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Abstract. A set of integers S is called ε-Kronecker if every function on S of

modulus one can be approximated uniformly to within ε by a character. The
least such ε is called the ε-Kronecker constant.

We transform the problem of calculating ε-Kronecker constants for finite

sets of d elements into a geometric optimization problem. Using this approach
we can explicitly determine the ε-Kronecker constant for any two element set

and deduce a (non-trivial) upper bound for any finite set. Kronecker con-

stants are determined for many classes of three element sets, including all sum
sets, product sets and arithmetic progressions. The answers are surprisingly

complicated.

1. Introduction

A subset S of the dual of a compact, abelian group G is called an ε-Kronecker
set if for every continuous function f mapping S into T, the set of complex numbers
of modulo 1, there exists x ∈ G such that

|γ(x)− f(γ)| < ε for all γ ∈ S.

The infimum of such ε is called the Kronecker constant, κ(S).
ε-Kronecker sets were introduced by Varopoulos [Varopoulos 1968] and were

called ε-free in [Givens and Kunen 2003]. The concepts were discussed in the Semi-
naire Bourbaki (1964-1966) without formal naming [Kahane 1995]. Sets whose Kro-
necker constants are zero have been much studied (c.f. [Graham and McGehee 1979]
and the references cited therein), and are called Kronecker sets. Hadamard sets
with ratio greater than two are ε-Kronecker subsets of Z for appropriate ε < 2
([Graham and Hare 2006a] or [Kunen and Rudin 1999]) and in many other groups
infinite ε-Kronecker sets are known to exist for suitable (small) choices of ε (please
see [Galindo and Hernandez 1999] and [Graham and Lau 2007]).

The case when ε <
√

2 is of particular interest as such sets are Sidon, meaning ev-
ery bounded function defined on the set S is the restriction of the Fourier transform
of a measure on G.1 In fact, the interpolating measure can be taken to be discrete
(and even positive or supported on an open set under suitable assumptions) and

√
2

is sharp with this property ([Graham and Hare 2006a], [Graham and Hare 2003],
[Graham and Hare 2006b]). Like Sidon sets, ε-Kronecker sets satisfy various arith-
metic properties (c.f. [Graham, Hare and Korner 2006]).
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All finite sets are ε-Kronecker, but relatively little is known about their Kro-
necker constants. In [Graham and Hare 2006a] an investigation of the Kronecker
constant was begun for special examples of (mainly) subsets of integers of size two,
but even for two-element sets the answers were very incomplete. One reason for the
interest in studying finite sets is that the Kronecker constant of an infinite set is the
supremum of the Kronecker constants of its finite subsets, as an easy compactness
argument shows. Also, one can construct examples of infinite sets with interesting
properties by ‘piecing together’ finite sets whose Kronecker constants are known.
([Graham and Hare 2006a, Ex. 5.2] is such an example.) Furthermore, Sidon sets
can be characterized by the property that all of their finite subsets contain propor-
tionally sized subsets that are ε-Kronecker for a fixed ε [Graham and Hare 2008].

In this paper we transform the problem of determining the Kronecker constant
κ for a set of d integers into a geometric problem in Rd−1 which is equivalent to
an optimization problem in convex analysis and prove that κ can be computed
in a finite number of steps. Using our geometric approach we have been able to
show that the ‘angular’ Kronecker constant is always rational and deduce an (non-
trivial) upper bound on the Kronecker constant for any given finite set. This gives
improved estimates for the Kronecker constants of initial segments of geometric
progressions and in some situations is sharp. We also explicitly determine the
Kronecker constants for all two element sets.

For sets with three or more elements the problem of determining the Kronecker
constant is inherently much more difficult and fundamentally different from the
two element case. For instance, in [Graham and Hare 2006a] it was shown that for
every pair of integers a, b, κ{a + n, b + n} → 0 as n → ∞. This is false if {a, b}
is replaced by any three element set. We calculate the exact Kronecker constant
for various interesting classes of sets of size three. The answers can be surprisingly
complicated. For example, for a sum set, S = {m,n,m + n}, κ(S) depends on
the mod 3 congruence of m + 2n; for an arithmetic progression of length three it
depends on the step size mod 4. We also characterize the three element sets whose
Kronecker constant is maximal.

The paper is organized as follows: In section two our formula is derived. The
Kronecker constants for two element sets are determined in section three. In sec-
tion four we consider geometric consequences of our approach, including proving
that the angular Kronecker constant is always a rational number. We study the
geometry problem specifically for R3 in section five. In section six the problem
of calculating Kronecker constants for three element sets is investigated. Lastly,
in section seven we briefly discuss a computer algorithm we wrote for calculating
Kronecker constants. Examples of exact constants helped formulate theorems and
motivated some of the proofs. Tables of some of the numerical results have been
archived at [Hare and Ramsey 2011].

2. The Kronecker Constant Formula

2.1. Definitions. We begin by specializing our definitions to the case when the
compact group G is the circle group, which we identify with [−1/2, 1/2]. Its dual
is Z. This will be our setting throughout the rest of the paper.
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Definition 1. A subset S ⊆ Z is called an ε-Kronecker set if for every function
f : S → T there exists x ∈ [−1/2, 1/2] such that

|f(n)− exp 2πinx| < ε for all n ∈ S.

The Kronecker constant of S is

κ(S) = inf{ε : S is ε-Kronecker}.

As |f(n)− exp 2πinx| ≤ 2 for all integers n and x ∈ [−1/2, 1/2], it follows that
κ(S) ≤ 2 for all non-empty sets S. This is sharp when S contains 0 as can be seen
by taking f with f(0) = −1. As observed in [Graham and Hare 2006a], every finite
subset of Z�{0} is ε-Kronecker for some ε < 2 and obviously κ{n} = 0 for any
n 6= 0. Thus for the rest of this paper we will assume S is a subset of Z\{0} with
d ≥ 2 elements.

Any complex number, z, of modulos 1 can be written uniquely as exp 2πiArg(z)
where Arg(z) ∈ [−1/2, 1/2). Often it is convenient to measure differences in argu-
ments and this leads to the following related constant. As usual, we write l∞(S)
for the set of bounded functions on S with norm ‖f‖l∞(S) = sup{|f(n)| : n ∈ S}.

Definition 2. For f : S → R, let

αS(f) = inf
{
‖Arg (exp 2πi(f(·)− (·)x))‖l∞(S) : x ∈ [−1/2, 1/2]

}
.

The angular Kronecker constant of S is

α(S) = sup{αS(f) | f : S → R}.

One can easily see that 0 ≤ α(S) ≤ 1/2 and that κ(S) = |exp 2πiα(S)− 1| .

2.2. The l∞ distance in Rd from points to some lines. We begin with some
elementary formulas for computing the quotient norms that will be helpful in de-
riving our formula for the Kronecker constant.

Given S = {n1, ..., nd} ⊆ Z\{0}, let n = n(S) be the vector (n1, ..., nd) ∈ Rd and
let L (= L(S)) be the line in Rd through the origin with direction vector n:

L = {λn : λ∈ R }.

For f : S → R denote by ‖f‖L the norm

‖f‖L = inf
x∈R

(
max
1≤j≤d

|f(nj)− njx|
)

= inf
x∈R
‖f(·)− (·)x‖l∞(S)

Under the natural identification of RS with Rd, ‖·‖L is the quotient norm on Rd/L
induced by the l∞(S) norm. Key to our approach is the observation that the
angular Kronecker constant can be calculated in terms of this quotient norm.

Lemma 1. (i) For f : S → R,

αS(f) = inf{‖f − k‖L : k ∈ Zd}.

(ii) There exists a function f such that αS(f) = α(S).
(iii) Given a non-zero integer λ, let λS = {λm : m ∈ S}. Then α(S) = α(λS).

Proof. (i) and (ii) are easy consequences of the periodicity of the exponential func-
tion and compactness. (iii) follows since the lines Rn and Rλn coincide for non-zero
λ ∈ R. �
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In particular, there is no loss in imposing the assumption that the greatest
common divisor of the elements of S is 1.

Lemma 2. For every u ∈ Rd there is a scalar s ∈ R and integers i < j such that

‖u‖L = ‖u− sn‖l∞ = |sni − ui| = |snj − uj | =
|njui − niuj |
|ni|+ |nj |

.

Furthermore, if ninj > 0, then sni − ui = −(snj − uj), while if ninj < 0, then
sni − ui = snj − uj .

Proof. By compactness, ‖u‖L = ‖u− sn‖l∞ for some s ∈ R. We denote ρ := ‖u‖L.
If ρ = 0, then u = sn and for all j ∈ {1, ..., d} we have snj = uj . Thus sni − ui =
snj − uj = −(snj − uj) = 0 = ρ for all indices i, j. Trivially,

|njui − niuj |
|ni|+ |nj |

= 0 = ‖u‖L.

So we can assume that ρ > 0. Fix an index i such that ρ = |sni − ui|. If
|sni−ui| > |snj −uj | for all j 6= i, then for sufficiently small τ , of a suitable choice
of sign, |sni − ui| > |(s − τ)ni − ui| > |(s − τ)nj − uj | for all j 6= i. But then
‖u‖L ≤ |(s − τ)ni − ui| < ρ, giving a contradiction. Thus if we let A be the set
of all indices j ∈ {1, ..., d} such that |snj − uj | = ρ, then A contains at least two
indices. Put B = {1, ..., d}\A.

For j ∈ B, set

δj :=
ρ− |snj − uj |

2|nj |
> 0

and for j ∈ A, set δj = ρ/|nj | > 0. Then δ := min1≤j≤d δj > 0. Put ε =
sign(sni − ui) and set t = s − ε · sign(ni)δ (where i continues to denote the fixed
index with ρ = |sni − ui|).

Suppose that for every j ∈ A either ninj > 0 and sni − ui 6= −(snj − uj), or
ninj < 0 and sni − ui 6= snj − uj . We will prove that in this case ‖tn− u‖∞ < ρ,
which is a contradiction. To see this, first note that if j ∈ B, then

|tnj − uj | = |snj − uj − ε · sign(ni)δnj |

≤ |snj − uj |+ δ |nj | =
ρ+ |snj − uj |

2
< ρ.

If j ∈ A and ninj > 0, then we must have sni − ui = snj − uj (even if j = i).
Thus

tnj − uj = snj − uj − ε · sign(ni)δnj = ε(ρ− |nj | δ).
As 0 < δ ≤ ρ/ |nj |, it follows that |tnj − uj | = ρ−|njδ| < ρ. If j ∈ A and ninj < 0,
a similar argument gives the same conclusion. Consequently, ‖tn − u‖∞ < ρ as
claimed.

Finally, note that if |sni−ui| = |snj −uj |, ninj > 0 and sni−ui = −(snj −uj),

then s =
ui + uj
ni + nj

. Hence ρ = |sni − ui| =
|njui − niuj |
|ni|+ nj |

and so the fractional

formula holds. The case ninj < 0 is similar. �

Proposition 1. For all u ∈ Rd,

‖u‖L = max

{
|njui − niuj |
|ni|+ |nj |

: 1 ≤ i < j ≤ d
}
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Proof. We proceed by duality, noting that if W = Rd/L then W ∗ = L⊥, where L⊥

consists of all g ∈ Rd such that g(L) = {0}. The quotient norm of u+ L satisfies

‖u‖L = ‖u+ L‖W = sup

{
|g(u)|
‖g‖1

: g ∈ L⊥\{0}
}
.

Fix 1 ≤ i < j ≤ d. Let e satisfy ek = 0 for k /∈ {i, j}, but ei = nj and ej = −ni.
Then e ∈ L⊥ and ‖e‖1 = |ni|+ |nj | > 0. Consequently,

‖u+ L‖W ≥
|e(u)|
‖e‖1

=
|njui − niui|
|ni|+ |nj |

By Lemma 2 there are i 6= j in {1, .., d} such that ‖u‖L =
|njui − niuj |
|ni|+ |nj |

. The

desired equality now follows. �

Remark 1. Proposition 1 specifies a set of d(d− 1) linear functionals with which
one can compute ‖u‖L. This is a minimal set in the following sense: For each of
the linear functionals, say Li,j(u) = (njui − niuj)/(|ni|+ |nj |) with 1 ≤ i < j ≤ d,
there is some u such that for all 1 ≤ r < s ≤ d with (r, s) 6= (i, j),

‖u‖L = |Li,j(u)| > |Lr,s(u)|.
To see this, let u be the vector with ui = sign(nj), uj = −sign(ni) and all other
coordinates equal to 0. Then

Li,j(u) =
njsign(nj)− ni(−sign(ni))

|ni|+ |nj |
= 1.

If {r, s} ∩ {i, j} = ∅, then Lr,s(u) = 0. Otherwise if, say, i ∈ {r, s} and t ∈
{r, s}\{i, j}, then

|Lr,s(u)| = |niui|
|ni|+ |nt|

=
|ni|

|ni|+ |nt|
< 1.

2.3. Dimensional and Symmetry Reductions for Computing α. Given a
finite set S and line L = L(S), as described before, we let L be the subgroup of Rd
generated by L and Zd, and put

K = L ∩
(
Rd−1 × {0}

)
.

