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INTRODUCTION

Let T' be an arbitrary discrete abelian group. Sidon and Iy subsets of I' are
interpolation sets in different but quite similar senses. In this paper we establish
several similarities and one deeper connection:

(1) B4(E) and B(FE) are isometrically isomorphic for finite £ C I'. By(F) =
l~(E) characterizes Iy sets E and B(E) = (- (E) characterizes Sidon sets
E. [In general, Sidon sets are distinct from Iy sets. Within the group of
integers Z, the set {2"},, |J{2" +n},, is helsonian (hence Sidon) but not I.]

(2) Both are F, in 2'' (as is also the class of finite unions of Iy sets).

(3) There is an analogue for Ij sets of the sup-norm partition construction used
with Sidon sets.

(4) A set E is Sidon if and only if, there is some € R™ and positive integer N
such that, for all finite F' C E, there is some H C F with |H| > r|F| and H
is an I set of degree at most N. [Here |S| denotes the cardinality of .S; two
different but comparable definitions of degree for I sets are made below.]

(5) IF all Sidon subsets of Z are finite unions of Iy sets, the number of Ij sets
required is bounded by some function of the Sidon constant. This is also
true in the category of all discrete abelian groups.

This paper leaves open this question: must Sidon sets be finite unions of I sets?
Let G denote the (compact) dual group of I'. In general, unspecified variables
such as j and N denote positive integers. M (G) denotes the Banach algebra un-
der convolution of bounded Borel measures on G; the norm in M (G) is the total
mass norm. My(G) denotes the Banach subalgbra of M (G) consisting of discrete
measures. bI' denotes the Bohr compactification of I': bI' = GAd, the dual of dis-
cretized GG. Naturally, I' is dense in bI'. The almost periodic functions on I' are
exactly the functions which extend continuously to bI'; they are also the uniform
limits of the Fourier transforms of p € M4(G) [18, p. 32]. For subsets E C I, this
paper focuses on the relations among several function algebras on E: By(E), B(E),
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AP(FE), and {o(FE). By(F) is the space of restrictions to E of Fourier transforms
i of p € My(G), with the following quotient norm:

IfllBacey =t [ull | pe Ma(G) & 4l, = [}

B(F) is the space of restrictions to F of Fourier transforms i of p € M(G), with
this quotient norm:

1By =t {|[pll | pe M(G) & pl, = f}

l~(F) is the space of all bounded functions on E with the supremum norm; AP(FE)
is the closure in /o (FE) of By(F), and retains the supremum norm (cf. Lemma 1
of the appendix). The following inclusions hold and are norm-decreasing:

(1) Bu(E) € AP(E) C €oo(E) and By(E) C B(E) C Lo (E).

In general, these inclusions are all strict. When I' is infinite, equality is rare among
all the subsets of I' (measure zero in 2'') but has been extensively studied. Condition
(1) allows six possible equalities among the algebras By(E), AP(E), {sx(F), and
B(E). Three of these equalities characterize special sets: Sidon (B(F) = {5 (E) in
[11]), Iy set (AP(E) = {s(E) in [6]), and helsonian (B4(E) = AP(E) by Proposi-
tion 2 of the appendix). Kahane resolved one of the remaining possible equalities
by proving that Iy is equivalent to the formally stricter condition By(E) = l (F)
[7]; Kalton’s proof of this is in the appendix. It follows from Kahane’s theorem that

Iy = helsonian and Iy = Sidon.
By Proposition 3 of the appendix, helsonian implies Sidon; thus
(2) Iy = helsonian = Sidon.

Bourgain resolved another possible equality by showing that B4(E) = B(FE) implies
that E is Iy [1]. By Proposition 4 of the appendix, B(F) = AP(FE) implies that E
is Iy, thus disposing of the last possible equality. Example 5 of the appendix proves
that helsonian (Sidon) does not imply Iy. It is unknown whether helsonian (Sidon)
sets must be a finite union of Iy sets [5]. Also unknown is whether Sidon sets must
be helsonian. Concerning this last question, there is this theorem by Ramsey: if a
Sidon subset of the integers Z clusters at any member of Z in bZ, then there is a
Sidon set which is dense in bZ and hence clearly not helsonian[17].

Among the four algebras By(F), B(E), AP(E) and ¢+ (E), two inclusion re-
lations remain to be explored: B(E) C AP(E) and AP(F) C B(E). If I' is an
abelian group of bounded order, B(E) C AP(F) implies that E is I [15]. (In [15],
a hypothesis which is formally weaker than B(E) C AP(F) is shown to be sufficient
to make E be Iy.) No work has been reported on AP(FE) C B(FE).

SIDON AND I SETS ARE F, IN 2V

David Grow proved that, for finite subsets F of Z, B(E) = B4(FE) isometrically
[5]. As he rightly concludes, “one cannot determine whether a Sidon set E is a finite
union of I sets merely by examining the norms of interpolating discrete measures.”
This theorem generalizes to I' (indeed to the dual object of any compact topological

group).
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Theorem 1. The algebras By(E) and B(E) are isometric for finite subsets E of
a discrete abelian group T'.

