\(\phi \) is **piecewise continuous** on \([a, b]\) if and only if

- \(a \leq b \) in \(\mathbb{R} \) and \(\phi : [a, b] \rightarrow \mathbb{C} \)
- There is a finite set \(S \subset [a, b] \) such that, for all \(t \in [a, b] \setminus S \), \(\phi \) is continuous at \(t \):

\[
\phi(t) = \lim_{u \to t} \phi(u) \quad \forall u \in [a, b]
\]

- For all \(t \in [a, b) \), \(\phi \) has a finite right limit at \(t \).
- For all \(t \in (a, b] \), \(\phi \) has a finite left limit at \(t \).
Lemma: \(\phi \) is piecewise continuous on \([a, b]\) if and only if \(\Re(\phi) \) and \(\Im(\phi) \) are piecewise continuous on \([a, b]\).

Theorem from Advanced Calculus: \(f : [a, b] \rightarrow \mathbb{R} \) is Riemann integrable if and only if \(f \) is bounded and the set of discontinuities of \(f \) has outer measure 0.

Special Problem (Chi): Let \(f \) be real-valued and piecewise continuous on \([a, b]\). Then

1. \(f \) is bounded
2. \(f \) is Riemann integrable
Special Problem (Kodgis): Assume that
- ϕ is piecewise continuous on $[a, b]$.
- $g : E \to \mathbb{C}$ with $E \subset \mathbb{C}$
- g is continuous on an open set $U \subset E$
- There is a closed set F such that range$(\phi) \subset F \subset U$.

Then $g \circ \phi$ is piecewise continuous on $[a, b]$.

Example: Note that the absolute value function is continuous on all of \mathbb{C}. Consequently, if ϕ is piecewise continuous, so is $|\phi|$. This is used implicitly in Section 3 of Chapter 6 on page 66.
Special Problem (Chevalier): Suppose that ϕ is piecewise continuous on $[a, b]$. Suppose that $\tau : [c, d] \to [a, b]$ is one-to-one and continuous. Then $\phi \circ \tau$ is piecewise continuous on $[c, d]$.

Hint: You can prove that τ is strictly increasing or strictly decreasing. That leads to two cases.
Def’n: If ϕ is piecewise continuous on $[a, b]$ we define $\int_a^b \phi(t) \, dt$ by

$$\int_a^b \phi(t) \, dt := \int_a^b \Re(\phi(t)) \, dt + i \int_a^b \Im(\phi(t)) \, dt$$

Special Problem (Reckwerdt): Let ϕ and λ be piecewise continuous on $[a, b]$. Then $\phi + \lambda$ is piecewise continuous on $[a, b]$, and

$$\int_a^b (\phi + \lambda)(t) \, dt = \int_a^b \phi(t) \, dt + \int_a^b \lambda(t) \, dt$$
Special Problem (Feliciano): If ϕ is piecewise continuous on $[a, b]$ and c is a complex number, then $c\phi$ is piecewise continuous on $[a, b]$ and

$$\int_a^b (c\phi)(t) \, dt = c \int_a^b \phi(t) \, dt$$

Theorem, page 65: If ϕ_1 and ϕ_2 are piecewise continuous on $[a, b]$, and c_1 and c_2 are complex numbers, then $c_1\phi_1 + c_2\phi_2$ is piecewise continuous on $[a, b]$ and

$$\int_a^b [c_1\phi_1 + c_2\phi_2](t) \, dt = c_1 \int_a^b \phi_1(t) \, dt + c_2 \int_a^b \phi_2(t) \, dt$$
Special Problem (Rader) Suppose that ϕ is piecewise continuous on $[a, b]$. Suppose that $[c, d] \subset [a, b]$ with $c < d$. Then

$$\int_{c}^{d} \phi(t) \, dt = \lim_{\delta \downarrow 0} \int_{c+\delta}^{d-\delta} \phi(t) \, dt$$

Proof Hints: You may use for free that, when $0 < \delta < (d - c)/2$,

$$\int_{c}^{c+\delta} \phi(t) \, dt + \int_{c+\delta}^{d-\delta} \phi(t) \, dt + \int_{d-\delta}^{d} \phi(t) \, dt = \int_{c}^{d} \phi(t) \, dt$$

Somehow use the bounded-ness of ϕ to finish the argument.
The previous problem is valid more generally. It remains valid if

- $\Re(\phi)$ and $\Im(\phi)$ are Riemann integrable on $[a, b]$
- $\Re(\phi)$ and $\Im(\phi)$ are Lebesgue measurable on $[a, b]$ with

\[
\int_a^b |\Re(\phi(t))| \, dt < \infty
\]

and

\[
\int_a^b |\Im(\phi(t))| \, dt < \infty
\]
Special Problem (Hedley): Let ϕ and ψ be piecewise continuous on $[a, b]$. Suppose there is a finite set W such that, for all $t \in [a, b] \setminus W$,

$$\phi(t) = \psi(t)$$

Then

$$\int_a^b \phi(t) \, dt = \int_a^b \psi(t) \, dt$$
Lemma: Let ϕ and ψ be piecewise continuous on $[a, b]$. Then $\phi \cdot \psi$ is piecewise continuous on $[a, b]$.

