall r < 1$$

$$\exists E \subseteq G \text{ s.t. } |E| < F(n,r) \& \forall a \in A \frac{|E \cap aE|}{|E|} > r$$

11. A class \mathcal{D} of groups is uniformly amenable if there is a single function $F: \mathbb{N} \times (0,1) \to \mathbb{N}$ that witnesses UA for all the groups in \mathcal{D}

(II) Nonstandard Analysis

Start with a mathematical universe (superstructure) V, containing:

- All natural numbers 0,1,2,...; real numbers $\sqrt{2},\pi,e,\phi,...$; etc.
- ullet The set $\mathbb N$ of natural numbers as an object; the set $\mathbb R$ of real numbers: etc.
- ullet Every function from ${\mathbb R}$ to ${\mathbb R}$, and the set of all such functions
- Your favorite groups, Banach spaces, etc
- Every other mathematical object we might want to talk about
- Closure under ϵ , P, etc.
- We call the elements of this mathematical universe standard.

Extend to a nonstandard mathematical universe *V:

- ullet For every object A in V, there is a corresponding object *A in *V
- EG, *V has objects * \mathbb{N} , * \mathbb{R} , * $\sin(x)$, etc.
- (For simplicity, we drop the stars from simple objects like numbers: 12 instead of *12 etc)
- There may (generally will) be many more objects in *V than in V
- \bullet An element of *V that is **not** in V is called nonstandard.

The extension should satisfy two important properties:

Transfer If S is a bounded first-order statement about objects in V, then S is true in V if and only if it true in V

For example, let (G, \cdot, e) be a multiplicative group; the following are true in V:

$$(\forall x \in G)(\exists y \in G)[(x \cdot y = e) \land (y \cdot x = e)]$$

$$(\forall x \in G)[(x \cdot e = x) \land (x \cdot e = x)]$$

$$(\forall x \in G)(\forall y \in G)(\forall z \in G)[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$$
By transfer it follows:
$$(\forall x \in^* G)(\exists y \in^* G)[(x^* \cdot y =^* e) \land (y^* \cdot x =^* e)]$$

$$(\forall x \in^* G)[(x^* \cdot^* e = x) \land (x^* \cdot^* e) = x)]$$

$$(\forall x \in^* G)(\forall y \in^* G)(\forall z \in^* G)[(x^* \cdot y)^* \cdot z = x^* \cdot (y^* \cdot z)]$$

In other words, *G is also not only a *group, but also an actual group.

As another example, since 12 is an element of \mathbb{N} , *12 is an element of $^*\mathbb{N}$.

Since we can think of the basic elements (like *12) of *V as just being the same as their counterparts (like 12) in V, * \mathbb{N} is a superset of \mathbb{N} .

Similarly, for any standard set A which is an object of V, the set *A in *V extends the set A.

Saturation:

A set $a \subseteq V$ is internal if $\exists b \in V \ a \in b$ (otherwise it is external)

For example, if $A \in V$ then $\mathcal{P}(A) \in V$, so $^*A \in ^*\mathcal{P}(A)$ holds, and *A is internal.

Equivalently, a set a is internal if it can be defined from other internal sets by a bounded first-order formula.

Now, K-saturation is the property:

If \mathcal{A} is a set of sets with the finite intersection property, and $|\mathcal{A}| < \kappa$, then $\bigcap \mathcal{A} \neq \emptyset$.

Equivalently, any set of statements of cardinality $< \kappa$ about an object X which is finitely satisfiable in *V , can all be simultaneously satisfied by a single object in *V

We will always assume that the model is κ -saturated for κ bigger than the cardinality of every standard set (though much less saturation usually suffices).

Saturation roughly means: Anything that can happen in *V, does happen.

Example: Consider the statements:

x is a real number

x > 0

x < 1

x < 1/2

x < 1/3

x < 1/4

:

Any finite set of these statements refers to a smallest fraction 1/N; but then, $x = \frac{1}{N+1}$ satisfies this finite set of statements.

It follows that there is a an element of ${}^*\mathbb{R}$, call it ϵ , such that

 $\epsilon > 0$

and, for every (standard) natural number N,

 $\epsilon < 1/N$

We have proved that ${}^*\mathbb{R}$ contains nonzero infinitesimals, where

Definition: An infinitesimal is an element ϵ of ${}^*\mathbb{R}$ such that

 $|\epsilon| < 1/N$

for every natural number N in $\mathbb N$

Since * \mathbb{R} (sometimes called the set of "hyperreal numbers") is, like the usual set of real numbers, closed under the basic arithmetic operations, it also contains negative infinitesimals (like $-\epsilon$), infinite numbers (like $1/\epsilon$), and many other objects:

In particular, as we have seen there are elements of N which are bigger than every element of N; in other words, there are infinite integers.

