BOHR CLUSTER POINTS OF SIDON SETS

L. THOMAS RAMSEY

University of Hawaii

July 19, 1994

ABSTRACT. If there is a Sidon subset of the integers Z which has a member of Z as a cluster point in the Bohr compactification of Z, then there is a Sidon subset of Z which is dense in the Bohr compactification. A weaker result holds for quasi-independent and dissociate subsets of Z.

It is a long standing open problem whether Sidon subsets of Z can be dense in the Bohr compactification of Z ([LR]). Yitzhak Katznelson came closest to resolving the issue with a random process in which almost all sets were Sidon and and almost all sets failed to be dense in the Bohr compactification [K]. This note, which does not resolve this open problem, supplies additional evidence that the problem is delicate: it is proved here that if one has a Sidon set which clusters at even one member of Z, one can construct from it another Sidon set which is dense in the Bohr compactification of Z. A weaker result holds for quasi-independent and dissociate subsets of Z.

Cluster Points. By the definition of the Bohr topology, a subset $E \subset Z$ clusters at q if and only if, for all $\epsilon \in \mathbb{R}^+$, for all $n \in \mathbb{Z}^+$, and for all $(t_1, \ldots, t_n) \in \mathbb{T}^n$, there is some $m \in E$ such that

(1)
$$\sup_{1 \le i \le n} | < m, t_i > - < q, t_i > | < \epsilon.$$

Here T is the dual group of Z and $\langle m, t \rangle$ denotes the result of the character m acting on t. Thus, if T is represented as $[-\pi, \pi)$ with addition mod 2π ,

$$\langle m, t \rangle = e^{imt}$$

If, for all $(t_1, \ldots, t_n) \in T^n$, there is at least one $m \in E$ such that inequality (1) holds, then E is said to **approximate** q within ϵ on T^n .

Key words and phrases. Sidon, Bohr compactification, quasi-independent, dissociate.

¹⁹⁹¹ Mathematics Subject Classification. 43A56.

I THANK KEN ROSS AND KATHRYN HARE FOR THEIR HELPFUL CORRECTIONS OF AN EARLY VERSION OF THIS MANUSCRIPT.

L. THOMAS RAMSEY

Overview. Let E be a Sidon subset of the integers Z which clusters at the integer $q \in Z$ in the topology of the Bohr compactification. The dense Sidon set will have the form

$$S = \bigcup_{j=1}^{\infty} S_j$$
, with $S_j = x_j + k_j (E_j - q)$,

where $E_j \subset E$ approximates q within $1/m_j$ on T^{n_j} under an exhaustive enumeration (x_j, n_j, m_j) of $Z \times Z^+ \times Z^+$. Lemma 1 below asserts that finite $E_j \subset E$ can always be found. Lemma 3 below says that S is dense, regardless of the dilation factors k_j . The final step of the argument is to choose k_j 's so that S is Sidon. Lemma 4 does this in part for N-independent sets (N-independent generalizes quasi-independent and dissociate; it is defined below). It is then a short step to Sidon sets, using a criterion of Gilles Pisier's.

Lemma 1 (Compactness). Let $E \subset Z$ cluster at $q \in Z$ in the topology of the Bohr compactification of Z. For every $\epsilon \in R^+$ and $n \in Z^+$, there is a finite subset $E' \subset E$ which approximates q within ϵ on T^n .

Proof. Let $\epsilon \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$ be given. For each $(t_1, \ldots, t_n) \in \mathbb{T}^n$ there is some $m \in E$ such that (1) holds with $\epsilon/2$ in the role of ϵ . By the continuity of the characters m and q on T (both are in \mathbb{Z}), there is an open neighborhood U of $(t_1, \ldots, t_n) \in \mathbb{T}^n$ for which (1) is valid when $(s_1, \ldots, s_n) \in U$ are substituted for (t_1, \ldots, t_n) . By the compactness of \mathbb{T}^n , a finite number of such U's cover \mathbb{T}^n . The set of m's corresponding to the U's can be taken for the set E'. \Box

For integers k, y, and z, and for $S \subset Z$, let z + k(S - y) denote $\{z + k(x - y) \mid x \in S\}$.