We will simplify the calculation of αS(f) = inf{‖f − k‖L : k ∈ Zd} and α(S) =
sup{αS(f)| f : S → R} by reducing the search space for f by one dimension and
showing that we may replace k ∈ Zd by k ∈ K.

We first highlight the following useful information about K.

Lemma 3. k ∈ K if and only if kd = 0 and k = (s/nd)n+ q for some s ∈ Z and
q ∈ Zd. Equivalently, k ∈ K if and only if kd = 0 and there is some integer s with

k mod 1 = (s/nd)n mod 1.

Moreover, K has only finitely many points in each bounded subset of Rd−1 × {0} .

Remark 2. In particular, K is a subgroup of Qd−1 × {0}.

Proof. The equivalence of the two descriptions is obvious, as is sufficiency. To see
the first, note that as K ⊆ L we have k = tn+ q for some t ∈ R and q ∈ Zd. Since
kd = 0, we must have t = −qd/nd, which gives the required form with s = −qd ∈ Z.

There are only finitely many points of K in any bounded set since K is a subset
of the discrete lattice Zd/nd. �
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Here is the promised reduction for calculating α(S) and αS(f).

Proposition 2. (i) α(S) = sup{αS(f) : f ∈ Rd−1 × {0} }.
(ii) For f ∈ Rd−1 × {0}, αS(f) = inf{ ‖f − k‖L : k ∈ K}.
(iii) For f ∈ Rd−1 × {0} and h ∈ K, αS(f) = αS(f − h) and αS(f) = αS(−f).

Proof. (i) If g ∈ Rd, then f = g − (gd/nd)n ∈ Rd−1 × {0}. Because (gd/nd)n ∈ L,
we have (g − k) − L = (f − k) − L for all k ∈ Zd. Therefore, αS(g) = αS(f). It
follows that

α(S) = sup{αS(g) : g ∈ Rd } ≤ sup{αS(f) : f ∈ Rd−1 × {0} }

The reverse inequality is immediate.
(ii) Let f ∈ Rd−1 × {0} and suppose k ∈ Zd. Let x = −kd/nd. Then the d-th

coordinate of h = k + xn is 0, thus h ∈ K. Because h − k = xn ∈ L, we have
(f − k)− L = (f − h)− L. It follows that ‖f − k‖L = ‖f − h‖L and therefore

αS(f) = inf{ ‖f − k‖L : k ∈ Zd } ≥ inf{ ‖f − h‖L : h ∈ K}

To prove the reversed inequality, consider any k ∈ K. Then k has the form
xn + q for some x ∈ R and q ∈ Zd. Because xn ∈ L, we have (f − k) − L =
f − (xn+ q)− L = (f − q)− L. It follows that ‖f − k‖L = ‖f − q‖L and therefore

inf{ ‖f − k‖L : k ∈K} ≥ inf{ ‖f − k‖L : k ∈ Zd } = αS(f).

(iii) holds because K is a group. �

2.4. Group Generators. Next, we offer more detailed descriptions of the set K
by identifying sets of linearly independent group generators.

Proposition 3. Suppose that vectors {P (j)}d−1j=1 ⊆ Rd satisfy the following three
properties:

(i) For each 1 ≤ j ≤ d− 1 there is some integer s such that P (j) − sn/nd ∈ Zd;

(ii) P
(j)
i = 0 for j < i ≤ d;

(iii) P
(j)
j =

gcd(nj , . . . , nd)

gcd(nj+1, . . . , nd)
for 1 ≤ j ≤ d− 1.

Then {P (j)}d−1j=1 is a vector space basis for Rd−1 × {0} and a generating set for
K as a group.

Here P
(j)
i denotes coordinate i of vector P (j).

Remark 3. Note that the first property implies that P (j) ∈ Zd/nd and is equivalent
to the statement that P (j) ≡ snmod 1 with modularity computed independently in
each coordinate.

Proof. By the upper triangular structure of the d × (d − 1) matrix whose j-th
column is P (j), with positive elements on the diagonal, these vectors are linearly
independent over R and therefore generate Rd−1 × {0}.

As P
(j)
d = 0 and P (j)−sn/nd ∈ Zd, each P (j) ∈ K. Suppose that S = {P (j)}d−1j=1

does not generate K as a group. Then there is some R ∈ K outside the subgroup

generated by S. There are unique real numbers αj such that R =
∑d−1
j=1 αjP

(j).

Let βj = αj − bαjc and set W =
∑d−1
j=1bαjcP (j). Because K is group we have

W ∈ K and thus R−W ∈ K. Hence there is some integer r and vector q ∈ Zd such
that R−W = (r/nd)n+ q.
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Clearly, there is some j such that βj > 0; let J denote the largest such integer j.

Then R−W =
∑J
j=0 βjP

(j). For i > J and j ≤ J , we have P
(j)
i = 0 and therefore

0 = (R−W )i = (r/nd)ni + qi

Thus nd/ gcd(ni, nd) divides r for i > J . It follows that nd/ gcd(nJ+1, . . . , nd)
divides r.

As P
(j)
J = 0 for j < J , we have (R −W )J = βJP

(J)
J . Because 0 < βJ < 1, we

have
0 < (R−W )J = (r/nd)nJ + qJ < P

(J)
J

By the previous paragraph, there is some integer t such that r = tnd/w where
w = gcd(nJ+1, . . . , nd). Thus

(R−W )J = tnJ/w + qJ =
tnJ + qJw

w

Note that the gcd(nJ , . . . , nd) divides both nJ and w. Therefore (R − W )J is

an integer multiple of gcd(nJ , . . . , nd)/w = P
(J)
J . This contradicts having 0 <

(R−W )J < P
(J)
J . �

Example 1. Consider S = {1,m,m2, . . . ,md−1} ⊆ Z, where m > 1, and set
n = (1,m, . . . ,md−1). We can let P (j) = (md−j/md−1)nmod 1 = m−j+1nmod 1
for 1 ≤ j ≤ d− 1. Then

P (j)
s =

{
ms−j−1 for s ≤ j
0 for s > j

.

The next result asserts that there are indeed bases as described in the previous
result.

Proposition 4. For 1 ≤ j ≤ d− 1, there are vectors P (j) ∈ K such that P
(j)
s = 0

for j < s ≤ d; P
(j)
s ∈ [0, 1) for s < j; and

P
(j)
j = min{ qj : q ∈ K, qs ∈ [0, 1) for s < j, qj > 0, qs = 0 for s > j }

=
gcd(nj , . . . , nd)

gcd(nj+1, . . . , nd).

Moreover,

{ q ∈ K : qs ∈ [0, 1) for all s } = { (t/nd)nmod 1 : 0 ≤ t < nd−1 }

Proof. Let 1 ≤ j ≤ d−1. If e(j) is the canonical d-vector that has zero coordinates
except the j-th, which is 1, then for j < d we have e(j) ∈ Zd−1 × {0} ⊂ K. Hence
the set

Sj = { q ∈ K : qs ∈ [0, 1) for s < j, qj > 0, qs = 0 for s > j }
is not empty.

Suppose r = gcd(nj+1, . . . , nd) and r′ = gcd(nj , . . . , nd). Since r′ = gcd(nj , r),
there are integers u and v such that r′ = unj + rv. Consider q = (u/r)n+ k where
k ∈ Zd is to be specified. Note that q ∈ L for any such choice for k.

For s > j, choose ks = −uns/r so that qs = 0. Because r divides ns, ks is
an integer. Because qd = 0, this puts q ∈ K. For s = j, let kj = v. Then

qj = (u/r)nj + v =
unj + rv

r
=
r′

r
. For s < j choose ks to be an integer such that

(u/r)ns + ks ∈ [0, 1).



8 KATHRYN E. HARE AND L. THOMAS RAMSEY

Consequently, q ∈ Sj and we have proved that
r′

r
∈ { qj : q ∈ Sj }.

Now consider any q ∈ Sj . Because q ∈ K, by Lemma 3 there is an integer m
and k ∈ Zd such that q = (m/nd)n+ k. Let m/nd = a/b with gcd(a, b) = 1. Since
qs = 0 for s > j, we have (a/b)ns + ks = 0. It follows that a|ks and b|ns for each
s > j. Consequently, b| gcd(nj+1, . . . , nd). So we may write a/b as c/r, for some
integer c. Then

qj = (c/r)nj + kj =
cnj + rkj

r

Since r′|r and r′|nj , we know that qj is an integer multiple of r′/r and because
qj > 0, we have qj ≥ r′/r.

Therefore min{ qj : q ∈ Sj } = r′/r and hence for each j there is at least one

P (j) as specified in the lemma.
We turn to the last claim. Let q = (t/nd)nmod 1 for some integer t. There is an

vector v ∈ Zd such that q = (t/nd)n− v. Thus q ∈ L. Because the d-th coordinate
of (t/nd)n is an integer, we have qd = 0 and thus q ∈ K. Conversely, suppose q ∈ K
with qs ∈ [0, 1) for all s. By Lemma 3 there is some integer t and vector v ∈ Zd
such that q = (t/nd)n+ v. There is some integer t′ ∈ [0, nd) such that t = t′+wnd
for some integer w. Because (wnd/nd)n is an integer vector, we have

(t′/nd)nmod 1 = (t/nd)nmod 1 = ((t/nd)n+ v) mod 1 = qmod 1 = q.

�

Corollary 1. The lattice K is generated by vectors which span a d−1-dimensional
parallelotope of volume gcd(n1, . . . , nd)/nd.

Proof. The volume of the parallelotope generated by the vectors P (j), j = 1, ..., d−1
is equal to

∣∣det
[
P (j)

]∣∣ where here we think of P (j) as vectors in Rd−1, excluding
the last (zero) coordinate. The form of these vectors makes it easy to see that this
determinant is gcd(n1, . . . , nd)/nd. �

Remark 4. Propositions 3 and 4 allows an algorithm for choosing P (j)’s. Let

W = { (k/nd)nmod 1 : 0 ≤ k < nd − 1 }

If Prop. 3 specifies that P
(j)
j < 1, we search W for P (j) with the minimization

conditions specified in Prop. 4. If Prop. 3 specifies P
(j)
j = 1, we use the canonical

basis vector e(j) (which is in K because j < d).

Example 2. Let S ⊂ Z\{0} have d elements, two of which are relatively prime.

Enumerate S as {n1, . . ., nd} with gcd(nd−1, nd) = 1. Let {P (j)}d−1j=1 be a generating

set for K as described in Prop. 4. Here P
(d−1)
d−1 = 1/nd, while P

(j)
j = 1 for j < d−1.

By Prop. 3, we may substitute the canonical basis vector e(j) for P (j) when j < d−1
and still have a generating set for K.

2.5. Our Main Result. We continue to let L be the subgroup of Rd generated by
the line Rn and Zd and set K = L ∩ (Rd−1×{0}). We can calculate the Kronecker
constant in terms of K.

Theorem 1. Suppose S = {n1, n2, ..., nd} ⊆ Z\{0} and assume P (1), ..., P (d−1) ∈
Rd are generators of the associated group K. The angular Kronecker constant is
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the smallest number E such that for all (x1, ..., xd) ∈ Rd−1 × {0} there are integers
r1, ..., rd−1 such that

max


∣∣∣nj(xi −∑d−1

m=1 rmP
(m)
i )− ni(xj −

∑d−1
m=1 rmP

(m)
j )

∣∣∣
|ni|+ |nj |

: 1 ≤ i < j ≤ d

 ≤ E.

Proof. According to Proposition 2 we can calculate α(S) with f = (x1, x2, ..., xd−1, 0) ∈
Rd−1 × {0} and elements of K:

α(S) = sup{ inf
k∈K
‖f − k‖L : f ∈ Rd−1 × {0} }.

By Proposition 1,

‖f − k‖L = max

{
|nj(f − k)i − ni(f − k)j |

|ni|+ |nj |
: 1 ≤ i < j ≤ d

}
and therefore

α(S) = sup
(x1,...,xd)∈Rd−1×{0}

(
inf
k∈K

[
max
i6=j

{
|nj(xi − ki)− ni(xj − kj)|

|ni|+ |nj |

}])
.

If P (1), ..., P (d−1) generate K as a group, then each k ∈ K can be written as∑d−1
m=1 rmP

(m) for integers r1, ..., rd−1. Thus αS(f) equals

inf
r1,...,rd−1∈R

 max
1≤i<j≤d


∣∣∣nj(xi −∑d−1

m=1 rmP
(m)
i )− ni(xj −

∑d−1
m=1 rmP

(m)
j )

∣∣∣
|ni|+ |nj |


 .

The statement in the theorem follows directly. �

Remark 5. When k ∈ K, kd = 0. Thus α(S) is the smallest number E such that
for all (x1, ..., xd−1) ∈ Rd−1 there are integers r1, ..., rd−1 such that∣∣∣nj(xi −∑d−1

m=1 rmP
(m)
i )− ni(xj −

∑d−1
m=1 rmP

(m)
j )

∣∣∣
|ni|+ |nj |

≤ E for 1 ≤ i < j ≤ d− 1

and ∣∣∣nd(xt −∑d−1
m=1 rmP

(m)
t ))

∣∣∣
|nt|+ |nd|

≤ E for 1 ≤ t ≤ d− 1.