Many applications are based on the ubiquity of "hyperfinite sets"

Definition: A set E in *V is hyperfinite if there is a *one-to-one correspondence between E and $\{0,1,2,\ldots,H\}$ for some H in *N. Equivalently, if the mathematical statement "E is finite" holds in *V.

Examples: 1. Every finite set is hyperfinite.

- 2. If H is an infinite integer, $\{0,1,2,\cdots,H\}=\{n\in{}^*\mathbb{N}:n\leq H\}$ is a hyperfinite subset of ${}^*\mathbb{N}$
- 3. If H is an infinite integer, $\{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}, 1\}$ is a hyperfinite subset of *[0.1]

Theorem: If A is an infinite set in V then there is a hyperfinite set \hat{A} in *V such that every element of A is in \hat{A}

Proof: Consider the statements: (i) X is finite; (ii) $a \in X$ (one such statement for every element a of A)

Given any finite number of these statements, a corresponding finite number $\{a_1,\ldots,a_n\}$ of elements of A are mentioned, so $X=\{a_1,\ldots,a_n\}$ satisfies those statements. By the saturation principle there is therefore a set X in *V satisfying all the statements simultaneously; let \hat{A} be this X. \dashv

Corollary: There is a hyperfinite set containing \mathbb{R} .

"Nonstandard analysis is the art of making infinite sets finite by extending them." —M. Richter

(III) BACK TO GROUPS

Goal: **Theorem:** let V be a variety of groups. Then V is UA iff V is amenable.

Nonstandard motivation:

Let G be a group, and suppose the group *G is (externally) amenable. That is, there is a measure $\mu: \mathcal{P}({}^*G) \to \mathbb{R}$ such that

$$(\forall g \in^* G)[\mu(E) = \mu(aE)]$$

Then $\nu(A) := \mu(^*A)$ is evidently a left-invariant measure on G. This proves:

Proposition: If *G is amenable then G is amenable.

Question: Does G amenable imply G is amenable?

Answer: No. Example later.

Theorem: Let G be a group. TFAE: (1) G is UA; (2) *G is UA; (3) *G is amenable.

Proof. $(1\Rightarrow 2)$ Let F witness UA of G. Claim: F witnesses UA of *G as well. Let n,r be given, and let $A\subseteq {}^*G$ with |A|< n. By transfer, ${}^*F: {}^*\mathbb{N}\times {}^*(0,1) \to {}^*\mathbb{N}$ witnesses ${}^*\mathrm{UA}$, so

$$\exists E \in {}^* \mathcal{P}(G), \ |E| \leq {}^* F(n,r) \& \forall a \in A \ \frac{|E \cap aE|}{|E|} > r.$$

Note that an internal subset E of *G which has internal cardinality $\leq {}^*F(n,r)$ is externally finite with an actual, standard finite cardinality less than F(n,r), since n and r are standard and ${}^*F(n,r) = F(n,r)$. This proves the claim.

 $(2 \Rightarrow 3)$ is trivial.

 $(3 \Rightarrow 1)$ Let $n \in \mathbb{N}, r < 1$ be given. We need to define F(n,r). Let $m \in \mathbb{N} \setminus \mathbb{N}$. By amenability of *G and the Following condition,

$$\forall A \in \mathcal{P}(G)|A| < n \Rightarrow \exists E \in \mathcal{P}(G), \ |E| \ \text{finite \& } \forall a \in A \ \frac{|E \cap aE|}{|E|} > r.$$

Since any subset of *G with (standard) finite cardinality is internal, and any finite set has cardinality less than m, it follows that

$$\exists m \in^* \mathbb{N} \forall A \in^* \mathcal{P}(G)|A| < n \Rightarrow \exists E \in^* \mathcal{P}(G), \ |E| \ \text{finite \& } \forall a \in A \ \frac{|E \cap aE|}{|E|} > r.$$

By transfer, there is a standard finite m that works for this n and r; put F(n,r) := m.

Corollary A subgroup or homeomorphic image of a UA group is UA.

Proof. If H is a subgroup of G, and G is UA, then *G is amenable, *H must (as an external group) be amenable, so H is UA. A similar argument works for homeomorphic images (since the homeomorphic image of an amenable group is amenable).

Theorem Let G be a set of groups; then G is uniformly amenable iff G is amenable.