Lemma 2 (Dilation). Let k, y, and z be integers. If S approximates y within ϵ on T^n , then z + k(S - y) approximates z within ϵ on T^n .

Proof. Let $(t_1, \ldots, t_n) \in T^n$. There is some $m \in S$ such that

$$\sup_{1 \le i \le n} | < m, kt_i > - < y, kt_i > | < \epsilon.$$

Because m and k are integers, $\langle m, kt \rangle = \langle mk, t \rangle$. Therefore,

$$| < z + k(m - y), t_i > - < z, t_i > | = | < z - ky, t_i > (< km, t_i > - < ky, t_i >)|$$

= | < m, kt_i > - < y, kt_i > |
< \epsilon,

for $1 \leq i \leq n$. \Box

Lemma 3 (Denseness). Let (x_j, n_j, m_j) , $j \in Z^+$, exhaustively enumerate $\{(x, n, m) \mid x \in Z, n \in Z^+, m \in Z^+\}.$

Suppose there is a sequence $\{E_j\}_{j=1}^{\infty}$ of subsets of Z such that E_j approximates p_j within $1/m_j$ on T^{n_j} . Then for any sequence of integers k_j , $S = \bigcup_{j=1}^{\infty} (x_j + k_j(E_j - p_j))$ is dense in the Bohr compactification of Z.

Proof. Since Z is dense in its Bohr compactification, it suffices to show that the closure of S includes every $x \in Z$. Let $x \in Z$. By the definition of the Bohr topology, we must show that S approximates x within ϵ on T^n for any $\epsilon \in R^+$ and any $n \in Z^+$. Choose some $m \in Z^+$ such that $1/m < \epsilon$. The triple (x, n, m) is (x_j, n_j, m_j) for some j. Since E_j approximates p_j with $1/m_j$ on T^{n_j} , the Dilation Lemma implies that $x_j + k_j(E_j - p_j)$ approximates x_j within $1/m_j$ on T^{n_j} and hence x within ϵ on T^n . \Box

Definitions. Let N be a positive integer and G be an additive group. An N-relation is a linear combination

$$\sum_{x \in G} \alpha_x x = 0,$$

where α_x an integer in [-N, N] for all x and with $\alpha_x \neq 0$ for at most finitely many x. A subset A of G is said to be N-independent if and only if the only N-relation among its elements is the trivial relation which has all coefficients equal to 0. The N-relation hull of A, $[A]_N$, is

$$\{\sum_{x\in A} \alpha_x x \mid \alpha_x \in \{-N, -N+1, \dots, N\}\}.$$

The hull of the empty set is understood to be $\{0\}$.¹

Quasi-independent sets are the 1-independent sets, while dissociate sets are the 2-independent sets ([P], [LR]).

Lemma 4. Let $\{W_j\}_{j=1}^{\infty}$ be a sequence of finite N-independent subsets of Z. Let x_j be arbitrary integers, $1 \leq j < \infty$. Set D_j equal to the maximum absolute value of the elements of

$$[\cup_{i < j} (x_i + k_i W_i)]_N,$$

and let M_j denote the size of W_j . If $k_j > D_j + NM_j |x_j|$ for all $j \ge 1$, then

$$\cup_{j=1}^{\infty} (x_j + k_j W_j)$$

is N-independent. Moreover, the sets $x_j + k_j W_j$ are disjoint for distinct values of j.