Proof. Let E be given and ¢ € RT. Let f € B(F) and u € M(G) such that fi|g = f
and |||l < (14 €)||f|l B(r)- There exists a neighborhood U of 0 € G such that

€
g€ U implies (Vx € FE) (|x(g) —1| <€ = —)
el +1

Since G is compact and {g + U | g € G} is an open covering of G, there is a finite
set G' = {g1,...,9n} such that {g+ U | g € G'} covers G. Let E; = ¢g; + U; for
J > 1set E; = (g; + U)\(U;; £i). Then G is the disjoint union of the E;’s. Let

v=>"_ 1(E;)dy;. Then
Jv|l = Z (B < lpll < A+l fl B

Also, for x € E, with |u| denoting the total variation measure for p,

(z) = fi(z)]

>

o(x) = fz)] = |

—9)ldp(g)

/
> [, =)~ el (o)
WAL

x(g — g5) — 1| d|pl(g)

€'ul(Ej) = €|ull <e.

By the previous paragraph, there is a sequence of discrete measures v; such that
w5l < (1+ /DI Ineey and [55]6 — flloo < (1/7). Thus o |5 converges to f in
l(FE). By [16, p. 222] any finite subset of I" is an Iy set. By Theorem 7 of the
appendix, the ¢ (E) and By(F) norms are equivalent: there is a constant K such
that, for all g € (o (E),

9]l BaE) < K||9]|oo-

Thus 0; |g converges to f in By(E), and hence

1 laey = Jin [175]2] 5y(e) < limsup [[v;] < If]l5c)-

Jj—o0

That proves isometry, since || f|| 5,z < ||f| B(E) always holds.
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There is a more elementary way to see this, without using [16]. Since F is
finite, By(F) is a finite-dimensional vector subspace of ¢ (E). Due to the finite-
dimensionality of B;(E), B4(F) is a closed subspace of /. (E) and norm equivalence
holds for g € Bg(FE). Since 0, is from By(E) and converges to f € (o (E), the
closedness of B4(FE) puts f € B4(E). By the norm equivalence, ©; converges to f
in B4(E), and the rest of the proof is valid. O

Sidon sets are “finitely-describable” by norm comparisons. Following [11], the
Sidon constant of a set £ C I is the minimum constant a(F) > 0 such that,
for all f € loo(E), [[fllr) < a(E)]flloo- As in [11], this is the same minimum
constant such that ||7| 4¢) < a(E)||7]|¢(q) for all 7 € Trige(G), the trigonometric
polynomials on G with spectrum in E. This is true because, viewing Trigg(G) as
a closed subspace of C(G), one has Trigp(G)* = B(FE) (isometrically) while A(G)
is isometric to /1 (I') and hence A(G)* is isometric to £ (I").

It follows that

(3) E, C By implies «a(E7) < a(Es)
and that
(4) a(E) =sup{a(F) | FCE & F is finite}.

These observations lead to the next lemmas:
Lemma 2. Let S, ={E CT | a(E) <r}. Then S, is closed in 2%.

Proof. In this proof, we identify A C I with x, € 2I'. Let E3 be a net in S, which
converges to £ C I'. Let F be any finite subset of E. Because the convergence
in 2U' is pointwise, there is some 3y for which 8 > B, implies F C Fj. By (3)
above, a(F') < a(Fp) < r. Since this holds for all finite F' C E, a(E) < r by (4)
above. [

Proposition 3. For discrete abelian groups I', the class of Sidon sets is an F,
subset of 2V it is U,, Sn with S,, as in Lemma 2.

David Grow’s theorem makes clear that only making norm comparisons will not
extend Proposition 3 to I sets. The following definition provides appropriate tools.

Definition. Let D(N) denote the set of discrete measures p on G for which

N
u = Z Cj(Stj,
j=1

where |c;| <1 and t; € G for each j. For E CT and § € RT, let AP(E,N,J) be
the set of f € boo(E) for which there exists p € D(N) such that
1f =l lloe <6

E is said to be I(N,9) if the unit ball in - (E) is a subset of AP(E,N,d). N(E),
the Iy degree of a set E, is the minimum m for which E is I(m,1/2) if such an

m exists, and oo otherwise. [By Theorem 7 of the appendiz, E is Iy if and only
N(E) < ./

The analogue of condition (3) is immediate from the preceding definitions:
(31) E, C E; implies N(E;) < N(Es)

The next lemma is the analogue of condition (4).
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Lemma 4. For E C T,

(41) N(E)=sup{ N(F) | F is a finite subset of E }.

Proof. Set J equal to the right-hand side of (4I). By condition (3I), J < N(E). If
J = oo, then N(E) = 0o and hence J = N(FE). So suppose that J is finite. Let
f € {5 (E) such that || f|lcc < 1. For each finite F' C E, interpolate f | within 1/2
by a discrete measure pf” € D(J); write uf as

J
F _ F
I —E cj6gjp
Jj=1

with |cf | < 1. The finite subsets of E form a net, ordered by increasing inclusion.
By the compactness of G (from which gJF comes), and the compactness of the unit
disc in C, one may choose 2.J subnets successively so that, for the final net {F,},
one has

liéngfa =g; & limcfa =c; forall 1<j5<J

63

Necessarily, |c;j| < 1. Set p = Z‘j]:l cjdy,. Let v € E. There is some g in the

subnet such that v € F, for all @ > ag. For a > ay,
’f(v) —uFa(v)‘ <1/2.

However, lim, ’y(gf *) = v(g;) for 1 < j < N because v is a continuous character
on G. It follows that

J J
J=1 j=1

Thus |f(v) — ()| < 1/2. That establishes f € AP(FE,J,1/2). So N(E) < J. O

The proof of the next proposition is the same as that of Lemma 2 and Proposition
3.