Lemma: Let $\phi : [a, b] \to \mathbb{C}$. Let $a < c < b$. Set λ equal to the restriction of ϕ to $[a, c]$ and ψ equal to the restriction of ϕ to $[c, b]$. Then

- ϕ is piecewise continuous on $[a, b]$ if and only if λ is piecewise continuous on $[a, c]$ and ψ is piecewise continuous on $[c, b]$.
- If ϕ is piecewise continuous on $[a, b]$, then

$$\int_a^b \phi(t) \, dt = \int_a^c \lambda(t) \, dt + \int_c^b \psi(t) \, dt$$
Differentiating $\phi : [a, b] \to \mathbb{C}$

Def’n: Let $a < b$ and $\phi : [a, b] \to \mathbb{C}$. We say that ϕ is differentiable at t_0 if and only if $t_0 \in [a, b]$ and there is a complex number L such that

$$L = \lim_{\substack{u \to t_0 \\ u \in [a, b]}} \frac{\phi(u) - \phi(t_0)}{u - t_0}$$

L is necessarily unique, and we call it $\phi'(t_0)$.

Special Problem (Billington): Let $a < b$ and $\phi : [a, b] \to \mathbb{C}$. Then

1. ϕ is differentiable at t_0 if and only if $\Re(\phi)$ and $\Im(\phi)$ are differentiable at t_0.
2. If ϕ is differentiable at t_0 then

$$\phi'(t_0) = [\Re(\phi)]'(t_0) + i \cdot [\Im(\phi)]'(t_0)$$

Note that this problem says that, when $\phi'(t)$ exists, $[\Re(\phi)]'(t) = \Re[\phi'(t)]$ and $[\Im(\phi)]'(t) = \Im[\phi'(t)]$.

Ramsey Complex Integration
Def’n: Let $a < b$ and $\phi : [a, b] \rightarrow \mathbb{C}$. ϕ is piecewise C^1 if and only if

- ϕ is continuous on $[a, b]$
- There is a finite set S such that, for all $t \in [a, b] \setminus S$ ϕ is differentiable at t.
- For all $t \in [a, b]$, if ϕ is differentiable at t then ϕ' is continuous at t.
- For all $t \in [a, b)$, ϕ' has a finite right limit at t.
- For all $t \in (a, b]$, ϕ' has a finite left limit at t.

Special Problem (Holmes): Let $a < b$, $\phi : [a, b] \to \mathbb{C}$, and ϕ piecewise C^1. Suppose that $g : E \to \mathbb{C}$, with $E \subset \mathbb{C}$. Let $F \subset G \subset E$ such that

- F is closed and G is open
- The range of ϕ is a subset of F
- g is holomorphic on G
- g is C^1 on G (meaning, if $g = u + iv$ with u and v real, $u_x(z)$, $u_y(z)$, $v_x(z)$ and $v_y(z)$ are continuous at every $z \in G$).

Then $g \circ \phi$ is piecewise C^1.
Special Problem (Thompson): Let $a < b$, $\phi : [a, b] \to \mathbb{C}$, and ϕ piecewise C^1. Let $\tau : [c, d] \to [a, b]$ be one-to-one with a continuous derivative (C^1). Then $\phi \circ \tau$ is piecewise C^1.

Hint: Prove that τ must be strictly decreasing or strictly increasing. That leads to two cases.
Lemma: Let \(a < b, \phi : [a, b] \rightarrow \mathbb{C} \). Then \(\phi \) is piecewise \(C^1 \) if and only if \(\Re(\phi) \) and \(\Im(\phi) \) are piecewise \(C^1 \).

Fundamental Theorem of Calculus: Let \(a < b, \phi : [a, b] \rightarrow \mathbb{C} \). Suppose that \(\phi \) is piecewise \(C^1 \). Then \(S \) is finite, where \(S \) is the set of \(t \in [a, b] \) such that \(\phi \) is not differentiable at \(t \). Let \(h : [a, b] \rightarrow \mathbb{C} \) satisfy

- \(h(t) = \phi'(t) \) for \(t \in [a, b] \setminus S \).
- \(h \) on \(S \) can be an arbitrary, independent assignment of complex numbers.

Then \(h \) is Riemann integrable and

\[
\int_{a}^{b} h(t) \, dt = \phi(b) - \phi(a)
\]
Claim 1: h is continuous at $t \in [a, b] \setminus S$.