Proof. Let $W'_i = x_i + k_i W_i$, and set

$$V_j = \bigcup_{i < j} W'_i.$$

Since $V_1 = \emptyset$, it is certainly N-independent. Assume that V_j is N-independent for some $j \ge 1$, and that W'_{i_1} and W'_{i_2} are disjoint for $i_1 \ne i_2$ with $i_1 < j$ and $i_2 < j$. Consider V_{j+1} . It will be proved first that W'_j is disjoint from V_j . Let $x \in W'_j$ and $y \in V_j$. Then $x = x_j + k_j x'$ for some $x' \in W_j$. Since W_j is N-independent, $0 \notin W_j$ and thus $x' \ne 0$. Therefore, since $V_j \subset [V_j]_N$,

$$|x| = |x_j + k_j x'| \ge k_j - |x_j| > D_j + NM_j |x_j| - |x_j| \ge D_j \ge |y|.$$

Next, consider an N-relation on V_{j+1} with coefficients α_x for $x \in V_{j+1}$. Since W'_j is disjoint from V_j , one may write

$$\sum_{x \in W'_j} \alpha_x x = -\sum_{x \in V_j} \alpha_x x = \tau,$$

¹This definition is distinct from that of J. Bourgain, who defined N-independence to be weaker versions of quasi-independence.

for some $\tau \in [V_j]_N$. Each $x \in W'_j$ has the form $x_j + k_j x'$ for some x' in W_j (x' is unique since $k_j > 0$). Thus,

(2)
$$k_j \sum_{x \in W'_j} \alpha_x x' = \tau - x_j \sum_{x \in W'_j} \alpha_x.$$

Suppose that $\sum_{x \in W'_j} \alpha_x x' \neq 0$. Then, by equation (2),

$$k_{j} \leq \left| k_{j} \sum_{x \in W_{j}'} \alpha_{x} x' \right|$$
$$= \left| \tau - x_{j} \sum_{x \in W_{j}'} \alpha_{x} \right|$$
$$\leq |\tau| + |x_{j}| \cdot \left| \sum_{x \in W_{j}'} \alpha_{x} \right|$$
$$\leq D_{j} + |x_{j}| NM_{j},$$

which is contrary to $k_j > D_j + NM_j |x_j|$. Thus $\sum_{x \in W'_j} \alpha_x x' = 0$. This is an *N*-relation among the elements of W_j (since x' is unique for each x, and vice versa). Since W_j is *N*-independent, $\alpha_x = 0$ for $x \in W'_j$. It follows that equation (2) reduces to $\tau = 0$, which is an *N*-relation supported on V_j . Since V_j is *N*-independent, $\alpha_x = 0$ for for all $x \in V_j$ and hence for all $x \in V_{j+1} = V_j \cup W'_j$. Thus only the trivial relation occurs among the *N*-relations on V_{j+1} .

Finally, since $V_j \subset V_{j+1}$ for all $j \in Z^+$ and

$$S = \bigcup_{i=1}^{\infty} W'_i = \bigcup_{j=1}^{\infty} V_j,$$

the N-independence of the V_j 's makes S be N-independent. [Any N-relation on S has at most finitely many non-zero coefficients (by definition); thus it must be supported on V_j for some j (since S is an increasing union of the V_j 's) and hence is trivial because V_j is N-independent.] \Box

Proposition 5. If there is a Sidon set E which clusters at some $n \in Z$ in the topology of the Bohr compactification of Z, then there is a Sidon set which is dense in the Bohr compactification of Z.

Proof. By Lemma 2, E' = E - n clusters at 0 in the Bohr topology; it is well known that E' is Sidon, in fact with the same Sidon constant as E ([LR]). By the definition of cluster point, we may assume $0 \notin E'$. As provided by Lemma 1, for any positive integers n and m there are finite subsets $E(n,m) \subset E'$ such that E(n,m)approximates 0 within 1/m on T^n . As in Lemma 3, with $p_j = 0$, $E_j = E(n_j, m_j)$, and k_j yet to be determined, let

$$S = \bigcup_{j=1}^{\infty} (x_j + k_j E_j).$$

Then S is dense in the Bohr compactification of Z.