Proposition 5. The Iy sets are an F, in 2': they are |J {E CT | N(E) <n}
where { E CT | N(E) <n} is closed in 2.

The author first realized that Iy sets and Sidon sets are F,, in 2'', when studying
A = A sets: those sets for which A(F) = B(E)Ncy(E) [4, p. 364]. Whether A = A
sets are F,, in 2' is not known. Equally unknown is the status of sets F such that
A(FE) = By(E), where

Bo(E) ={f|e | feBI)Nc(l)}

Both of these properties, to a naive view, seem to “live at infinity” and thus fail
to be “finitely describable”. If it could be proved that they are not F, in 2T, then
questions (1) and (1’) of [4, p. 369] would have negative answers. An open question
which is closer to the focus of this paper is this: do helsonian sets constitute an F,
class?
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“FINITELY-DESCRIBED” , AGAIN

In [6], two other equivalent formulations of being Iy are established. First, a set
FE is Iy if and only if every function on F taking values 0 and 1 can be be extended
to a continuous almost periodic function over T' [6, p.25]. Second, a set E is an I
set if and only if, for every subset F' C FE, the sets F' and E\ F' have disjoint closures
in bI'. These formulations permit a weakening of the sufficient conditions listed in
Theorem 7 of the Appendix (a very similar and yet weaker condition is in [12]).

Definition. Let Cy and Cy be closed subsets of C. For E C I', E is said to be
J(N,Cy,Cs) if and only if, for all F C E, there is some p € D(N) such that
a(F) C Cy and p(E\F) C Cy. When C1 ={z | S(z) > d}, and Cy ={z | S(2) <
=4}, J(N,Cq,Cy) is abbreviated as J(N,§). S(E) is the minimum m such that E
is J(m,1/2) if such an m exists, and oo otherwise. [By Proposition 6 below, E is

Iy if and only if S(E) < 00.]
Proposition 6. The following are equivalent:

(1) E is an Iy set.
(2) E is J(N,Cy,Cs) for some N and some disjoint subsets C1 and Cs.
(3) For all0 < § < 1, there is some N such that E is J(N,0).

Proof. (3) implies (2) immediately.

(2) implies (1). Assume that E is J(NV,Cy,Cs) for some disjoint C;7 and Cy
and some N. For F' C E, let up € D(N) satisfy condition (1) for F'. By [18, p.32],
the group bI' is the maximal ideal space of M;(G) and the Gelfand transform is
just the Fourier-Stieltjes transform. Because D(N) C My(G), pr is a continuous
function on bI'. Because C; is a closed subset of C, H; = ﬂ}_l(C’l) is a closed
subset of bI" with F' C H;. Likewise, Hy = ,J}_l(Cg) is a closed subset of bI' with
(E\F) C Hs. Because C; and Cy are disjoint, Hy and Hy are disjoint; thus F' and
E\F have disjoint closures in bI'. Because this holds for all F' C E, E is an Ij set
by [6].

(1) implies (3). Now suppose that E is an Ij set and consider any § such
that 0 < 0 < 1. By Theorem 7 of the Appendix, there is some N such that F is
I(N,1—90). Let F C Ej; the function h which is ¢ on F' and —i on E\F is in the
unit ball of ¢, (F). By the definition of I(N,1 — §), there is some p € D(N) such
that

||ﬂ |E _hHoo <1-0.

For v € F, h(y) =i and hence S(fi(y)) > 1—(1—46) = 4. Fory € (E\F), h(y) = —t
and hence S(i(v)) < -1+ (1-6) < —6. O

The proof of Proposition 6 provides the following corollary.
Corollary 7. For ECT, S(F) < N(E).
Bounding N(FE) by some function of S(FE) is the purpose of the next theorem.

Theorem 8. There is an non-decreasing function ¢ with ¢(Z1) C Z* such that,
for all discrete abelian groups I" and oll E CT', N(E) < ¢(S(E)).

Some lemmas will help in proving Theorem 8. Lemma 9 follows closely from the
definitions of N(F) and S(FE).

Lemma 9. For ECT andy €T, N(E) = N(E+~) and S(E) = S(E + 7).
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Lemma 10. For any N, let S be a finite set which is 1/(8N) dense in T and let

E C T with S(E) < N. Then, for all subsets ' C E, there are N points t; € G,
integers r; € [0,8N], and s; € S such that

(Vv € F)[S(a(v) = 1/4] and  (Vy € E\F)[S(A(y)) < —1/4],

where

N
N)_l Z SjTj5tj.
j=1

Proof. By the definition of S(FE), E is J(S(E),1/2) and hence J(N,1/2). Thus,
for any F' C E, there is a discrete measure v € D(N) such that

(v € F)[S@(y)) 21/2] and  (Vy € EAF)[3(P(7)) < —1/2],

where v = Z;V:l c;o¢; for some ¢;’s in G and ¢;’s in the unit disc of C. Write ¢;
as dj|c;| with |d;| = 1. Since S is 1/(8N) dense in T, one may choose s; € S such
that |d; — sj| < 1/(8N). Let r; = |8N|c,;||. Then, if

N
pw=(8N)™! Z 55750,

J=1

it follows that

N
Il = pllarey <D lej —siri/ (8N)|

7j=1
N N
< e = lejlsil + D lsjlesl — 57/ (8N))
j=1 j=1
N N
= leilld; = s+ 1s;l - llegl =i/ (8N))
j=1 j=1
N
<> ld; —SJHZHCJI—TJ/(SN)!
7j=1 7j=1

< N/(8N) + N/(8N) = 1/4.