3. Kronecker constants of two element sets

3.1. Formula for two element sets. When d = 2, the formula derived in the
previous section is very simple and we can completely determine the Kronecker
constants.

Proposition 5. For distinct, non-zero integers n1 and n2,

α{n1, n2} = sup
x∈R

(
inf
r∈Z

|n2(x− r · gcd(n1, n2)/n2 )|
|n1|+ |n2|

)
=

gcd(n1, n2)

2(|n1|+ |n2|)

Proof. When d = 2, K is generated by the single vector P (1) = gcd(n1, n2)/n2
2

(see Prop. 4) so the first equality follows directly from Theorem 1 or Remark 4.

2We typically view the vectors P (j) as belonging to Rd−1, suppressing the final (zero)
coordinate.
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Temporarily fix x and choose an integer r such that |x − r gcd(n1, n2)/n2| ≤
gcd(n1, n2)/(2 |n2|). Then

|n2(x− r gcd(n1, n2)/n2)|
|n1|+ |n2|

≤ gcd(n1, n2)

2(|n1|+ |n2|)
and hence α{n1, n2} ≤ gcd(n1, n2)/2(|n1| + |n2|). To verify the second equality,
just take x = gcd(n1, n2)/(2n2). �

Example 3. α{−1, 1} = 1/4, and hence κ{−1, 1} =
√

2. In fact, it is clear from

the formula above that α{n1, n2} ≤ 1/4 for all n1, n2 and therefore κ{n1, n2} ≤
√

2.
Equality occurs if and only if n1 = −n2.

The following are some easy corollaries.

Corollary 2. Given distinct non-zero integers ni, 1 ≤ i ≤ d,

α{n1, . . . , nd} ≥ sup

{
gcd(ni, nj)

2 |ni|+ 2 |nj |
: 1 ≤ i < j ≤ d

}
Proof. The Kronecker constant is clearly non-decreasing with respect to the subset
relation. �

Corollary 3. (i) For all positive integers n,m, j

α{n,mn+ j} < α{n,mn} =
1

2(m+ 1)
.

(ii) For any distinct integers n1, n2, limm→∞ α{n1 +m,n2 +m} = 0.
(iii) If n1 6= 0, then limm→∞ α{n1, n2 +m} = 0.

Proof. (i) Indeed, if p = gcd(n,mn+ j) with n = pN and j = pJ , then

α{n,mn+ j} =
1

2(N +Nm+ J)
<

1

2(m+ 1)
.

(ii) If not, then for some α0 > 0 and subsequence mk →∞, α{n1 +mk, n2 +mk} ≥
α0. Hence if p = gcd(n1 +mk, n2 +mk) then p ≥ α02(n1 + n2 + 2mk). But p must
divide n2 − n1, so this is impossible.

(iii) This is similar as the gcd(n1, n2 +mk) is bounded by n1. �

Alternate proofs of this corollary can be found in [Graham and Hare 2006a].

Remark 6. The Kronecker constant does not decay monotonically in either (ii)
or (iii). For example, α{1, 3} = 1/8, while α{1 + 1, 3 + 1} = 1/6. Similarly,
α{2, 3} = 1/10 < α{2, 4}.

3.2. Asymptotic results for translates of three element sets. The analogue
of Cor. 3(ii) fails for every three element set. Indeed, it is easy to prove the following
facts.

Proposition 6. Suppose that n1 < n2 < n3.
(i) For any integer m,

α{n1 +m,n2 +m,n3 +m} ≥ 1

2
max
i6=j,k

(α{nj − ni, nk − ni}) .

(ii) If n2 − n1, n3 − n1, n3 − n2 are pairwise coprime, then

lim sup
m→∞

α{n1 +m,n2 +m,n3 +m} =
1

4(n3 − n1)
.
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(iii) lim supm→∞ α{n1, n2,m} = α{n1, n2}.

Proof. To keep the notation simpler we will write A(z) for Arg(exp 2πiz).
(i) Let αm = α{n1 + m,n2 + m,n3 + m}. Let f : {n2 − n1, n3 − n1} → R be

given and define g by g(n1 +m) = 0 and g(nj +m) = f(nj − n1) for j = 2, 3. We
may choose x such that |A(g(n)− nx)| ≤ αm for n = nj +m, j = 1, 2, 3.

By the triangle inequality,

|A(f(n2 − n1)− x(n2 − n1))| ≤ |A(f(n2 − n1)− x(n2 +m))|+ |A(x(m+ n1))|
= |A(g(n2 +m)− x(n2 +m))|+ |A(x(m+ n1)− g(n1 +m))| ≤ 2αm.

Similarly,

|A(f(n3 − n1)− x(n3 − n1))| ≤ 2αm

This proves 2αm ≥ α{n2 − n1, n3 − n1}. This argument remains valid under per-
mutations of n1, n2 and n3.

(ii) Let f : {n1 + m,n2 + m,n3 + m} → R and for notational convenience put
θj = f(nj +m). The two-element formula for coprime sets implies that

α{n2 − n1, n3 − n1} =
1

2(n3 + n2 − 2n1)
≡ α1

α{n1 − n2, n3 − n2} =
1

2(n3 − n1)
≡ α2

α{n1 − n3, n2 − n3} =
1

2(2n3 − n2 − n1)
≡ α3.

Choose angles x1, x2, x3 such that for each l = 1, 2, 3,

|A((nj − nl)xl − (θj − θl))| ≤ αl for j ∈ {1, 2, 3}, j 6= l.

Fix ε > 0 and choose intervals Il, containing xl, such that if yl ∈ Il, then
|nj(xl − yl)| ≤ ε. Take any m so that m · min{ |Il| : 1 ≤ l ≤ 3 } > 1. These
intervals contain a full period of the function exp 2πim(·) and thus there exists
yl ∈ Il such that exp 2πimyl = exp 2πi(θl − nlxl). It follows that

|A((nl +m)yl − θl)| = |A(nl(yl − xl))| ≤ ε,

while for j 6= l,

|A((nj +m)yl − θj)| ≤ |A(nj(yl − xl))|+ |A((nj − nl)xl − (θj − θl))|
≤ ε+ αl.

Put

t1 =
n3 + n2 − 2n1

4(n3 − n1)
, t2 =

1

4
, t3 =

2n3 − (n2 + n1)

4(n3 − n1)

and let y = t1y1 + t2y2 + t3y3. As y is a convex combination of y1, y2, y3 we have

|A((nl +m)y − θl)| ≤ tlε+ tj(αj + ε) + tk(αk + ε)

where j, k 6= l. Each of these sums is 1/4(n3 − n1) + ε and as ε > 0 is arbitrary,
this completes the proof.

(iii) is similar, but easier. �

Remark 7. Of course, a similar argument can be given in (ii) if the integers
n2 − n1, n3 − n1, n3 − n2 are not pairwise coprime.
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Remark 8. The Kronecker constant does not decay monotonically in m in either
cases (ii) or (iii). For example, our computer algorithm shows that

α{4, 5, 9} = 5/26 > 1/6 = α(2, 3, 7} = α{5, 6, 10}
and

α{2, 5, 7} = 5/24 > 2/13 = α{2, 5, 6} = α{2, 5, 8}.
Both sets {4, 5, 9} and {2, 5, 7} have the form {n1, n2, n1 + n2}. By Section 6.3,
α{n1, n2, n1 + n2} ≥ 1/6 for positive integers n1 and n2.

4. Geometric Consequences

4.1. An upper bound on the Kronecker constant from the geometry.
Using our geometric approach we can derive an upper bound on the Kronecker
constant of any finite set which is sharp in some (non-trivial) cases.

Theorem 2. Suppose that P (1), ..., P (d−1) are any vectors that span the lattice K.
Let D be the diameter of the d−1-dimensional parallelotope generated by the vectors
P (j). Then α{n1, ..., nd} ≤ D/2.

This will be seen to follow almost immediately from elementary geometric rea-
soning.

Lemma 4. Let ‖·‖ be any norm on Rn and suppose ∆ ⊆ Rn is a n-dimensional
parallelotope with diameter D. Then for every g ∈ ∆ there is a vertex V of the
parallelotope such that ‖g − V ‖ ≤ D/2.

Proof. Without loss of generality 0 is one of the vertices of ∆ and ∆ is spanned by
some vectors P (1), ..., P (n). Then ∆ has vertices

∑n
j=1 εjP

(j) with εj = 0, 1 and

D =
∥∥∥∑n

j=1 δjP
(j)
∥∥∥ for some choice of δj = 0,±1.

We proceed by induction on n. If n = 1, then ∆ is the line segment tP (1) with
0 ≤ t ≤ 1 and it is obvious that the distance from one of P (1) or 0 is at most∥∥P (1)

∥∥ /2 = D/2.

So assume the result for dimension n − 1 and put M = 1
2

∑n
j=1 P

(j). Note

that the line through any vertex,
∑n
j=1 εjP

(j), and its diagonally opposite vertex,∑n
j=1(1− εj)P (j), has midpoint M, thus ‖M − V ‖ ≤ D/2 for any vertex V .
Fix any g ∈ ∆, g 6= M , and let h denote the intersection of the boundary of ∆

with the line segment beginning at M and passing through g. Then h belongs to a
face of ∆, an n− 1-dimensional parallelotope whose diameter is at most D. By the
induction assumption there is a vertex on the face, V0, such that ‖h− V0‖ ≤ D/2,
where ‖·‖ is simply the original norm restricted to the face. But g is a convex
combination of M and h, say g = βh+(1−β)M, and hence ‖g − V0‖ ≤ β ‖h− V0‖+
(1− β) ‖M − V0‖ ≤ D/2. �

Proof of Theorem 2. Take ∆ to be the parallelotope spanned by P (1), ..., P (d−1)

and ‖‖L to be the norm. Then the vertices of ∆ are all in the lattice K and hence
αS(g) ≤ ‖g − V ‖ for any g and vertex V ∈ ∆. To finish the proof, just note that
for any f ∈ Rd−1, αS(f) = αS(g) where g ∈ ∆ is a suitable translate of f . �

Example 4. Geometric progressions: Consider the lacunary set {1,m, ....,mk}.
As we saw in Ex. 1, the lattice K can be generated by the k-tuples,

P (j) = (1/mj , 1/mj−1, ..., 1/m, 0, ..., 0), j = 1, ..., k.
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Thus the diameter, D, of the k-dimensional parallelotope is the maximum of ‖V ‖
where V =

∑k
j=1 δjP

(j) and δj = 0,±1. Since only P (s), ..., P (k) have non-zero

components in coordinate s, V = (V1, ..., Vk) where Vs =
∑k−s
j=0 δs+j/m

j+1. Also,

‖V ‖ = max

{∣∣∣∣ mk

mk +mi−1Vi

∣∣∣∣ , ∣∣∣∣mj−1Vl −ml−1Vj
mj−1 +ml−1

∣∣∣∣ : i ≤ k; 1 ≤ l < j ≤ k
}
.

Straight forward calculations show that∣∣∣∣ mk

mk +mi−1Vi

∣∣∣∣ s ≤ 1

m− 1

(
1− 2mi−1

mk +mi−1

)
:= Bi−1,k,

and ∣∣∣∣mj−1Vl −ml−1Vj
mj−1 +ml−1

∣∣∣∣ ≤ 1

m− 1

(
1− 2ml

mj +ml

)
:= Bl,j .

The maximum of these expressions is B0,k. Thus

α{1,m, ....,mk} ≤ 1

2(m− 1)

(
1− 2

mk + 1

)
.

In particular, α{1,m,m2, ....} ≤ 1/2(m − 1), as was shown by other methods in
[Graham and Hare 2006a] or [Kunen and Rudin 1999].

Example 5. Two element sets: In the case d = 2, the lattice K is spanned by
the single vector P = gcd(n1, n2)/n2. Thus the 1 dimensional parallelotope has
diameter D = ‖P‖L = gcd(n1, n2)/(|n1| + |n2|) and therefore the upper bound of
D/2 coincides with the Kronecker constant of {n1, n2}.

Example 6. Other sharp examples: The bound of D/2 is also sharp in certain
higher dimensional examples, as well. For instance, if S = {n1, n2, n1n2}, where
0 < n1 < n2 and gcd(n1, n2) = 1, then one can easily check that the lattice K is
spanned by P = (0, 1/n1), Q = (1/n2, 0). The diameter of the associated parallelo-
gram is

max{‖P‖ , ‖Q‖ , ‖P ±Q‖} = max

{
1

n1 + 1
,

1

n2 + 1
,

2

n1 + n2

}
.

If n2 ≥ n1 + 2, this maximum is 1/(n1 + 1), so the proposition implies α(S) ≤
1/2(n1 + 1). This is obviously sharp since it coincides with the Kronecker constant
of the two element set {n2, n1n2}.