Proof: Let $t \notin S$. Because S is finite, there is some $\delta_0 > 0$ such that

$$|u - t| < \delta_0 \implies u \notin S$$

Thus, if $|u - t| < \delta_0$ and $u \in [a, b]$, we have $h(u) = \phi'(u)$.

- Because $\phi'(t)$ exists (since $t \notin S$), ϕ' is continuous at t by hypothesis.
- Because ϕ' and h agree on $[a, b] \cap (t - \delta_0, t + \delta_0)$ we have h continuous at t.
Claim 2: For all $t \in [a, b)$, h has a finite right limit at t.

Proof: Let $t \in [a, b)$.

- If $t \notin S$, then h is continuous at t. Because $t \neq b$, this implies that the right limit of h at t is $h(t)$, which is finite.

- Suppose that $t \in S$. Because S is finite, there is some $\delta_0 > 0$ such that $(t - \delta_0, t + \delta_0) \cap S = \{t\}$. Hence

 \[u \in (t, \min\{t + \delta_0, b\}) \quad \Rightarrow \quad h(u) = \phi'(u) \]

- Note that both $t + \delta_0$ and b are strictly bigger than t. Thus h and ϕ agree on an open interval of positive length with left end t.

- Because ϕ' has a finite right limit at t, so does h.
Claim 3: For all $t \in (a, b]$, h has a finite left limit at t.

Proof: Let $t \in [a, b)$.

- If $t \notin S$, then h is continuous at t. Because $t \neq a$, this implies that the left limit of h at t is $h(t)$, which is finite.
- Suppose that $t \in S$. Because S is finite, there is some $\delta_0 > 0$ such that $(t - \delta_0, t + \delta_0) \cap S = \{t\}$. Hence
 \begin{equation*}
 u \in (\min\{a, t - \delta_0\}, t) \implies h(u) = \phi'(u)
 \end{equation*}
 Note that both $t - \delta_0$ and a are strictly less than t. Thus h and ϕ agree on an open interval of positive length with right end t.
- Because ϕ' has a finite left limit at t, so does h.
By Claims 1, 2 and 3, h is piecewise continuous on $[a, b]$ and thus Riemann integrable.

Claim 4: Let $c < d$ in $[a, b]$ with $(c, d) \cap S = \emptyset$. Then

$$\int_{c}^{d} h(t) \, dt = \phi(d) - \phi(c)$$

Proof: Consider $\delta < (d - c)/2$. Then $J = [c + \delta, d - \delta] \subset (c, d)$.

- Hence no point of S is in J and thus $h(u) = \phi'(u)$ for $u \in J$.
- Note that ϕ' is continuous on J because it is continuous on the open interval (c, d) containing J.
- Because $\phi' = [\Re(\phi)]' + i[\Im(\phi)]'$, that makes both $[\Re(\phi)]'$ and $[\Im(\phi)]'$ continuous on J.
By the Fundamental Theorem of Calculus, applied to the real and imaginary parts of ϕ', we have

\[
\int_{c+\delta}^{d-\delta} h(t) \, dt = \int_{c+\delta}^{d-\delta} \phi'(t) \, dt
\]

\[
= \int_{c+\delta}^{d-\delta} \Re[\phi'(t)] \, dt + i \int_{c+\delta}^{d-\delta} \Im[\phi'(t)] \, dt
\]

\[
= \int_{c+\delta}^{d-\delta} \left(\Re(\phi)'(t) \right) \, dt + i \int_{c+\delta}^{d-\delta} \left(\Im(\phi)'(t) \right) \, dt
\]

\[
= \left\{ \left[\Re(\phi) \right](d - \delta) - \left[\Re(\phi) \right](c + \delta) \right\}
\]

\[
+ i \left\{ \left[\Im(\phi) \right](d - \delta) - \left[\Im(\phi) \right](c + \delta) \right\}
\]

\[
= \phi(d - \delta) - \phi(c + \delta)
\]
By Rader’s Special Problem,

\[\int_{c}^{d} h(t) \, dt = \lim_{\delta \downarrow 0} \int_{c+\delta}^{d-\delta} h(t) \, dt \]

Therefore

\[\int_{c}^{d} h(t) \, dt = \lim_{\delta \downarrow 0} \{ \phi(d - \delta) - \phi(c + \delta) \} \]

Because \(\phi \) is \(C^1 \), \(\phi \) is continuous. Therefore the left limit at \(d \) of \(\phi \) is \(\phi(d) \) and the right limit at \(c \) of \(\phi \) is \(\phi(c) \). Hence, since difference in \(\mathbb{C} \) preserves limits,

\[\int_{c}^{d} h(t) \, dt = \phi(d) - \phi(c) \]
Suppose $S \cap (a, b) = \emptyset$. Apply Claim 4 with $[c, d] = [a, b]$ to conclude that
\[
\int_a^b h(t) \, dt = \phi(b) - \phi(a)
\]

Suppose that $S \cap (a, b) \neq \emptyset$. Let $\{s_j\}_{j=1}^n$ enumerate $S \cap (a, b)$, with $s_j < s_{j+1}$ for $1 \leq j \leq n - 1$.