It follows that, for v € F,

S((y)) = 9]

[

() ={P(7) = £(7)}]
v(N] = v = pllare) = 1/4-

)
>3

Likewise, for v € (E\F), S(i(y)) < -1/4. O
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Lemma 11. For any N, let S be a finite set which is 1/(8N) dense in T. Assume
that S(E) < N and E C {1} xT C Zy xI'. For F C E and s € S there are 8N?
points of G, here labeled as t, j, such that

(V€ F)[S(7(v)) =2 1/8] and  (Vy € (E\F))[S(7(7)) < -1/8],

where
8N2

T=0BN)TD s> b

seS gj=1

Proof. Let p = (1,0) € Zy x G. Then, for all v € E, (%(*y) = 1 while ci,(fy) = —1.
Thus for v € E, do(y) + 6,(y) = 0.
Let FF C F and p be a measure provided for F' by Lemma 10. Rearrange p as

follows: '

N
= (8N)_1Zs Z‘Stm’
j 1

J
j=1  gq=
where t; , = t; for all ¢ € [1,7;]. Set
‘: { (8N —1;) (60 + 6p), for r; even,
! 6o+ (8N —r; —1)(do + 6,), for r; odd.

Let ¢ = pu+ (8N)_1 Z;V:1 s;W;. Then one may write ¢ as

N 8N
BN s> dr
j=1 g¢=1

Note that W;(y) € {0,1} for v € E and therefore

(1) — Aly)| < (8N) Y [Wy(a)] < 1/8.

Thus, for v € F,

Likewise, for v € (E\F),

(7)) = S{a(y) — (aly) — d(1))}

Next, rewrite ¢ as follows:

8N
d=0BN)"D s Y > b, =0BN)TD sV

seS j€[1,N] ¢g=1 seS
& sj=s
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The number of point masses in V; is 8N fs for some integer fs € [0, N] (fs is the
number of j’s such that s; = s). Let

Zs = (N - fS)(4N)(5O + (510)

and set

T=¢+ BN sZ.

seS
Note that Z(az) =0forallz e E,7|,= o |z, and 7 may be written as

8N?

BN s> b,

seS g=1
O

Proof of Theorem 8. Set ¢(c0) = oo and let ¢(N) = sup{ N(E) | S(F) < N }.
If ¢(N) < oo for all N, the theorem is proved. Suppose that ¢(N) = oo for a
particular N. That is, there is a sequence of discrete abelian groups €; (with
dual group H;) and subsets W; C ; such that S(W;) < N and N(W;) > i. Let
E, = {1} x W; C Fi, where I'; = Zo x Q; and G; = Zy x H; is the group dual to I';.
By Lemma 9, S(E;) = S(W;) < N and N(E;) = N(W;). Let I' be the direct sum
of the I';, which is the set of all sequences {v;}; with ~; € T'; and at most finitely
many y; # 0 [assume that the I';’s are presented additively]. The dual group of T
is the following direct product:
G=]]¢G:

If v ={v}i e I'and g = {g:}; € G, then (v,9) = [[,(7,9i), where the latter
infinite product has at most finitely many factors that differ from 1. I'; may be
viewed as a subset of I' in the natural way, as the set of v € I' such that v; = 0 for
j # 1. Denote this canonical copy of I'; by I';. For y € I' CI" and g € G,

09(7) = (Vis —9i) = 0. (%)
where g; and ~y; are the respective i-th components of g and . Thus, N(E;) =
N(E?) and S(E;) = S(E}) for each E; C I'; and its canonical image E in I'}.
It will be proved that E* = |J, E; is an Ij set and thus N(E*) < oo by Theorem
7 of the Appendix. That will contradict equation (3I), which says that N(E*) >
N(E}), and thus

N(E*) > N(Ef) = N(E;) = N(W;) >i for all i.

This contradiction will prove that ¢(N) < oo for all N.

To see that E* is Iy, let S be a finite set which is 1/(8 V) dense in T of cardinality
M. Tt will be shown that E* is J(8M N?,1/8) and hence an I set by Proposition
6.

Let F'* C E*, and set F;" = F* N E}. Let F; be the pre-image of F;* under the
canonical embedding of I'; into I'. Because S(F;) < N and F; C F;, Lemma 11
provides a discrete measure p; on G; of the form

8N?2

pi = (8N)~! ZSZ%J

seS gj=1
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such that
(Vy € E)[S(i(y)) 2 1/8] and - (vy € E\F)[S(i(v)) < —1/8].
Let t, ; € G be defined to be ti’j in the i-th coordinate, and set

8N?

p=0BN)"Y s> 4,

seS j=1

Because any v € E has coordinates equal to 0 outside of the i-th coordinate and
v € E;, one has

— —_

5ts,j (7) = <_t87j77> = <_ti,j7’7i> = 52&2’]. (7@)

For v € E}, it follows that fi(y) = u;(y;) with v; € E;. Note that v; € F; if and
only if v € F;. Thus, for all 7,

(Vy € F7)[S(u(v)) = 1/8] while  (vy € (EF\F))[S(h(y)) < —1/8].