A basis for the lattice associated with the four element set {±m1m2,m1,m2},
with gcd(m1,m2) = 1 and 2 ≤ m1 < m2, is given by P1 = (0, 0, 1/m1), P2 =
(0, 1/m2, 0), P3 = (−1, 0, 0). One can verify that the diameter of the three dimen-
sional parallelotope is 1/2 if m1 ≥ 3. Thus α{−m1m2,m1,m2,m1m2} ≤ 1/4 and
this is again sharp since the Kronecker constant of the four element set is at least
that of the the two element subset, {−m1m2,m1m2}, which equals 1/4.

4.2. Points in Rd−1 furthest from Zd−1 under an arbitrary norm. Though-
out this section ‖·‖ will denote an arbitrary norm on Rd−1. Given f ∈ Rd−1 we will
let α(f) be the distance from f to the integer lattice Zd−1 and denote by N(f) the
set of lattice points that are closest to f :

α(f) = inf{‖f − v‖ : v ∈ Zd−1},

N(f) = {v ∈ Zd−1: ‖f − v‖ = α(f)}.
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Define

E = sup{α(f) : f ∈ Rd−1 }.
A change of basis argument shows that a special case of this is when ‖·‖ = ‖·‖L,

in which case α(f) = αS(f) and E = α(S), as defined earlier.
A compactness argument proves that E = α(f) for some f ∈ Rd−1. Furthermore,

for all non-empty F ⊆ Zd−1 and u ∈ Rd−1, there is some w0 ∈ F such that

‖u− w0‖ = inf{‖u− w‖ : w ∈ F}.

In particular, for each f ∈ Rd−1, there is some w0 ∈ Zd−1 such that α(f) =
‖f − w0‖. Another elementary fact is that |α(f)− α(g)| ≤ ‖f − g‖.

Here we will prove that every norm on Rd−1 has the property that there is some
u ∈ Rd−1 such that E = α(u) and N(u) has at least d members. This may be
known, but we were not able to find a proof in the literature, and it is useful for
our computer algorithm. We will also deduce from this that the angular Kronecker
constant is always a rational number.

Our argument will be geometric and relies on the notion of supporting hyper-
planes: We remind the reader that at each point p of the boundary of a closed,
convex set C with non-empty interior there is a supporting hyperplane H, i.e.,
p ∈ H = T−1(λ) where T : Rd−1 → R is a linear functional and T (f) ≤ λ for all
f ∈ C. Of course, for all f , T (f) = f · v where v is the normal vector to H.

Recall that a norm ‖·‖ is said to be strictly convex if for all f, g of norm at
most one and t ∈ (0, 1), ‖tf + (1− t)g‖ < 1; equivalently, the closed unit ball (with
respect to this norm) is a strictly convex set. It is easy to see that if H is any
supporting hyperplane for the closed unit ball B of a strictly convex norm, then
H
⋂
B is a singleton.

To begin, we will check that most points u cannot satisfy α(u) = E.

Lemma 5. Suppose that N(u) has J points, with J ≤ d− 1, say wi for 1 ≤ i ≤ J .
Let Bi be the closed ball centered at wi with radius α(u) and let Hi be a supporting
hyperplane for Bi at u, with associated linear transformation Ti and normal vector
vi. If the span of {vi}Ji=1 has dimension (exactly) J , then α(u) < E.

Proof. For v ∈ F = Zn\N(u), we have ‖u− v‖ > α(u), thus

α(u) < inf{ ‖u− w‖ : w ∈ F } =: m.

Set δ = m−α(u)
2 and let B be the open ball of radius δ centered at u. For all f ∈ B

and w ∈ F ,

‖f − w‖ ≥ ‖u− w‖ − ‖f − u‖ > m− δ = α(u) + δ,

while for v ∈ N(u)

‖f − v‖ ≤ ‖f − u‖+ ‖u− v‖ < δ + α(u).

Consequently, for f ∈ B, α(f) < α(u) + δ and N(f) ⊂ N(u).
For each i, let ṽi be the vector component of vi that is perpendicular to the

subspace generated by {vj}Jj=1\{vi}, meaning that vi = ṽi + xi with xi in the

linear span of {vj}Jj=1\{vi} and ṽi · vj = 0 for j 6= i. By the linear independence,
ṽi 6= 0. Moreover,

ṽi · vi = ṽi · (ṽi + xi) = ṽi · ṽi > 0
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For each i ∈ {1, ..., J}, let ri ∈ (0, δ/(J‖ṽi‖) and set f = u+x for x =
∑J
i=1 riṽi.

Then ‖f − u‖ = ‖x‖ < δ and hence N(f) ⊆ N(u) for f ∈ B. Since ṽj · vi = 0 for
j 6= i, we see that

Ti(f) = Ti(u) + riṽi · vi > Ti(u).

As u ∈ Hi and Ti(Bi) ≤ Ti(u), we know that f /∈ Bi and therefore ‖f −wi‖ > α(u)
for each wi ∈ N(u). Thus

E ≥ α(f) = min{ ‖f − wi‖ : 1 ≤ i ≤ J } > α(u).

�

Next, we prove the desired result for strictly convex norms.

Lemma 6. Any strictly convex norm has the property that there is some u ∈ Rd−1
such that E = α(u) and N(u) has at least d members, wi, i = 1, .., d, with the
property that for each i, wi /∈ convex hull{wj : j 6= i}.

Proof. Choose u ∈ Rd−1 such that α(u) = E and suppose that N(u) has J ≤ d− 1
members, say wi for 1 ≤ i ≤ J . Let Bi be the closed ball centered at wi with
radius E and Hi a supporting hyperplane to Bi at u, with associated linear operator
Ti and normal vector vi. By Lemma 5, the subspace V spanned by {vi}Ji=1 has
dimension at most J − 1 < d − 1 so may choose some non-zero vector w, of norm
one, such that w is perpendicular to V .

If S = Zd−1\N(u), then ‖u− v‖ > E for every v ∈ S. Thus E < inf{ ‖u− v‖ :
v ∈ S } =: m. Set z = m−E

3 w and let x = u+ z, so that ‖x− u‖ = (m−E)/3. As
in the proof of Lemma 5, it follows that N(x) ⊂ N(u). Since z is perpendicular to
each vi,

Ti(x) = Ti(u) + Ti(z) = Ti(u) + z · vi = Ti(u)

Therefore x ∈ Hi. However, x 6= u and Hi ∩Bi = {u}, thus x /∈ Bi. Consequently,
‖x − wi‖ > E. Since this holds for all i ∈ {1, ..., J} and N(x) ⊂ N(u), we have
α(x) > E contradicting the definition of E.

Thus N(u) contains at least d points wi. If there was some i such that wi =∑
j 6=i βjwj for βj ≥ 0 and

∑
βj = 1, then strict convexity would imply E =

‖u− wi‖ <
∑
j 6=i βj ‖u− wj‖ = E, which is a contradiction. �

We will be able to deduce our result by showing that any norm can be approxi-
mated by strictly convex norms.

Lemma 7. For every ε > 0 and norm ‖·‖, there is a strictly convex norm ‖·‖′ such
that for all f ∈ Rd−1,

‖f‖′ ≤ ‖f‖ ≤ (1 + ε) ‖f‖′ .

Proof. Let B be the unit ball centered at the origin for ‖·‖ and consider any point
p on the boundary of B, ∂B. Let H = T−1(λ) be a hyperplane that supports B at
p, where T (f) = f · v for all f ∈ Rd−1 and T (f) ≤ λ for all f ∈ B. Without loss of
generality we can assume v has Euclidean norm one. As tv ∈ B for t > 0 suitably
small, it follows that λ > 0.

Let δ = λε/2 and put µ = λ + δ. Let p′ = p + δv and suppose H ′ = T−1(µ) is
the translated hyperplane, H ′ = H + δv. Note that T (p′) = µ, thus p′ ∈ H ′, while
T ((1 + ε)p) = (1 + ε)λ > µ, so (1 + ε)p is on the opposite side of H ′ as is B.

For each p ∈ ∂B consider the (closed) Euclidean ball Sp of radius Rp, centered
at p′ − Rpv. The point p′ lies on the boundary of Sp and, provided Rp is large
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enough, Sp ⊇ B.3 Because B = −B, we also have B ⊆ −Sp. As v is the normal
vector to H ′, it follows that H ′ is a supporting hyperplane for Sp at p′.

Since T ((1 + ε)p) > µ, the point (1 + ε)p /∈ Sp. Consequently, the open sets Scp
are a cover of the compact set (1 + ε)∂B and hence there is a finite subcover, say
Sp1 , ..., Spm . Let

B′ =

m⋂
i=1

(
Spi
⋂
−Spi

)
.

The construction ensures that (1 + ε)∂B
⋂
B′ is empty and clearly B ⊆ B′. As

0 ∈ B′, a convexity argument implies B′ ⊆ (1 + ε)B.
Since B′ is closed, symmetric, convex and has 0 in its interior, there is a norm

‖·‖′ for which B′ is the unit ball. Because B ⊆ B′ ⊆ (1 + ε)B, for all f ∈ Rd−1 we
have ‖f‖′ ≤ ‖f‖ ≤ (1 + ε) ‖f‖′. The strict convexity of this norm follows from the
strict convexity of the Euclidean balls, Sp and −Sp. �

Theorem 3. Every norm has the property that there is some u ∈ Rd−1 such that
E = α(u) and N(u) has at least d members, wi, i = 1, .., d, with the property that
for each i, wi /∈ convex hull{wj : j 6= i}.

Proof. Using the previous lemma we can obtain strictly convex norms, ‖·‖n, such
that ‖f‖n ≤ ‖f‖ ≤ (1 + 1/n) ‖f‖n. For the norm ‖·‖n , let En correspond to E, αn
correspond to α and Nn correspond to N .

Given any f ∈ Rd−1 let w0 ∈ Zd−1 be such that αn(f) = ‖f − w0‖. Then

α(f) ≤ ‖f − w0‖ ≤ (1 + 1/n) ‖f − w0‖n = (1 + 1/n)αn(f).

Similarly,

α(f) ≥ αn(f).

As these inequalities hold for all f, it follows that

(1 + 1/n)−1E ≤ En ≤ E

and hence En → E. In particular, {En}n is bounded.
Since ‖·‖n is strictly convex, Lemma 6 implies that there is some un ∈ Rd−1

such that αn(un) = En and Nn(un) has at least d elements of Zd−1. The Zd−1
periodicity of αn ensures that we can assume un ∈ [0, 1]d−1. By passing to a
subsequence, if necessary, we can assume un → u ∈ [0, 1]d−1 (in ‖·‖ norm). Now

|α(u)− αn(un)| ≤ |α(u)− α(un)|+ |α(un)− αn(un)|
≤ ‖u− un‖+ (1/n)αn(un)

≤ ‖u− un‖+ (1/n)En → 0

and thus α(u) = E.
For each n, let vn,j , 1 ≤ j ≤ d, be d distinct members of Zd−1, having the

convexity property and satisfying

En = ‖un − vn,j‖n for 1 ≤ j ≤ d.

3In fact, if π(B) denotes the Euclidean projection of B onto H′, τ is the maximum Euclidean
distance of any point in π(B) from p′ and d ≥ max(τ, δ) satisfies (d2 + δ2)/2δ ≥ −δ + 2µ, then

Rp = (d2 + δ2)/2δ will suffice.
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Since all norms are equivalent on Rd−1 there exists C such that ‖z‖ ≤ C for all
z ∈ [0, 1]d−1. Thus

‖vn,j‖ ≤ ‖un − vn,j‖+ ‖un‖
≤ (1 + 1/n) ‖un − vn,j‖n + C

≤ (1 + 1/n)En + C <∞.

Because Zd−1 has only finitely many members in any bounded set, there is a subse-
quence vnk,1 which is constant, say v1. But then a subsequence of vnk,2 is constant,
say v2. By repeated application of this argument we can assume, without loss
of generality, that for each j = 1, ..., d, the sequence vn,j is identically vj . Thus
v1, ..., vd are distinct and even satisfy the convexity condition. Moreover, the rela-
tionship between the two norms and the fact that vn,j ∈ N(un) implies that

En ≤ ‖un − vn,j‖ ≤ (1 + 1/n)En

and therefore
‖u− vj‖ = lim

n→∞
‖un − vn,j‖ = E.

Thus these d points, vj , all belong to N(u). �

One application of this result is to show that the angular Kronecker constant is
always a rational number.

Corollary 4. For any finite set S ⊂ Z, the angular Kronecker constant of S is a
rational number.

Proof. If 0 ∈ S, then α(S) = 1/2, so assume that 0 /∈ S and that S has d elements.
Applying the previous theorem, it follows that there is some f ∈ Rd−1×{0} and at
least d distinct wi belonging to the associated lattice K such that α(S) = αS(f) =
‖f − wi‖L for i = 1, ..., d. Since any ball of fixed radius α(S) contains a bounded
number of elements of K, there is a maximum integer n ≥ d for which there is some
f ∈ Rd−1 × {0} and n distinct members wi ∈ K such that

α(S) = αS(f) = ‖f − wi‖L for 1 ≤ i ≤ n.
By Proposition 1 the norm ‖ ‖L is given by a set of vectors V = {v1, . . . , vd(d−1)}

such that
‖u‖L = max{ vi · u : i = 1, . . . , d(d− 1) }.