It remains to be seen that S is Sidon, provided the k_j 's are chosen well. Let the k_j 's satisfy this criterion: $k_j > D_j + M_j |x_j|$ (as in Lemma 4), where M_j is the size of E_j (which is the same size as $x_j + k_j E_j$) and D_j is the maximum absolute value of the elements of

$$[\bigcup_{i < j} (x_i + k_i E_i)]_N.$$

This by itself guarantees that the sets $x_j + k_j E_j$ are disjoint for distinct values of j. To see this, consider $w \in x_j + k_j E_j$ and $\tau \in x_i + k_i E_i$ for i < j. Then $|\tau| \leq D_j$ while, because $0 \notin E'$ and hence $0 \notin E_j \subset E'$, there is some $x \neq 0$ such that

$$|w| = |x_j + k_j x| \ge k_j - |x_j| > D_j \ge |\tau|.$$

Gilles Pisier discovered the following arithmetic condition for Sidonicity ([P]). Let |H| denote the cardinality of H. A set Q is Sidon if and only if there is some $\lambda \in (0, 1)$ such that, for every finite subset H of Q, there is a subset F of H such that F is a quasi-independent and $|F| \geq \lambda |H|$. Let λ satisfy this criterion for the set E'.

It will be shown that λ also works for S. Let H be any finite subset of S. Then $H_j = H \cap (x_j + k_j E_j)$ is finite for each j; by the second paragraph of this proof, the H_j 's are disjoint and thus

$$|H| = \sum_{j=1}^{\infty} |H_j|.$$

Since $k_j > 0$, $H_j = x_j + k_j H'_j$ and $|H'_j| = |H_j|$ for some $H'_j \subset E_j$. Recall that $E_j = E(n_j, m_j) \subset E'$. There is some $F'_j \subset H'_j$ such that F'_j is quasi-independent and $|F'_j| \ge \lambda |H'_j|$. Let

$$F = \bigcup_{j=1}^{\infty} (x_j + k_j F'_j).$$

Note that $M_j = |E_j| \ge |F'_j|$ and that D_j dominates the largest absolute value of

$$[\bigcup_{i < j} (x_i + k_i F'_i)]_N \subset [\bigcup_{i < j} (x_i + k_i E_i)]_N.$$

Thus the k_j 's grow fast enough to allow Lemma 4 to apply to F with N = 1: F is quasi-independent and the sets $x_j + k_j F'_j$ are disjoint. Thus, $F \subset H$ and

$$|F| = \sum_{j=1}^{\infty} |x_j + k_j F'_j|$$

= $\sum_{j=1}^{\infty} |F'_j|$, since $k_j > 0$
 $\ge \lambda \sum_{j=1}^{\infty} |H'_j|$
= $\lambda \sum_{j=1}^{\infty} |H_j|$
= $\lambda |H|$.

It follows that S is at least as Sidon as E' according to Gilles Pisier's criterion. \Box

The proof given above is easily modified for the N-independent sets. One of the early steps in the proof for Sidon sets does not work: when E is N-independent, E - n need not be N-independent. For that reason, the theorem is weaker.

Proposition 6. Let $E \subset Z$ be an N-independent set which clusters at 0 in the Bohr compactification of Z. Then there is an N-independent subset $E' \subset Z$ which is dense in the Bohr compactification of Z.

Proof. The *N*-independence of *E* excludes 0 from *E*. From this point, the proof for Sidon sets is easily adapted. One chooses $k_j > D_j + M_j N|x_j|$. Then *S* is dense in the Bohr group as before and the rest of the proof becomes easier. There is no need to consider a finite subset $H \subset S$. The choice of $k_j > D_j + M_j N|x_j|$ and Lemma 4 directly imply that *S* is *N*-independent. \Box

References

- [LR] Jorge M. López and Kenneth A. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975, pp. 19–52.
- [K] Yitzhak Katznelson, Sequences of Integers Dense in the Bohr Group (June 1973), Proc. Roy. Inst. of Tech., 73–86.
- [P] Gilles Pisier, Arithmetic Characterization of Sidon Sets 8 (1983), Bull. AMS, 87–89.

MATHEMATICS, KELLER HALL, 2565 THE MALL, HONOLULU, HAWAII 96822

RAMSEY@MATH.HAWAII.EDU OR RAMSEY@UHUNIX.UHCC.HAWAII.EDU