Since F* = J, F;", the imaginary part of [ is at least 1/8 on F** and at most —1/8
on E*\F*. This holds for an arbitrary F'* C E*, with a measure in D(8MN?).
Thus E* is J(SMN?,1/8). O

A more direct proof of Theorem 8 can be adapted from [10], in which the following
theorem is proved. Consider a Banach algebra B of continuous functions on a
compact Hausdorff space 9. Assume that for every closed subset F' of 91, there
exists a positive number € = ¢(F') such that whenever N is both open and closed
in F', B contains an element h of norm one satisfying R(h(M)) < 0 for M € N,
R(h(M)) > € for M € F\N. Then B = C(9). In [10] a polynomial P is fixed,
depending only on € and some € > 0, such that for ', N and the corresponding h of
the hypotheses, P(h) satisfies |P(h)(M)| < € for M € F\N while |P(h)(M)—1| <
¢ for M € N. Thus x, is approximated by P(h) within € in ¢*°(F). With
appropriate scalings (e = 1/(2S5(F))), this could be applies to h = & where v = —ip,
p € D(S(E)) with () > 1/2 on some F C E while (i) < —1/2 on E\F. It
is clear that P(v) is in D(n) for some n which is determined by S(E) and € (and
P which is in turn specified to depend only on € = 1/(25(E)) and €'). If € is set
equal to 1/144, one can proceed as in the next paragraphs to get N(F) < 36n.

Following [12], one could define another degree for I sets. For & = (g1,...,9n) €
G™ and v € T, let £&(v) = (v(¢1),---,7(gn)). For & € G™ and real ¢ > 0, let
U,e)={ el | sup,|A(g:) — 1| < e}. A basis for the topology of bI' consists of
v+ U(&, €) where ~y ranges over I', £ ranges over |J,, G™ and e ranges over R*. By
[6] and [12, Theorem 1, p. 172], E C T is Iy if and only if, there are some k and
real € > 0 such that, for all F C E, there is some ¢ € G* for which F 4 U (¢, €) and
(E\F) + U(&, €) are disjoint. Such sets are said to have order k (regardless of ¢)
[12]. Define M (E) as the least k for which this result holds for k and ¢ = 1/k. By
following the proof in [12, p. 175-176], one can prove that N(E) < ¢(M(E)) for
some non-decreasing function ¢ such that ¢(Z%) C Z*. Also, M(FE) < 4N(E).
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Here’s how one could specify 1. Given f in the unit ball of /o (E) and M (E) < k,
one can approximate f within 1/4 with a linear sum of characteristic functions:

36

ZCjXFj with ¢ < 1.
j=1

Each x r, Can be approximated within 1/144 by the transform of a measure in D(n)

where n is chosen as follows. In [12, p. 175] there is a function y € A(T*) chosen
in a manner which depends only on k. Based upon it, choose N so that

Z IX(n1,...,ng)| < 1/144.

(n1,...,ny)€Z*
&|nqy|+...+|ng|>N

Set

(nl,...,nk)GZk
In [12, p. 175], given an idempotent e € £, (F) and a particular £ = (g1,...,9x)
which separates the support of e from its complement with U (€, 1/k), there is some

®, such that e = .0 ¢ |, and |<f>\€(n1,,nk)| < |xX(ni,...,nk)|. Then, if

H = Z q)e(nla'"7nk)6—n1g1—...—nkgk7

(n17"'ank)ezk
&|n1|++|nk|§N

i € D(n) and fi interpolates e within 1/144. By doing this to each F} for f,
one interpolates f within 1/2 by the transform of a measure in D(36n) and hence
N(E) < 36n. If (k) = sup{ N(E) | M(E) < k}, then ¥(k) < oo, % is non-
decreasing and N(E) < (M (E)).

To see that M(E) < AN(E),let n = N(F) <ocoand F C E. Let f=1on F
and —1 on E\F. Let u € D(n) interpolate f within 1/2. If u = 377 | ¢;d,,, let
E=(91,---,9n). A€ U 1/(4n)), then for all v

Ay +A) — a(y)] < 1/4.

Thus for v € F
R(i(y + ) = 1/2 = 1/4 = 1/4,

while for v € E\F
R(a(y+A) <-1/2-1/4=-1/4.

It is evident that F'+ U(§,1/(4n)) and (E\F) 4+ U(&,1/(4n)) are disjoint. Thus
M(F) < 4n.

The proof of Theorem 8 provides an analog for I sets of “sup-norm partitions”
used among Sidon sets [4, p. 370]. What’s different about this construction is the
“DC-offset” (an electrical engineering term): shifting the W;’s into “odd” cosets
before unioning them. This is not required in the usual sup-norm partition con-
structions.
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Proposition 12. Let W; be a sequence of Iy sets, with W; a subset of an abelian
group Q; and S(W;) < N for some N. If I'; = Zy x Q; and E; = {1} x W;, then
E =, E; is an Iy set in the direct sum of the I';’s with S(E) < 32MN? (where
M is the cardinality of a finite set which is 1/(8N) dense in T).

Proof. In the proof of Theorem 8, E is J(8MN?,1/8). By repeating the inter-
polating measures 4 times, one sees that E is J(32M N? /1/2) and hence S(E) <
32MN2. O

Proposition 12 is proved in the category of discrete abelian groups, where there
is plenty of room to fit diverse groups together. The analog of Proposition 12 is
proved within Z in the next proposition. Some care must be taken with this new
construction of Ij sets, but its basic ideas are simple: rapidly dilate successive sets
of the given sequence of I sets and provide a “DC-offset”.