Suppose that vi ∈ V satisfies ‖f − wi‖L = vi · (f − wi). Having this equal to α(S)
is equivalent to requiring:

(∗i) vi · (f − wi) ≥ v · (f − wi) for all v ∈ V and vi · (f − wi) = α(S).

Let C consist of all g ∈ Rd−1×{0} such that (∗i) holds for all 1 ≤ i ≤ n, with g
in the role of f . Clearly f ∈ C and C is compact and convex. The extreme points
of C are determined by the linear constraints that define C, and as each wi and
v ∈ V has rational components, any extreme point has rational components.

Let h be an extreme point of C. If αS(h) = α(S), then, of course, vi · (h−wi) =
α(S) implies that α(S) is rational.

So suppose αS(h) < α(S) and put gt = (1 − t)f + th for 0 ≤ t ≤ 1. Since C is
convex, gt ∈ C and thus ‖gt −wi‖ = α(S) for all 1 ≤ i ≤ n. Put t0 = sup{t ∈ [0, 1]
: αS(gt) = α(S)}. By continuity and compactness, αS(gt0) = α(S), thus t0 < 1.
For each t ∈ (t0, 1] there is some ut ∈ K\{w1, . . . , wn} such that

‖gt − ut‖L = αS(gt) < α(S).
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Within an α(S) neighborhood of [f, h], there are at most finitely many members of
K. Hence there is some u ∈ K\{w1, . . . , wn} and sequence ti decreasing to t0 such
that uti = u for all i. By continuity

‖gt0 − u‖L = lim
i→∞

‖gti − u‖L ≤ α(S).

By the definition of α, α(S) = αS(gt0) ≤ ‖gt0 − u‖ , so we must have ‖gt0 − u‖L =
α(S). This violates the maximality condition that defines n. �

5. The Geometry Problem in R3

Here we make the `∞ geometry and the calculation of the angular Kronecker
constant more explicit in the case of R3.

Theorem 4. Let S = {n1, n2, n3} ⊂ Z3\{0} with gcd{n1, n2, n3} = 1 and let
m2 = gcd(n2, n3). Let K be the group associated with the vector n = (n1, n2, n3),
as described in section 2.

(i) We can choose generators, P,Q of K, such that P = (r/|n3|,m2/|n3|, 0)
and Q = (1/m2, 0, 0) where r ≡ tn1 mod n3 and t is any integer satisfying tn2 ≡
m2 mod n3. Moreover, r can be chosen with 0 ≤ r/|n3| < 1/m2.

(ii) Suppose that P = (r/|n3|,m2/|n3|, 0) and Q = (1/m2, 0, 0) generate K as a
group. The number α(S) is the smallest number E such that, for all x, y ∈ R, there
are integers s, t for which

(2, 3) :
|n3|

|n2|+ |n3|

∣∣∣∣ tm2

n3
− y
∣∣∣∣ ≤ E

(1, 3) :
|n3|

|n1|+ |n3|

∣∣∣∣ trn3 +
s

m2
− x
∣∣∣∣ ≤ E

(1, 2) :

∣∣∣n2( trn3
+ s

m2
− x)− n1( tm2

n3
− y)

∣∣∣
|n1|+ |n2|

≤ E.

Proof. (i) By Prop. 4 there are generators Q := P (1) and P := P (2) for K such that
Q = (1/m2, 0, 0) and P = (P1,m2/|n3|, 0) with P1 ∈ [0, 1). As P ∈ K, Lemma 3 im-
plies P mod 1 = (r/ |n3|)nmod 1 for some r ∈ Z. Thus P2 = m2/ |n3| ≡ rn2/ |n3|
and P1 ≡ rn1/ |n3|, as claimed.

Now let β be an integer such that β/m2 ≤ r/|n3| < (β + 1)/m2 and let P̃ =

P − βQ. Then (P̃ )1 ∈ [0, 1/m2), P̃2 = m2/n3, and P̃3 = 0. Because m2 divides n3,

there is some integer r′ such that P̃1 = r/|n3| − β/m2 = r′/|n3|. By Prop. 3, Q

and P̃ will also generate K.
(ii) Since α(S) = α(−S), we can assume n3 > 0. Any k ∈ K can be written as

k = k(s, t) = sQ + tP for some integers s and t, where P,Q are chosen as above.
By Theorem 1,

α(S) = sup
(x,y,0)∈R3

(
inf
s,t∈Z

[
max

1≤i<j≤3

{
|nj(xi − k(s, t)i)− ni(xj − k(s, t)j)|

|ni|+ |nj |

}])
.

Because

k(s, t)1 = s/m2 + tr/n3, k(s, t)2 = tm2/n3 and k(s, t)3 = 0,

we have

|n2(x− s/m2 − tr/n3)− n1(y − tm2/n3)|
|n1|+ |n2|

=
|n2( trn3

+ s
m2
− x) + n1( tm2

n3
− y)|

|n1|+ |n2|
,
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|n3(x− s/m2 − tr/n3)|
|n1|+ |n3|

=
|n3|

|n1|+ |n3|

∣∣∣∣ trn3 +
s

m2
− x
∣∣∣∣ ,

and
|n3(y − tm2/n3)|
|n2|+ |n3|

=
|n3|

|n2|+ |n3|

∣∣∣∣ tm2

n3
− y
∣∣∣∣ .

Since the infimum over s, t ∈ Z is clearly attained, this completes the proof. �

Example 7. Let S = {−a, a, b} with −a < a < b and gcd(a, b) = 1. Applying Prop.
4, we see there are generators P := P (1) and Q := P (2) for K such that Q = (1, 0, 0)
and P2 = 1/b. If ta = 1 mod b, then t(−a) = −1 mod b = (b − 1) mod b. Thus we
could take P = (−1/b, 1/b, 0) or ((b− 1)/b, 1/b, 0).

Example 8. Let S = {a, a+b, a+2b} for positive integers a and b with gcd(a, b) = 1.
Then gcd(a, a + b) = gcd(a + b, a + 2b) = 1. We have generators P := P (1) and
Q := P (2) = (1, 0, 0) for K with P2 = 1/(a + 2b). If t(a + b) = 1 mod(a + 2b),
then 2t(a + b) = 2 mod(a + 2b). As 2t(a + b) = ta + t(a + 2b), it follows that
ta = 2t(a+ b) = 2 mod(a+ 2b), and therefore we can let P = (2, 1, 0)/(a+ 2b).

We can also explicitly determine which of the equations |njui − niuj | /(|ni|+|nj |)
is maximal in the case d = 3 and this is useful for understanding the unit ball of
the quotient norm ‖·‖L.

We will assume the integers n1, n2, n3 satisfy 0 < n1 < n2 < n3. As usual, let
L = {xn : x ∈ R }.

Lemma 8. Let s1 = (n2 + n3)/(n1 + n3), s2 = (n2 − n3)/(n1 + n3) and s3 =
(n2 + n3)/(n1 − n3). For (u, v) ∈ R2,

‖(u, v, 0)‖L =



n3 |u|
n1 + n3

{
if u > 0 and s2u ≤ v ≤ s1u
or u < 0 and s1u ≤ v ≤ s2u

|n2u− n1v|
n1 + n2

{
if u > 0 and s3u ≤ v ≤ s2u
or u < 0 and s2u ≤ v ≤ s3u

n3 |v|
n2 + n3

{
if v > 0 and v/s3 ≤ u ≤ v/s1
or v < 0 and v/s1 ≤ u ≤ v/s3

The proof is elementary and is left for the reader. Note that s1 > 1, s2 ∈ (−1, 0)
and s3 < −1.

The mapping φ((u, v)) = (u, v, 0)−L is a linear isomorphism from R2 onto R3/L
and we can lift the quotient norm from R3/L to R2 by setting ‖(u, v)‖ = ‖(u, v, 0)‖L.
Let r1 = (n1 + n3)/n3, r2 = (n2 + n3)/n3, r3 = (n1 + n2)/

√
n21 + n22 and let si

be defined as in Lemma 8. We can now describe the shape of a unit ball for the
quotient space R3/L .

Proposition 7. (i) The unit ball for this metric on R2 is a hexagon, the convex
hull of these six points which are enumerated clockwise:

P1 = (r1, r2) = −P4 (on the line through the origin with slope s1),

P2 = (r1, (n2 − n3)/n3) = −P5 (on the line through the origin with slope s2),

P3 = ((n3 − n1)/n3,−r2) = −P6 (on the line through the origin with slope s3).

(ii) The area of the unit ball is 4(n1 + n2 + n3)/n3.

Proof. The reader can verify that the hexagon shape of the unit ball, with the
specified vertices, follows from the previous lemma.
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A formula for the area A of a polygon in terms of the coordinates of its vertices
Pi = (xi, yi)

n
i=1 is

A =

∣∣∣∣∣12
n∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ with (xn+1, yn+1) set equal to (x1, y1)

[Beyer 1987]. Applying this formula gives the stated value for the area of the unit
ball. �

From these geometric ideas, we can also obtain a lower bound in the case of
finite sets of size three.

Proposition 8. If 1 ≤ n1 < n2 < n3, gcd(n1, n2, n3) = 1 and S = {n1, n2, n3},
then

α(S) ≥ 1√
8(n1 + n2 + n3)

.

Proof. Assume α(S) = αS(f). By Theorem 3 there are at least three lattice points
wi, i = 1, 2, 3, which are not co-linear and have the property that αS(f) = ‖f − wi‖.
If w is any other lattice point in the convex hull of w1, w2, w3, then the fact
that αS(f) = ‖f − wi‖ and the triangle inequality ensures that w also satisfies
αS(f) = ‖f − w‖. Consequently, there is no loss of generality in assuming that the
lattice points wi are not co-linear and no other lattice point lies in their convex
hull. This latter condition implies that the three points generate the lattice.

All parallelograms spanned by three generating points of the lattice have the
same area and therefore these points span a parallelogram of area 1/n3 (Cor. 1).

The convex hull of the three points is a triangle, T , whose area is half that of
the parallelogram. This triangle is contained inside the closed ball, B, centered at
f with radius α(S). Using the previous theorem it follows that

1

2n3
= Area(T ) ≤ Area(B)

= α(S)2
(

4(n1 + n2 + n3)

n3

)
from which we derive the lower bound stated in the proposition. �

6. Kronecker constants for three element sets

In this section we will use Theorem 4 to calculate (or bound) α(S) for various
three element sets.

6.1. Mixed positive and negative integers. We begin with the case when the
integers |n1| , |n2| , |n3| are not distinct and for this case we are able to give a
complete solution.

When |n1| , |n2| , |n3| are distinct the problem of interpolating angles, t1, t2, t3,
at n1, n2, n3 is effectively the same as the problem of interpolating ±t1,±t2,±t3
at ±n1,±n2,±n3 and therefore α{n1, n2, n3} = α{|n1| , |n2| , |n3|}. Thus later in
this section we will typically assume either that all nj > 0 or choose the signs as is
convenient.

Proposition 9. Suppose a, b > 0 are coprime integers.
(i) Assume b < a. Then α{−a, b, a} = 1/4.
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(ii) Assume b > a. If a ≥ 2, then α{−a, a, b} = 1/4 and

α{−1, 1, b} =

{
b+2

4(b+1) if b is even
b+1

2(2b+1) if b is odd

Proof. (i) Let n = (−a, b, a), the order in which we list {−a, b, a}. For this ordering,
we have P = (0, 1/a) and Q = (1, 0) because k(−a) ≡ 0 mod a for all integers k.
Thus α{−a, b, a} will be the minimum value E such that for each x, y there are
integers r, s such that all of (1, 3), (2, 3) and (1, 3) are bounded above by E, with

(1, 3) :=
|a(x− s)|
| − a|+ |a|

=
|s− x|

2

(2, 3) :=
|a(y − r/a)|
|a|+ |b|

=
|r − ay|
a+ b

and

(1, 2) :=
|b(x− s)− (−a)(y − r/a)|

| − a|+ |b|
=
|r − ay + b(s− x)|

a+ b

Clearly, if x = 1/2, the inequality (1, 3) ≤ E can only be satisfied with E ≥ 1/4,
so it is enough to show that E = 1/4 suffices.

Given any x there is a choice of integer s such that |s− x| ≤ 1/2, which implies
(1, 3) ≤ 1/4.