Proof. (\Rightarrow) If F witnesses UA for G then it witnesses amenability for every $G \in {}^*G$ as in the proof of the last theorem.

(⇐) Fix $n \in \mathbb{N}, r < 1$ be given. We need to define F(n,r). and $m \in \mathbb{N} \setminus \mathbb{N}$. By amenability of \mathbb{S}^* and the F¢Iner condition, m witnesses

$$\exists m \in^* \mathbb{N} \ \forall G \in^* \mathcal{G} \ \forall A \in^* \mathcal{P}(G)|A| < n \Rightarrow \exists E \in^* \mathcal{P}(G), \ |E| \ \text{finite \& } \forall a \in A \ \frac{|E \cap aE|}{|E|} > r$$

as above. By transfer, there is a standard finite m that works for this n and r; put F(n,r) := m.

Proposition If V is a variety of groups and $\mathcal{G}\subseteq V$ then $^*\mathcal{G}\subseteq V$

Proof Let $\ell: w(x_1,...,x_n)$ be a law for V, that is, $\ell \in L$ where V = V(L). Now,

$$\forall G \in \mathcal{G} \quad \forall g_1, \dots, g_n \in G \ [w(g_1, \dots, g_n) = e]$$

so by transfer,

$$\forall G \in \mathcal{G} \quad \forall g_1, \dots, g_n \in G \ [w(g_1, \dots, g_n) = e]$$

so every $G \in {}^* G$ satisfies ℓ . Since ℓ was arbitrary in L, ${}^*G \subseteq V$.

Corollary Let V be a variety of groups. Then V is UA iff V is amenable.

Proof. (\Leftarrow) is trivial. (\Rightarrow) Let $\mathfrak{F}={}^{\mathbb{N}\times(0,1)}\mathbb{N}$ be the set of all functions from $\mathbb{N}\times(0,1)$ to \mathbb{N} . Suppose V is not UA, then for every $F\in\mathfrak{F}$ there is a $G_F\in V$ such that F does not witness UA for G_F . Let $\mathfrak{G}=\{G_F\}_{F\in\mathfrak{F}}$. Clearly \mathfrak{G} is not UA, so ${}^*\mathfrak{G}$ is not amenable. But ${}^*\mathfrak{G}\subseteq V$ by the last proposition, so V is not amenable.

An example

Let $G = \{ \pi \in \text{Permutations}(\mathbb{N}) : \exists N \in \mathbb{N} \ \forall x > N \ \pi(x) = x \}.$

Claim 1: G is amenable. One way to see this is to note that every finitely-generated subgroup of G is finite, so trivially amenable, and by standard nonsense this implies that G is amenable. Or, use Følner: Let $A = \{a_1, \ldots, a_n\} \subset G, r < 1$. For some sufficiently large N and all x < N and $i \le n$, $a_i(x) = x$. let $E = \{0, \ldots, M\}$, where M > (N+r+1)/(1-r). Now, if $a \in A$ then $E \cap aE \supseteq \{N+1, \ldots, M\}$, so $\frac{|E \cap aE|}{|E|} \ge (M-N-1)M+1 > r$ by the choice of M.

Claim 2: *G is not amenable. It suffices to find $F_2 \subseteq {}^*G$, where F_2 is freely generated by $\{a,b\}$. Let $M \in {}^*\mathbb{N} \setminus \mathbb{N}$, let \hat{F} be the (internal) set of all words of length at most M from $\{a,b,a^{-1},b^{-1}\}$. Write $\hat{F}=\{f_0,\ldots,f_{H-1}\}$ (where H is the internal cardinality of \hat{F} , and $f_0=e$), and identify this set with $\{0,\ldots,H-1\}$.

Let $\hat{F}_a = \{g \in \hat{F} | ag \in \hat{F}\}$, and $\hat{F}_b = \{g \in \hat{F} | bg \in \hat{F}\}$. There is an internal bijection $\hat{a}: \hat{F} \to \hat{F}$ such that $\hat{a}(g) = ag$ for every $g \in \hat{F}_a$. Same for \hat{b} . Note $F_2 \subseteq \hat{F}_a \cap \hat{F}_b$. By the identification above, $\hat{a}, \hat{b} \in {}^*G$. Claim: if w(x, y) is a word and $f_i \in F_2$, then $w(a, b)f_i = f_{w(\hat{a}, \hat{b})(i)}$. The proof is an easy induction on the length of w. It follows that if $w(\hat{a}, \hat{b}) = id$ then w(a, b) = e, and this proves that \hat{a} and \hat{b} generate a free group.

Thus, G is an example of a group which is amenable but not UA.