Proposition 13. Let {W,},, be a sequence of finite Iy subsets of Z with S(W,,) <
N for all n. There is a sequence of integers {k,} with k, # 0 for all n such that

E =@k W, + kn)

is an Iy set with (2k, Wy, + kn) N (2k;W; + k;) =0 for n # j.

Lemma 14. Let E C Z. For any N, let S be a finite set which is 1/(8N) dense
in T. Assume that S(E) < N and that E C k + 2kZ for some non-zero integer k.
Let F C E. Then, for each s € S there are 8N? points of T, here labeled as ts ;,
such that

(Vy € F)[S(7(7)) 2 1/8] and (Vy € (E'\F))[S(7()) < -1/8],

where
8N2

= (8N)! ZSZ@SJ.

seS gj=1

Proof. Let T, the dual group of Z, be presented as the interval (—m, 7| with oper-
ations modulo 27. An integer n acts on t € T as follows:

n(t) = (n,t) = ™.

For all z € E, (%(:L’) = 1 while

—_

5w/k(x) — eizﬂr/kz — 6i(k+2kj)7r/k: — €i7r - 1.

Thus, for z € E, (%(x) + 6/”;(1;) = 0. From this point, the proof is identical to that
of Lemma 11, with 0/, replacing ¢, in that proof. [

Proof of Proposition 13. Without loss of generality, we may assume that W,, # ()
for all n. The integers k,, shall be chosen inductively. Let ky = 1; given k; for
7 <mn, let D, be maximum absolute value of any element of

U(zkjwj +kj).

Jj<n
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Fix some finite subset S which is 1/(8 N) dense in T of cardinality (). For n > 1
choose k, > 32NQD,,_1 and let E,, = k, + 2k, W,,. Since every element of F,, is an
odd multiple of k,, |x| > k, for all x € E,; since E,, # (), D,, > k,,. Since F; # (),
D, > k; > 0. Thus, forn > 1, k, > 32NQD,,_1 > D, _1, which guarantees that
E,, is disjoint from Ej; for j < n. Finally, for j <n and z € Ej,

kn > (32NQ)"/D; > (32N Q)" xl.

In particular, k, > (32NQ)"!D; > (32NQ)" ! for n > 1. [Of course, k; = 1 >
(32NQ)° as well ]
Let FF C F and F; = FN E;. Lemma 14 provides a discrete measure p; on T of

the form
8N?

p = (8N)™ 2325@’]_

seS gj=1

such that
(Vy € F1)[S(pi(y)) > 1/8] and  (Vy € Ex\F1)[S(u1(v)) < —1/8].

Proceed inductively. Suppose that one has p; for j < n such that

(Vy € Fj)[S(1;(7) 2 1/8] and (¥ € E;\F})[S(n;(v)) < —1/8],

where
SN2

pi = (8N)~1 ZS Z(Stqu

seS q=1

and [t] , — ' < 7w/k; for j € (1,n), s € S, and ¢ € [1,8N?]. Because E, =

kyn + 2k, W, with k,, # 0, one has S(E,) = S(W,,) < N. By Lemma 14, there is
some u such that

(Vy € Fu)[S(a(y)) 2 1/8] and  (vy € E\F)[S(1(7)) < =1/8],

where
8N2

p=BN)"Y s> b .

seS g¢q=1

However, since every x € E,, is a multiple of k,,, for any integers p, o
Owzn (T) = 0zn (x) for w=2mpys/kn.

Thus 1t |, = A |z, When

8N?2

A= (8N)™! Z s Z 0o 4pau2m/hon-

seS q=1

Choose py,s so that
|28 + Pa,s 2/ kn — 75?,;1! < m/ky.
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Let p, = A with this choice of the p, ;. That is, t7 , = 2, + Pq.s27 k.

) S!q -

It follows that, for each s € Sand 1 < ¢ < 8N?, tsq = limj_ t?;’q exists because

St~ <Y w/ky <m > (32NQ) T < oo,
j=2 j=2

=2

Moreover, for x € E; and n > j,

01y, (2) = 0y ()] = |e7"a — 770
n
_ Z e izty, e—ixt;"gl
w=35+1
n
< Z |e—ixt;ﬁq _e—mt;;1|
w=j+1
n
< D g, — Y
w=7+1
n
<zl D (7/kw)
w=35+1
n
<mlzl Y JauTH(B2NQ) )
w=35+1

< (m/(32NQ))(1 - 1/(32NQ)) ™"
=7/(32NQ — 1) < 7/(31NQ).

If one fixes j and lets n — oo, then for z € E;
[0t..,(2) = 8,5 ()] < 7/(3INQ).

Set
8N?2

p=(8N)™* Zszétw'

seS gq=1
Then, for all z € Ej,

SN2

75(x) = pla) = |BN) 1Y s> (8 (w) = b, (2))

seS q=1

8N2

< 8N [s| S (7/(8INQ)) = /3L,

ses qg=1
Thus for all 7,
(Vy € F5)[S(p(7)) =2 1/8 = m/31] & (Vy € (E\F))[S(p(y)) < —1/8 4+ m/31].