Inequality (2, 3) ≤ 1/4 holds if and only if |r − ay| ≤ (a+ b)/4. If a+ b ≥ 4, then
for any fixed y there are at least two choices of integers for r which could be used,
the nearest integers r to ay satisfying r − ay > 0 or r − ay < 0. Take the choice of
r with sign(r − ay) = −sign(s− x). Then (1, 2) ≤ 1/4, in part because b < a:

|r − ay + b(s− x)|
a+ b

≤ max

(
|r − ay|
a+ b

,
b |s− x|
a+ b

)
≤ max

(
1

4
,
b/2

b+ b

)
=

1

4

Otherwise, b = 1 and a = 2. If ay ∈ [1/4, 3/4] mod 1, we make the same
two choices for r but with |r − ay| ≤ 3/4. The same argument works because
|r − ay|/(a + b) ≤ (3/4)/3 = 1/4. Otherwise, choose r such that |r − ay| ≤ 1/4.
Then

(1, 2) ≤ |r − ay|
a+ b

+
b |s− x|
a+ b

≤ 1/4 + b/2

a+ b
=

1

4
.

(ii) Let n = (−a, a, b) be the order in which we list S = {−a, a, b}. The dis-
tinction between b < a and b > a arises because of the definition of P . We
may take P2 = 1/b and to determine P1 we observe that if ka ≡ 1 mod b, then
−ka ≡ −1 mod b, so we may take P1 = −1/b. As before, Q = (1, 0). α(S) is the
smallest constant E such that

for (1,3) :
b |−r/b+ s− x|

a+ b
≤ E,

for (2,3) :
b |r/b− y|
a+ b

≤ E, and

for (1,2) :
|−a(r/b− y)− a(−r/b+ s− x)|

2a

=
|−y − x+ s|

2
≤ E.

If (−x− y) mod 1 = 1/2, then (1, 2) = 1/4 and we must have E ≥ 1/4.
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If we put ∆r = y − r/b and choose β ∈ [0, 1] congruent to (−x − y) mod 1, we
may rewrite these as (with a possibly different integer s)

(1, 3)′ :
b |∆r + β + s|

a+ b
≤ E,

(2, 3)′ :
b |∆r|
a+ b

≤ E, and

(1, 2)′ :
|β + s|

2
≤ E.

First we will show that if we take E equal to the claimed value for α(S), then all
three inequalities are satisfied.

Recall that αS((−x,−y, 0)) = αS((x, y, 0)). If β 6= 0, we have 1 − β = (x +
y) mod 1. If β = 0, of course (x+ y) mod 1 = β. So, without losing generality, we
may assume β ≤ 1/2. Since E ≥ 1/4, that puts β ∈ [0, 2E]. Because E < 1/2, we
must use s = 0 or s = −1 to satisfy (1, 2)′.

Suppose that β ≤ 1 − 2E. We take s = 0 to satisfy (1, 2)′. Then we need to
choose r such that

(1) −E(1 +
a

b
) ≤ ∆r ≤ E(1 +

a

b
)− β

to satisfy both (1, 3)′ and (2, 3)′. With β ≤ 1− 2E, the interval above has length

2E(1 +
a

b
)− β ≥ E(4 +

2a

b
)− 1 ≥ 1

b

(for any of the three possibilities for E). This is long enough to ensure that, for
each y, there is some integer r such that ∆r = y − r/b is in this interval.

If β ∈ [1 − 2E, 1/2], we can let s = −1 or s = 0 to satisfy (1, 2)′. If we use
s = −1, then we need to choose r such that

(2) −E(1 +
a

b
) + 1− β ≤ ∆r ≤ E(1 +

a

b
)

to satisfy (1, 3)′ and (2, 3)′. Depending on whether s = 0 or s = −1, we will need
to choose an integer r so that ∆r is in either

[−E(1 +
a

b
), E(1 +

a

b
)− β] = [I1, I2]

or

[−E(1 +
a

b
) + 1− β,E(1 +

a

b
)] = [J1, J2],

The sum of the lengths of these intervals is 4E(1 + a/b)− 1. If E = 1/4 and a ≥ 2,
this sum of lengths is at least 2/b. So one of the two intervals will have length at
least 1/b and hence will contain ∆r for some integer r. This is also true if a = 1
and E = b+2

4(b+1) (the b even case).

Otherwise, suppose b is odd, say b = 2m+1 (and a = 1). With the specified value
for E, the sum of the lengths of intervals [I1, I2] and [J1, J2] is (3b + 2)/(2b2 + b),
which is greater than 1/b, but not as much as 2/b. Note that

J2 − I1 = 2E(1 +
1

b
) =

(1 + b)2

b(2b+ 1)

=
m+ 1

b
+

m+ 1

b(2b+ 1)
.
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Put I ′k = Ik + (1 +m)/b, so that

J2 − I ′1 =
(m+ 1)

b(2b+ 1)
.

If J1 > I ′1, then

length [J1, J2] ≤ (m+ 1)

b(2b+ 1)
,

from which it follows that the length of [I1, I2] is at least

(3)
3b+ 2

b(2b+ 1)
− m+ 1

b(2b+ 1)
=

5m+ 4

b(4m+ 3)
≥ 1

b

and therefore we can choose an integer r so that ∆r = y − r/b ∈ [I1, I2].
If not, then J1 ≤ I ′1 ≤ J2. Note that

β ≤ 1/2 ⇒ −β +
m+ 1

b
≥

1
2

b
> 0,

and thus I ′2 > J2. The length of the interval [J1, I
′
2] is the sum of the lengths of the

intervals [I1, I2] and [J ′1, J
′
2], less the length of their overlap. Since the overlap has

length J2 − I ′1 = (m + 1)/b(2b + 1), the same calculation as in (3) shows that the
length of [J1, I

′
2] is also at least 1/b. For any y, we can find an integer t with t/b−y

in one of the intervals [I ′1, I
′
2] or [J1, J2]. In the former case, taking r = t− 1−m,

we get ∆r ∈ [I1, I2].
This completes the proof that the specified E is an upper bound for the angular

Kronecker constant.
As we have already mentioned, (1, 2) ≤ E requires E ≥ 1/4. So, to show the

sharpness of E we only need to consider the case a = 1.
First, suppose b is odd, put (x, y) = (E,E) and assume the angular Kronecker

constant is Eε = E − ε for some ε > 0. Here 1/4 < E < 1/2 and therefore
−1 < −2E < −1/2. The inequality (1, 2) ≤ Eε simplifies to |−2E + s| /2 ≤ Eε
and this can only be satisfied with s = 1. With s = 1, inequalities (1, 3) ≤ Eε and
(2, 3) ≤ Eε become

b

1 + b

∣∣∣∣−rb + 1− E
∣∣∣∣ ≤ E − ε b

1 + b

∣∣∣r
b
− E

∣∣∣ ≤ E − ε
and together these require

1− E
(

1 + 2b

b

)
+ ε

(
b+ 1

b

)
≤ r

b
≤ E

(
1 + 2b

b

)
− ε

(
b+ 1

b

)
.

As E(1 + 2b) = (1 + b)/2, this simplifies to

b− 1

2b
+ ε

(
b+ 1

b

)
≤ r

b
≤ 1 + b

2b
− ε

(
b+ 1

b

)
.

Since b is odd, (b − 1)/2 and (b + 1)/2 are consecutive integers, so this inequality
cannot hold for any integer r and ε > 0.

For b even we take

(x, y) =

{
( 1
2 , 0) if b ≡ 2 mod 4

( b−12b ,
1
2b ) if b ≡ 0 mod 4

and argue similarly. �

Corollary 5. α{−n, n, 2n} = α{−1, 1, 2} = 1/3.
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6.2. Rectangular lattice case. By the rectangular lattice case, we mean that the
lattice K can be generated by vectors P = (0, p) and Q = (q, 0) for suitable choices
of p, q. Of course, p will necessarily be the gcd(n2, n3)/n3. In the rectangular lattice
case we also have the complete solution to the Kronecker problem.

First, we determine how this situation can arise.

Lemma 9. Suppose 1 ≤ n1 < n2 < n3 and gcd(n1, n2, n3) = 1. Set m1 =
gcd(n1, n3) and m2 = gcd(n2, n3). We can choose P = (0, gcd(n2, n3)/n3) if and
only if n3 = m1m2.

Proof. First, we will prove that C ≡ n3/m1m2 is an integer and that the pairs
(m1,m2), (m1, n2), (m2, n1), (n1/m1, C) and (n2/m2, C) are all coprime. To see
this, note that if s divides m1, n2, then s divides all three integers n1, n2, n3 and
this is a contradiction. Thus m1, n2 are coprime. The argument is the same for the
pairs m2, n1 and m1,m2.

Because m1 divides n3 and is coprime with m2, but n3 = m2(n3/m2), it follows
that m1 divides n3/m2, proving that n3 = m1m2C for some integer C.

Put A = n1/m1. It must be that A,C are coprime, for otherwise m1 would not
the greatest common divisor of n1, n3. Similarly, if B = n2/m2, the same reasoning
proves B,C are coprime.

Now suppose P = (0, P2). As P2 = m2/m3, there is some integer k such that
kn2 ≡ m2 modn3 and kn1 ≡ 0 modn3. Thus there is an integer j such that
kn1 = jn3 which implies that kA = jCm2. Since gcd(A,C) = 1, C divides k. There
is also an integer J such that kn2 + Jn3 = m2 and this implies kB + Jm1C = 1.
As C divides k we can conclude that C = 1, i.e., n3 = m1m2.

Conversely, suppose n3 = m1m2. As m2 = gcd(n2, n3), there is some integer
k with kn2 ≡ m2 modn3. Because m1n2 ≡ 0 modn3, for any integer s we have
(k − sm1)n2 ≡ m2 modn3. Since m2 and n1 are coprime, there are integers s, t
such that kA = m2t+ n1s. It follows that

(k −m1s)n1
n3

=
(k −m1s)A

m2
= t.

Therefore (k −m1s)n1 ≡ 0 modn3 and so we may take P = (0,m2/n3). �

Theorem 5. Suppose 1 ≤ n1 < n2 < n3 and gcd(n1, n2, n3) = 1. Set mj =
gcd(nj , n3) for j = 1, 2 and assume that n3 = m1m2. Then

α{n1, n2, n3} =
1

2( n1

m1
+m2)

if
n1
m1

+m2 ≤ m1,

α{n1, n2, n3} =
1

2( n2

m2
+m1)

if
n2
m2

+m1 ≤ m2,

and

α{n1, n2, n3} =
n1

m1
+ n2

m2

2(n1 + n2 + n1

m1

n2

m2
)

otherwise.

Corollary 6. In the rectangular lattice case, α{n1, n2, n3} ≤ 1/5.

Proof. As m1,m2 ≥ 2 and n1/m1, n2/m2 ≥ 1, the claim is obvious if α is given by
either of the first two choices. Otherwise note that the inequality

n1m2 + n2m1 ≤
2

5
(n1m1m2 + n2m1m2 + n1n2)
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holds since mj ≥ 2 and nj ≥ mj , and this implies that α ≤ 1/5 in the third
case. �

Of course, a special case of this is the product set {n1, n2, n1n2} when n1/m1 =
n2/m2 = 1. In this case, the theorem gives the following result.

Corollary 7. Let 1 < n1 < n2 < n1n2 and suppose gcd(n1, n2, n1n2) = 1. Then

α{n1, n2, n1n2} =
1

2(n1 + 1)
.

Remark 9. It is interesting that α{n1, n2, n1n2} coincides with the trivial lower
bound, α{n2, n1n2}, and with the upper bound found by geometric methods in Ex-
ample 6.

We will make use of the following trivial observation.

Lemma 10. (Same sign lemma) Suppose that |nd| ≥ |nk| for all k. If u ∈ Rd with
niuinjuj ≥ 0 for some 1 ≤ i < j ≤ d− 1, then

|njui − niuj |
|ni|+ |nj |

≤ max

{
|ndui|
|nd|+ |ni|

,
|nduj |
|nd|+ |nj |

}
.

Proof. The sign condition implies that

|njui − niuj |
|ni|+ |nj |

≤ max

{
|njui|
|ni|+ |nj |

,
|niuj |
|ni|+ |nj |

}
.

Furthermore, if |nd| ≥ |nr|, then |nr|/(|ns|+ |nr|) ≤ |nd|/(|ns|+ |nd|). �

Proof of Theorem 5. According to the first lemma this is the rectangular lattice
case and we can choose P = (0,m2/n3) = (0, 1/m1) and Q = (1/m2, 0). Put
A = n1/m1 and B = n2/m2. The angular Kronecker constant is the least constant
E such that for each x, y there are integers r, s such that

(2, 3) :
m1m2

n2 + n3

∣∣∣∣ rm1
− y
∣∣∣∣ =
|r −m1y|
B +m1

≤ E,

(1, 3) :
m1m2

n1 + n3

∣∣∣∣ sm2
− x
∣∣∣∣ =
|s−m2x|
A+m2

≤ E,

and

(1, 2) :

∣∣∣n2( s
m2
− x)− n1( r

m1
− y)

∣∣∣
n1 + n2

=
|B(s−m2x)−A(r −m1y)|

n1 + n2
≤ E.

We present upper bound arguments first. This proceeds by the cases described
in the theorem.