Let $s_0 = a$ and $s_{n+1} = b$.

For $0 \leq j \leq n$, $(s_j, s_{j+1}) \cap S = \emptyset$.

By Claim 4,
\[
\int_{s_j}^{s_{j+1}} h(t) \, dt = \phi(s_{j+1}) - \phi(s_j)
\]
Hence

\[\int_{a}^{b} h(t) \, dt = \sum_{j=0}^{n} \int_{s_j}^{s_{j+1}} h(t) \, dt \]

\[= \sum_{j=0}^{n} [\phi(s_{j+1}) - \phi(s_j)] \]

\[= \phi(s_{n+1}) - \phi(s_0) \]

\[= \phi(b) - \phi(a) \]
Theorem: If ϕ is piecewise continuous on $[a, b]$, then

$$
\left| \int_a^b \phi(t) \, dt \right| \leq \int_a^b |\phi(t)| \, dt
$$

Note: By one of the special problems, $|\phi|$ is piecewise continuous on $[a, b]$ and hence Riemann integrable.
Arc Length (Total Distance Traveled)

Lemma: Let $a < b$, $\gamma : [a, b] \rightarrow \mathbb{C}$, and γ be piecewise C^1. Suppose that $h_1 : [a, b] \rightarrow \mathbb{C}$ and $h_2 : [a, b] \rightarrow \mathbb{C}$ such that, for $t \in [a, b]$ with γ differentiable at t,

$$h_1(t) = h_2(t) = \gamma'(t)$$

Then

- $|h_1|$ and $|h_2|$ are piecewise continuous on $[a, b]$
- $|h_1|$ and $|h_2|$ are Riemann integrable and

$$\int_a^b |h_1(t)| \, dt = \int_a^b |h_2(t)| \, dt$$

Proof:

- As in the just-completed proof of a complex version of the FTC, both h_1 and h_2 are piecewise continuous.
- By a special problem, $|h_1|$ and $|h_2|$ are piecewise continuous.
- By another special problem, both are Riemann integrable.
Let S be the set of $t \in [a, b]$ at which γ is not differentiable.

Claim 1: Suppose that $c < d$ with $[c, d] \subset [a, b]$ and $(c, d) \cap S = \emptyset$. Then

$$\int_{c}^{d} |h_1(t)| \, dt = \int_{c}^{d} |h_2(t)| \, dt$$

Proof: On (c, d), $h_j(t) = \gamma'(t) = h_2(t)$. Hence, for $0 < \delta < (d - c)/2$, for $j = 1$ and $j = 2$ we have

$$\int_{c+\delta}^{d-\delta} |h_j(t)| \, dt = \int_{c+\delta}^{d-\delta} |\gamma'(t)| \, dt$$

Then for $j = 1$ and $j = 2$ we have

$$\int_{c}^{d} |h_j(t)| \, dt = \lim_{\delta \downarrow 0} \int_{c+\delta}^{d-\delta} |\gamma'(t)| \, dt$$
Suppose that $S \cap (a, b) = \emptyset$. Let $[c, d] = [a, b]$ in Claim 1 to conclude that

$$\int_a^b |h_1(t)| \, dt = \int_a^b |h_2(t)| \, dt$$

Now suppose that $S \cap (a, b) \neq \emptyset$.

- Enumerate $S \cap (a, b)$ as $\{s_j\}_{j=1}^n$.
- Let $a = s_0$ and $b = s_{n+1}$.
- For $0 \leq j \leq n$, $(s_j, s_{j+1}) \cap S = \emptyset$. By Claim 1,

$$\int_{s_j}^{s_{j+1}} |h_1(t)| \, dt = \int_{s_j}^{s_{j+1}} |h_2(t)| \, dt$$
Finally,

\[\int_a^b |h_1(t)| \, dt = \sum_{j=0}^n \int_{s_j}^{s_{j+1}} |h_1(t)| \, dt = \sum_{j=0}^n \int_{s_j}^{s_{j+1}} |h_2(t)| \, dt = \int_a^b |h_2(t)| \, dt \]
The Definition of Arc Length (as Total Distance Traveled)

Def’n: Let $a < b$ and $\gamma : [a, b] \to \mathbb{C}$ be piecewise C^1. Let $h : [a, b] \to \mathbb{C}$ such that, for all $t \in [a, b]$, γ is differentiable at t, then $h(t) = \gamma'(t)$. Then the length of γ is

$$L(\gamma) = \int_a^b |h(t)| \, dt$$

In the book, Sarason writes simply $\int_a^b |\gamma'(t)| \, dt$.