Since F' = |J; F}, the imaginary part of p is at least .02 on F' and at most —.02
on E\F. Because this holds for any F' C E with a measure in D(8QN?), E is
J(8QN?,.02) and hence I,. O
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PROPORTIONS OF SIDON SETS ARE Iy SETS
The following theorem originated in conversations with Gilles Pisier.

Theorem 15. Let I' be a discrete abelian group. Then E C T is Sidon if and only
if, there are N and some real r > 0 such that, for all finite FF C E, there is some
H C F for which |H| > r|F| and S(E) < N.

A key ingredient of the proof of Theorem 15 is a theorem of Pisier’s [14, p. 941].
Other critical ingredients are recycled from [3,13].

Proof of Theorem 15. To prove sufficiency, suppose that £ C I" has some N and
real » > 0 such that, for every finite subset F' C F,

(3H C F)(|H| > r|F| and S(H)<N).

Then H is I(¢(N),1/2) by Theorem 8. By the proof of Theorem 7 of the Appendix,
condition (3) of that theorem holds with M = 2 and 6§ = (1/2)/¢(N). Tt follows
that, for every f in the unit ball of ¢, (H), there is some p € My(G) such that
fi ly=f and |[pllarye < L =237, 273/#(N) < oo, Thus, for all f € (o (H),
there is a constant L which depends only on IV such that || f||z,a) < L flle. (m)-
Since || f| By < || fllBaca), one has || f|l ey < Ll flleo () Thus H is a Sidon set
with Sidon constant at most L. That suffices to make E be Sidon by Corollary 2.3
of [14, p. 924].

Now suppose that E is Sidon. By [14, p.941] there is some § > 0 such that, for
all finite F' C E, there are at least 2°17| points g; of G such that, for 7 # j,

(5) sup 17(g5) —(gs)] > 0.

Necessarily, 6 < 2.

Let F' C E with |F| = n. Enumerate F' as 71,...,7,. Choose p so that 7 =
2n/p < 6/2 (e.g., let p=1+4 [47/d]). Partition T into disjoint arcs, Ty, 0 < k < p,
of the form

Tp={e? | kr <0< (k+1)1}).

Let Q@ = [(1 —279%/2)71] and set 7/ = 7/Q. Partition each T}, into Q arcs Uk,m
of the form .
Upom = 1€ | kr +m7’ <0 <kr+ (m+ 1)1},

for 0 < m < Q. Finally, let Sy denote a set of at least 2°/Fl points of G which
satisfy inequality (5).
Define §; inductively. Let

Si={g€Si_1 |79 €Tk}

and '
Sim =19 €Si-1 | 7(9) € Ukm }-

Then S;—1 = )_ S} and S} = J2_( S}, There is some m(i, k) such that

m

[Shm(ik] < QIS
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So,
p—1
U Skom(ig)| S Q1 Si_1].
k=0
Let
p—1
Si - 81_1\ U Siam(iak)‘
k=0

Then |S;| > (1 — Q71)|S;_1|. By induction one has |S,| > (1 — Q)" |Sy|. Note
that Q > (1 —27%/2)~1; consequently, (1 — Q™) > 279/2. Therefore,

[Snl > (1 - Q71" [So] > (279220 = 2n9/2,

For 1 <+ <mnand1 <k <p,let I, be the arc between Up_1 y,(;,k—1) and
Uk,m(i,k)- For k=0, let I; o be the arc between Up,_1 (i p—1) and Up m(i,0)- Neces-
sarily,

(6) Iz’,kC{ew|(/€—1)T+T'§9<(k_|_1)7—_7-’}_

The length (and hence the diameter) of each of these arcs is at most (2 —2/Q)7 <
2% (§/2) = 6. For j # k there are arcs of length 7/ separating I; j, from e¢“" within
T: Ukrfl,m(i,kfl) and Uk,’m(i,kz) when 1 < k< P, and Upfl,m(i’pfl) and UO,m(i,O) for
k= 0.
Each sequence {k;}I",, with 0 < k; < p, defines a cylinder in £, (F) of the
following form:
Wik} = { £ € (F) | F(0) € Lin, )

For g € G, let fy(v) = ~(g) for v € F. Because these cylinders are disjoint,
each f; is in at most one of them. g € S, was specified to guarantee that f,
would be in at least one of these cylinders. For g € S,,, define h(g) € ¢ (F) by
h(g)(vi) = k; where fy(vi) € I; i, and thus f, € W[{k;}I,]. Because each cylinder
has diameter less than §, each cylinder contains at most one f, for g € S,,. Hence
|h(S,)| = |S,] > 2"/2. For any subset H C F, let TI' be this projection: for
f € loo(F), MH(f) = f |, . By Corollary 2 of [13, p. 742], there is a constant
¢’ > 0 which depends only on 6/2 and p (which themselves depend only on 4) such
that there are some H C F and integers a < b from [1, p] such that

|H| > c"|F| and {a,b}" c TI7(h(S,)).

Ifb—a<p/2,leta’ =aandd =b. fb—a>p/2,letd =band ¥’ =a+p. In
either case, let a’/ = o’ mod p and b’ = b mod p. Then {a”,"} = {a,b} with
a <b and b —a < p/2.