First, suppose B +m1 ≤ m2. Then also m1 ≤ A+B +m2, so if we put

δ :=
A(A+B +m2 −m1)

2(n1 + 2n2 +AB)
,

then δ ≥ 0. Moreover, this choice of δ gives
1
2 + δ

A+m2
=

A+B
2 −Bδ
n1 + n2

Pick r such that |r −m1y| ≤ 1/2, so

(2, 3) ≤ 1

2(B +m1)
.
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Suppose, first, there is an integer s′ such that |s′ −m2x− 1/2| ≤ δ0, where δ0 =
min(δ,1/2). Then the triangle inequality shows that both |s′ −m2x| ≤ δ0 + 1/2
and |s′ −m2x− 1| ≤ δ0 + 1/2. Moreover, s′ − 1 ≤ m2x ≤ s′. Taking s = s′

or s′ − 1, appropriately, we can arrange for sign(s − m2x) = sign(r − m1y) and
|s−m2x| ≤ δ+1/2. Then the definition of δ and the fact that B+m1 ≤ m2 yields,

(1, 3) ≤
1
2 + δ

A+m2
=

2B +A

2(n1 + 2n2 +AB)
≤ 1

2(B +m1)
.

By the same sign lemma, (1, 2) ≤ 1/(2B + 2m1).
Otherwise, there is no integer s′ in the interval [m2x + 1/2 − δ,m2x + 1/2 + δ]

(and, necessarily, δ ≤ 1/2). Of course there is an integer s′ in the interval [m2x+
1/2 + δ − 1,m2x+ 1/2 + δ] and hence in [m2x− 1/2 + δ,m2x+ 1/2− δ). So there
is an integer s such that so that |s−m2x| ≤ 1/2− δ. As above, the definition of δ
gives

(1, 3) ≤
1
2 − δ
A+m2

<
1

2(B +m1)

and

(1, 2) ≤
B( 1

2 − δ)
n1 + n2

+
A

2(n1 + n2)
=

A+B
2 −Bδ
n1 + n2

=
1
2 + δ

A+m2
≤ 1

2(B +m1)
.

Thus in either case, each of the three inequalities is bounded by 1
2(B+m1)

, as claimed.

The case A+m2 ≤ m1 is similar.
The final upper bound case to consider is B +m1 > m2 and A+m2 > m1. Put

(4) δy :=
B(B +m1 −m2)

2(n1 + n2 +AB)

and

(5) δx := (
1

2
+ δy)

A+m2

B +m1
− 1

2
=
A(A+m2 −m1)

2(n1 + n2 +AB)
.

Both δx, δy > 0. They were chosen so

1
2 + δy

B +m1
=

1
2 + δx

A+m2
=
B( 1

2 − δx) +A( 1
2 − δy)

n1 + n2
.

Furthermore, these three (equal) expressions coincide with

E =
A+B

2(n1 + n2 +AB)
.

We prove next that δy < 1/2. Because m2B = n2 < n3 = m2m1 we have
B < m1. Thus

B(B +m1 −m2) = B(B +m1)− n2 < 2Bm1 − n2
< 2B(A+m2)− n2 = AB + n2 +AB

< Am1 + n2 +AB = n1 + n2 +AB

Likewise, δx < 1/2.



KRONECKER CONSTANTS 27

Suppose there is an integer s′ such that |s′ −m2x− 1/2| ≤ δx. Pick an integer r
such that |r −m1y| ≤ 1/2 and choose the integer s such that |s−m2x| ≤ 1/2 + δx
and sign(s−m2x) =sign(r −m1y). Then

(1, 3) ≤
1
2 + δx

A+m2
=

A+B

2(n1 + n2 +AB)

and

(2, 3) ≤ 1

2(B +m1)
≤

1
2 + δy

B +m1
=

A+B

2(n1 + n2 +AB)
.

By the same sign lemma we also have

(1, 2) ≤ A+B

2(n1 + n2 +AB)
.

Otherwise, there is an integer s such that |s−m2x| ≤ 1/2 − δx. If there is
some integer r′ such that |r′ −m1y − 1/2| ≤ δy, then we can choose r such that
|r −m1y| ≤ 1/2 + δy and sign(s − m2x) =sign(r − m1y). Similar arguments to
those above show that (1, 2), (1, 3) and (2, 3) are all dominated by

A+B

2(n1 + n2 +AB)
.

Otherwise, there are integers r and s with |r −m1y| ≤ 1/2 − δy and |s−m2x| ≤
1/2− δx. Then

(1, 3) ≤
1
2 − δx
A+m2

, (2, 3) ≤
1
2 − δy
B +m1

and by triangle inequality,

(1, 2) ≤
B( 1

2 − δx) +A( 1
2 − δy)

n1 + n2
.

Hence, again, all three are dominated by

A+B

2(n1 + n2 +AB)
.

This completes the proof that E is an upper bound for the angular Kronecker
constant.

We now turn to proving that the claimed values are lower bounds for the angular
Kronecker constant. Since the angular Kronecker constant of {Am1, Bm2,m1m2}
must be at least the angular Kronecker constants of both of the two element sets,
{Am1,m1m2} and {Bm2,m1m2}, it must be at least the greater of 1/2(A + m2)
and 1/2(B+m1). Thus we only need to verify the sharpness of the choice of E for
the case B +m1 > m2 and A+m2 > m1. Take

x =
(A+B)(A+m2)

2m2(AB + n1 + n2)

and

y =
n1 + n2 +AB −B(B +m1 −m2)

2m1(AB + n1 + n2)
.

We will show that for any choice of integers r, s

max

(
|r −m1y|
B +m1

,
|s−m2x|
A+m2

,
|B(s−m2x)−A(r −m1y)|

n1 + n2

)
≥ A+B

2(n1 + n2 +AB)
.
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Let δx, δy be as defined in (4, 5). Then m2x = 1/2 + δx and m1y = 1/2 − δy.
Because 0 < δx, δy < 1/2, m2x,m1y ∈ (0, 1).

Furthermore,

(A+B)

2(n1 + n2 +AB)
=

1/2 + δy
B +m1

=
|1−m1y|
B +m1

(Condition (2, 3) with r = 1)

=
1/2 + δx
A+m2

=
|m2x|
A+m2

(Condition (1, 3) with s = 0)

=
|B(1/2− δx) +A(1/2− δy)|

n1 + n2

=
|B(1−m2x) +Am1y|

n1 + n2
(Condition (1, 2) with r = 0, s = 1).

Since m2x, m1y ∈ (0, 1),

|r −m1y|
B +m1

≥ |1−m1y|
B +m1

if r ≥ 1 or r ≤ −1

|s−m2x|
A+m2

≥ |m2x|
A+m2

if s ≤ 0 or s ≥ 2

This exhausts all possibilities for integers r, s and completes the proof that E is
sharp. �

6.3. Generalized sum sets. It was shown in [Graham and Hare 2006a, Prop.
2.6] that α{n1, n2, n1 + n2} ≥ 1/6. Using Theorem 4 the Kronecker constant for
{n1, n2, n1 + n2} can be exactly determined and it is asymptotically 1/6.

Theorem 6. Let 1 ≤ n1 < n2 < n3 with n3 = n1 + n2 and gcd(n1, n2, n3) = 1.
Suppose n1 + 2n2 ≡ j mod 3. Then

α{n1, n2, n3} =
1

6
+

1

2(n1 + 2n2)
if j = 0;

α{n1, n2, n3} =
1

6
+

1

3(n1 + 2n2)
if j = 1; and

α{n1, n2, n3} =
1

6
+

1

3(2n1 + n2)
if j = 2.

Corollary 8. α{1, 2, 3} = 1/4; α{n1, n2, n1 + n2} ≤ 1/4 for all 0 < n1 < n2 <
n1 + n2.

Proof. We remark that the condition gcd(n1, n2, n3) = 1 implies gcd(n2, n3) = 1.
Thus Q = (1, 0) and since tn2 ≡ −tn1 mod (n1+n2) we can take P = (−1/n3, 1/n3).
Hence the angular Kronecker constant is the least E such that for all x, y there are
integers s, t such that the following three inequalities are satisfied:

(2, 3) :
n3

n2 + n3

∣∣∣∣ tn3 − y
∣∣∣∣ ≤ E

(1, 3) :
n3

n1 + n3

∣∣∣∣− t

n3
+ s− x

∣∣∣∣ ≤ E
(1, 2) :

∣∣∣n2(− t
n3

+ s− x)− n1( t
n3
− y)

∣∣∣
n1 + n2

≤ E.
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Setting ∆t = t/n3 − y and letting β ∈ [0, 1] be congruent to x + y mod 1, the
three inequalities can be rewritten with an integer s′ as

(2, 3)′ : |∆t| ≤ E(
n2 + n3
n3

) = E(
n2

n1 + n2
+ 1)

(1, 3)′ : |∆t + β + s′| ≤ E(
n1

n1 + n2
+ 1)

(1, 2)′ :

∣∣∣∣∆t(1 +
n1
n2

) + β + s′
∣∣∣∣ ≤ E(

n1
n2

+ 1).

Upper bound argument: Clearly, (2, 3)′ is satisfied if

∆t ∈ I1 = [−E(
n2

n1 + n2
+ 1), E(

n2
n1 + n2

+ 1)],

With s′ = 0,−1, (1, 3)′ is satisfied precisely when ∆t ∈ I2 ∪ I ′2, where

I2 =

[
−E(

n1
n1 + n2

+ 1)− β,E(
n1

n1 + n2
+ 1)− β

]
,

I ′2 =

[
−E(

n1
n1 + n2

+ 1) + 1− β,E(
n1

n1 + n2
+ 1) + 1− β

]
.

Similarly, (1, 2)′ is satisfied for s′ = 0,−1 when ∆t ∈ I3 ∪ I
′

3, where

I3 =

[
−E − β n2

n1 + n2
, E − β n2

n1 + n2

]
,

I ′3 =

[
−E + (1− β)

n2
n1 + n2

, E + (1− β)
n2

n1 + n2

]
.

If we let Ii = [Ai, Bi], then

A3 −A2 =
(β + E)n1
n1 + n2

, A1 −A3 =
(β − E)n2
n1 + n2

,

B1 −B3 =
(β + E)n2
n1 + n2

, B2 −B3 =
(E − β)n1
n1 + n2

.

The reader can check from these facts that the interval I1
⋂
I2
⋂
I3 (the case s′ = 0)

equals

J1 :=

[
−E − β n2

n1 + n2
, E − β n2

n1 + n2

]
if β ≤ E

and

J2 :=

[
−E(

n2
n1 + n2

+ 1), E(
n1

n1 + n2
+ 1)− β

]
if β ≥ E.

Similarly, one can show that the interval I1
⋂
I ′2
⋂
I ′3 (the case s′ = −1) equals

J ′2 :=

[
−E(

n1
n1 + n2

+ 1) + 1− β,E(
n2

n1 + n2
+ 1)

]
if β ≤ 1− E

and

J ′1 :=

[
−E + (1− β)

n2
n1 + n2

, E + (1− β)
n2

n1 + n2

]
if β ≥ 1− E.

For β ≤ E, we want to show that for all y we can choose an integer t such that
∆t = t/n3 − y ∈ J1. As this interval has width 2E ≥ 1/3 ≥ 1/n3, this can always
be done. A similar argument applies with J ′1 if β ≥ 1− E.

For E ≤ β ≤ 1−E, it is enough to show that we can choose ∆t in J2 or J ′2. To
do this we will prove that sum of the lengths of those two intervals is at least 1/n3



30 KATHRYN E. HARE AND L. THOMAS RAMSEY

and that the left endpoint of one is congruent ( mod 1/n3) to the right endpoint of
the other. These two properties are clearly enough to ensure there is a choice of
∆t ∈ J2 ∪ J ′2.

The combined widths of these two intervals is

2E

(
2n2 + n1
n1 + n2

)
+ 2E

(
2n1 + n2
n1 + n2

)
− 1 = 6E − 1

and this certainly exceeds 1/n3 for the specified values of E.
It is in checking that the left endpoint of one interval is congruent to the right

endpoint of the other that the dependence of E on the congruence of n1 + 2n2 is
relevant. We want to verify that either

2E

(
1 +

n2
n3

)
∈ Z
n3

or

2E

(
1 +

n1
n3

)
− 1 ∈ Z

n3
.

Indeed, the first condition holds if n1 + 2n2 is either congruent to 0 or 1 mod 3.
Using the fact that 2n1 + n2 ≡ −(n1 + 2n2) modn3, one can see that the second
condition is satisfied when n1 + 2n2 ≡ 2 mod 3.

This completes the argument that E is an upper bound on the Kronecker con-
stant.

Lower bound: Now suppose some Eε < E can play the role of E in (1, 2)′, (1, 3)′

and (2, 3)′ for all x, y. Since E ≤ 1/4, condition (2, 3)′ implies that

|∆t| ≤ Eε
(
n2 + n3
n3

)
< 1/2

Let β = 1/2. Together with (1, 3)′ and (2, 3)′, this implies that s′ can only take
on the values 0 or −1. With β = 1/2, ∆t must be contained in the interior of
the disjoint, symmetric intervals, J2 and J ′2. The sum of the lengths of these two
intervals is clearly less than 2/n3, so each interval, J2, J

′
2, has length less than 1/n3.

If n1 + 2n2 ≡ 0 mod 3, say n1 + 2n2 = 3L, then the left-hand endpoint of J2 is

−
(

1

6
+

1

2(n1 + 2n2)

)(
2n2 + n1
n1 + n2

)
= −L+ 1

2n3
,

so the interior of J2 is contained in(
−(L+ 1)

2n3
,
−L+ 1

2n3

)
.

J ′2 is similar. If L is odd, take y = 0, x = 1/2. If L is even, take y = 1/(2n3),
x = 1/2−y. With these choices for y, there is no integer t such that ∆t = t/n3−y ∈
int (J2 ∪ J ′2) , as is necessary for all three of (1, 2)′, (1, 3)′ and (2, 3)′ to hold with
Eε in the place of E. If n1 + 2n2 ≡ 1 mod 3 the argument is similar.

Lastly, if n1 + 2n2 ≡ 2 mod 3, say n1 + 2n2 = 3L + 2, then since 2n1 + n2 =
3n3 − (n1 + 2n2), a calculation similar to the one above shows the right-hand
endpoint of J2 is −L/(2n3). Again, taking y = 0 and x = 1/2 if L is even, or
y = 1/(2n3) and x = 1/2 − y if L is odd, the rest of the argument for this case
proceeds like that for the case of n1 + 2n2 mod 1 being 0.

This completes the proof that E is the Kronecker constant. �
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Using similar arguments we have been able to compute the exact Kronecker
constants for arithmetic progressions, as well. This is a special case of the following
theorem on generalized arithmetic progressions whose proof is omitted.

Theorem 7. Suppose 1 ≤ n1 < n2 < n3 and gcd(n1, n2, n3) = 1. Assume that
there is a positive integer r such that rn2 = (r − 1)n3 + n1 and suppose that n2 ≥
2r(r−1). Assume n2+n3 ≡ j mod 2r, with j ∈ {0, 1, ..., 2r−1}. Then α{n1, n2, n3}
equals

(6)
1

4r
+

1

2(n2 + n3)
− j

4r(n2 + n3)
if j = 0, 1;

1

4r
+

j(r − 1)

4r(n1 + n2)
if (j = 3 and 2n1 ≥ n2) or j = 2 ;

and
1

4r
+

1

n2 + n3
− j

4r(n2 + n3)
if (j = 3 and 2n1 ≤ n2) or j ≥ 4.

In particular,
1

4r
≤ α{n1, n2, n3} ≤

1

4r
+

1

n2 + n3
.

Corollary 9. Suppose 1 ≤ n1 < n2 < n3 is an arithmetic progression with n2 ≥ 4
and gcd(n1, n2, n3) = 1. If n2 + n3 ≡ j mod 4 and nj+1 − nj = d, the angular
Kronecker constant, α{n1, n2, n3} is given by the formula

1
8 + 1

2(2n1+3d) −
j

8(2n1+3d) if j = 0, 1,
1
8 + j

8(2n1+d)
if (j = 3 and 2n1 ≥ n2) or j = 2 ,

1
8 + 1

2n1+3d −
3

8(2n1+3d) if j = 3 and 2n1 ≤ n2.

Proof. Arithmetic progressions with no common divisor and n2 ≥ 4 are the special
case of the theorem with r = 2. �

Remark 10. Note that j ≡ −dmod 4 when n3 is even and j ≡ 2 − dmod 4 when
n3 is odd. In particular, when the step size d = 1, we have j = 1 or 3 and the
assumption n2 ≥ 4 implies 2n1 > n2. Consequently, the conclusion of Corollary 9
yields:

α{n1, n1 + 1, n1 + 2} =
dn1/2e+ 1

(8 dn1/2e+ 2)
whenever n1 ≥ 3.

This improves the observation in [Graham and Hare 2006a, Prop. 2.6] that κ{n1, n1+
1, n1 + 2} ≥ |1− exp iπ/4| .

Of course, if {n1, n2, n3} is an arithmetic progression with common divisor q,
then the angular Kronecker constant of {n1, n2, n3} is the same as the angular
Kronecker constant of the arithmetic progression {n1/q, n2/q, n3/q}.

Remark 11. The requirement in the corollary that n2 ≥ 4 is a sufficient, but
not necessary condition. There are three arithmetic progressions (with no common
divisor) which do not satisfy this condition: {1, 2, 3}, {2, 3, 4} and {1, 3, 5}. For
the latter two the Kronecker constants are 1/5 and 3/16 (determined by computer
algorithm) respectively, agreeing with the formula. However, we have already seen
that α{1, 2, 3} = 1/4, larger than the value 2/9 given by the formula above.
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Remark 12. Another interesting example is {5, 11, 13}. This is a generalized arith-
metic progression with r = 4. It fails to satisfy the hypothesis in the theorem that
n2 ≥ 2r(r−1). Numerical work shows that the Kronecker constant is 59/526, which
is greater than the formula value, 1/12.

The sets {1, r, r + 1} are also generalized arithmetic progressions since r · r =
(r − 1)(r + 1) + 1 and, of course, the condition n2 ≥ 2r(r − 1) fails to hold. As
n2 + n3 ≡ 1 mod 2r the theorem formula simplifies to α = 1/(2r + 1) and this is
always strictly smaller than the correct value given for α{1, r, r+ 1} in Theorem 6.

We will say a set of non-zero integers, {nj}, is k-independent if whenever
∑
εjnj =

0 with εj ∈ {0,±1, ...,±k} then εj = 0 for all j. If a set is k-independent, but
not k + 1-independent, we will call it sharp k-independent. A 2-independent set is
sometimes called dissociate and is an example of a Sidon set [Lopez and Ross 1975].
Sum sets are (typically) sharp 0-independent sets; arithmetic progressions are either
sharp 0 or 1-independent. Actually, the sharp 0-independent sets of size three are
precisely those of the form {−a, a, b}, which have Kronecker constant at least 1/4,
and the sets {±n1,±n2,±n3} with n1 + n2 = n3. Thus if we let βk = inf{α(S) : S
is sharp k-independent, |S| = 3}, then the sum set theorem implies β0 = 1/6.

Our numerical work suggests that the Kronecker constant of a set depends on
the arithmetic relations it satisfies. Indeed, it is an easy consequence of the lower
bound for sum sets that βk is bounded away from zero.

Proposition 10. Suppose S = {n1, n2, n3} is a sharp (k − 1)-independent set.
Then α(S) ≥ 1/(6k).

Proof. As α{−a, a, b} ≥ 1/4, and all the sets {±n1,±n2,±n3} have the same inde-
pendence properties, we can assume 0 < n1 < n2 < n3.

Suppose k1n1 + k2n2 = k3n3 with |kj | ≤ k (and some |kj | = k.) If some kj = 0
then, without loss of generality, kn1 = jn2 with j ≤ k. Put m = gcd(n1, n2)
and suppose ni = mpi for i = 1, 2. Since kmp1 = jmp2 and gcd(p1, p2) = 1, we
must have p1 dividing j and p2 dividing k. Thus 1 ≤ p1, p2 ≤ k. As the Kronecker
constant of the two element set {n1, n2} is a lower bound on α{n1, n2, n3} it follows
that α(S) ≥ 1/(2p1 + 2p2) ≥ 1/(4k).

Similarly, if some |kini| = |kjnj |, we have α(S) ≥ 1/(4k).
Hence we can assume all kj 6= 0 and all |kini| are distinct. Moreover, by inter-

changing the ni, if necessary, we can assume all kini > 0. Thus by the sum set
theorem, α{k1n1, k2n2, k3n3} ≥ 1/6.

Since |kj | · |njx− tj/kj | = |kjnjx− tj |, α{k1n1, k2n2, k3n3} ≤ kα{n3, n1, n2}
and therefore α(S) ≥ 1/(6k). �

6.4. Remarks on upper bounds for any three element set. There is an easy
upper bound (better than 1/2) for any finite set that does not contain 0.

Proposition 11. If S is a set of d distinct, non-zero integers then α(S) ≤ 1/2 −
1/(2d).

Proof. Suppose f : S → R and fix ε < 1/(2d). For each j let

Aj = {x ∈ [−1/2, 1/2] : |Arg (exp 2πi(f(nj)− njx))| ≤ 1/2− ε}.

If for each choice of angles f , the set
⋂d
j=1Aj is non-empty then S is clearly at

least 1/2− ε-angular Kronecker.
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But Aj is the union of nj disjoint intervals whose lengths sum to 1−2ε. Thus the

measure of
⋃d
j=1A

c
j is at most 2dε < 1 and hence

⋂d
j=1Aj cannot be empty. �

Remark 13. When d = 2, this gives α(S) ≤ 1/4 and this trivial upper bound is
sharp if and only if S = {−n, n}. For d = 3, the value is 1/3 and Cor. 5 shows
that this is sharp if S = {−n, n, 2n}. Using our methods we can also prove that that
the angular Kronecker constant is strictly less than 1/3 for all other three element
sets (that exclude 0). This is very technical, whose proof is not included here but
has been archived at [Hare and Ramsey 2011].

We conjecture that α{n1, n2, n3} ≤ 1/4 for all three element sets other than
{−n, n, 2n}. We have already seen this is true in the rectangular lattice and the sum
set case. As well, we have run our computer algorithm on all three element sets of
positive integers with n3 ≤ 50 and the greatest Kronecker constant is 1/4, occurring
only on the integer multiples of {1, 2, 3}. The archive [Hare and Ramsey 2011] has
a table of these Kronecker constants.

7. Computing Kronecker Constants

For a set of integers T of size d, computing the angular Kronecker constant α(T )
is equivalent to performing nested, but opposite optimizations over some infinite
sets:

α(T ) = max{αT (f) : f ∈ Rd−1 × {0} }
where

α(f) = αT (f) = min{ ‖f − k‖L : k ∈ K}.
Because there is a finite set V ⊂ Rd for which

‖u‖L = max{ |v · u| : v ∈ V }
the innermost maximization is computable. Moreover, V depends only on T simply
and explicitly, and has size is d(d − 1)/2. By replacing V with V ∪ (−V), the
innermost maximization becomes a maximum of linear functions (removing the
absolute values in the expression):

‖u‖L = max{ v · u : v ∈ V ∪ (−V) }
Second, dependent only on T simply and explicitly, we select a compact, convex

set D′, determined by a finite set of linear inequalities H, such that

α(T ) = max{αT (f) : f ∈ D′ }
Third, given D′, we select a finite S ⊂ K such that, for all f ∈ D′,

min{ ‖f − k‖L : k ∈ S } = min{ ‖f − k‖L : k ∈ K} = α(f)

We then solve the many linear programming problems implied by our choices.

• For every (k, v) ∈ S× [V ∪ (−V)], there are linear constraints N (k, v) that
describe a convex set of f ∈ Rd−1 for which ‖f − k‖ = (f − k) · v.
• For every τ : S → [V ∪ (−V)], let

M(τ) = H ∪

(⋃
k∈S

N (k, τ(k))

)
• For each k ∈ S, there are linear constraints Jk that express the fact that
‖f − k‖L ≤ ‖f − k′‖L for f subject to M(τ). Maximize ‖f − k‖L =
(f − k) · τ(k) subject to M(τ) ∪ Jk.
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k 0 1 2 3 4 5 6

Number of Sets 386 2224 3704 3774 4482 1698 380

βk
33

194

5

48

5

71

11

194

5

99

291

6038

274

5969

γk
1

4

3

14

1

6

5

38

3

28

7

78

4

57

Table 1. Kronecker Constants and Sharp k-Independence

n 3 4 5 6 7 8 9

α{1, 2, ..., n} 1

4

3

10

16

47

49

134

41

107

2

5

12

29

Previously Best
Known Lower Bound

.045 .139 .189 .221 .243 .260 0.272

Table 2. Kronecker Constants for {1, . . . , n}

• We exhaust all choices of τ and subsequent choices of Jk. The value of
α(T ) is the largest maximum occurring in any of the sub-problems.

7.1. Numerical Results. Angular Kronecker constants have been archived at
[Hare and Ramsey 2011] for all triples {a, b, c} with 0 < a < b < c ≤ 50 and
gcd(a, b, c) = 1. There are 16648 of these triples.

A complete listing of the angular Kronecker constants for relatively prime four-
tuples of integers from {1, . . . , 20} can also be found at [Hare and Ramsey 2011].

In Table 1 we summarize our results relating Kronecker constants to the sharp
k-independence properties. In that table “Number of Sets” is the number of sets
examined that were sharp k-independent for k = 0, ..., 6; βk = inf{α(T ) : T is
sharp k-independent}; γk = sup{α(T ) : T is sharp k-independent}. Based on this
numerical evidence, we speculate that sup{α(T ) : T sharp k-independent} tends to
0 as k →∞.

As well, we ran our algorithm on home and office desktop computers for the sets
{1, 2, ..., n}. For 1 ≤ n ≤ 9 the values are given in Table 2. Of course, the Kronecker
constants must tend to 1/2 as n→∞. For comparison, the table includes previously
known best lower bounds, which are derived from [Graham and Hare 2006a, Cor.
4.6].
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