Case 1: b/ —a’' > 2. Let c = (a’+V')/2. Thenb' —c>1,c—ad' > 1,0 —c<p/4
and ¢ —a’ < p/4. If z9 € Iy, then zo = e with

e+ <V -+ <0<V +1)r -7 <er+pr/a+1,

because 7 = 27/p < /2 and § < 2 (see condition (6)). Hence

Ty = 0T ith <0 er <mf24 1
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Thus e %" 25 is in the upper half-plane, with
(e T z9) > 7" = min{sin(7’),sin(r/2 + 1)} > 0.
Likewise, if z; € I; 4, then then z; = € with
cr—pr/A-1<(d -Dr+7 << (@ +1)7r -7 <cr—17".
Hence
ez =07 with —7w/2—-1<60—cr < -1
Thus e~ %"z, is in the lower half-plane, with
J(e™Tz) < —7" < 0.

Because {a,b}? c I (h(S,)) and {a,b} = {a”,b"}, for any A C H there is
some g € S, such that h(g)(y) =b" for v € A and h(g)(vy) = a” for v € H\A. Let
p=e"“T§_4; ue D(1). For v € A we have

1).
S(e704(7) = (e (9) = 7.
Likewise, for v; € H\ A,

S5 (7)) = S(e T (g)) < —1".
This proves that H is J(1,7").
Case 2: V' = a' + 1. Because {a,b}! c I (h(S,)) and {a,b} = {a”,V"}, for
every A C H there are g; and gs such that

(Vy € A) (h(g1)(y) =" and  h(g2)(y) = a"),

while
(Vy € H\A) (h(g2)(v) = a” and h(g2)(y) =1").
The arc U; p(;,a) equals {e¥ |z <f<zx+7}withdr<z<z+7 <Vr. If
z9 € I; pv, then 29 = e witho +7 <0 < (b +1)7 —1'. If 2y € I, then 2, = €%
with (a/ — 1)7 + 7/ < 6 < x. Thus, for v; € A, vi(91 — g2) = Vi(g1)/7i(g92) = €'
with
<< (b—a)T+2r-27"=(3-2/Q)T <3.

Thus, when v € A, 7(g1 — g2) is in the upper half-plane and
S(y(g1 — g2)) = 7" = min{sin(r’), sin(3) }.
For v; € H\A, .
(g1 — g2) = vi(g1)/7i(g2) = €
with
—3<(-3+2/Q)r<0<d -V =-7".
Thus, when v € H\A, 7;(g1 — g2) in the lower half plane with

1

S(r(g1 —g2) < =7
This makes H a J(1,7"") set. O

The proof of Theorem 15 produces “proportional” subsets of Sidon sets (and
therefore I sets) which are of order 1 according to [12, p. 182-186]. In [12] this
unresolved question was posed: must Iy sets be finite unions of order 1 sets?
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ARE SIDON SETS FINITE UNIONS OF Iy SETS?

David Grow asked in [5] whether Sidon sets had to be finite unions of I sets.
Theorem 15 provides some evidence that they could be, but that question is not
resolved here. The next two theorems provide a necessary condition: one for Z and
one for the category of abelian groups.

Definition. For discrete abelian groups T' and E C T', let v(E, m) be the minimum
number of Iy sets of degree at most m of which E is the union and let v(E, m) = oo
when no such finite union exists.

Theorem 16. If every Sidon subset of Z is a finite union of Iy sets, then there is
some m € Z* and an non-decreasing function ¢ : [1,00) — Z* such that

v(E,o(r)) < o(r), if o(E) <.

Theorem 17. Suppose that, for all abelian groups I' and Sidon subsets E of ', E is
the finite union of Iy sets. Then there is an non-decreasing function ¢ : [0,00) — Z+
such that

a(B)<r implies u(E,o(r)) < o(r).
These lemmas will prove helpful. Their proofs are close to the definitions.

Lemma 18. For discrete abelian groups I' and subsets E and F of ', if E C F
then v(E,m) <v(F,m). If m <n, v(E,m) > v(E,n).

Lemma 19. For E C Z and integers k # 0 and q, a(kE+q) = a(E), N(kE+q) =
N(E), and v(kE + q,m) = v(E,m).

Lemma 20. For discrete abelian groups I' and F C T,

(4F) v(E,m)=sup{v(F,m) | FCE & Fis finite}.

The proof of Lemma 20 is postponed until after the proof of Theorem 16.

Proof of Theorem 16. Suppose that, for all real » > 1, there is some m such that
(7) a(E) <r implies v(E,m) < m.

If ¢(r) is defined to be the minimum m such that condition (7) holds, then ¢ is
non-decreasing with » and meets the requirements of the theorem.

So, for some real r > 1, suppose that for all m there is some FE,, C Z for which
a(Ep) < rand v(E,,,m) > m. By Lemma 20, there is a finite subset F,,, of E,,
with a(F,,) < r and v(F,,,m) > m. Let

F= U ki Fp.

By Lemmas 18 and 19, v(F,m) > v(ky,Fy,m) = v(F,,,m) > m for all m. Thus
F' is not a finite union of I sets. If we choose k,, to increase rapidly, F' will be a
Sidon set; this will contradict the hypotheses.
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To make F be Sidon let k; = 1 and, for m > 1, let k,, > 722™M,,_; where M,
is the maximum absolute value of an element of (J,_, ksFs. Then, just as in the
proof of Proposition 12.2.4, pages 371-372 of [4], {ky, Fin }m 1S a sup-norm partition
for F: if p,, is a k;,, F},-polynomial (on T) and is non-zero for at most finitely-many

m, then
Z [P lloe < 27| Z Prmllso-
m=1 m=1

Recall that B(F) (the restrictions to F' of Fourier-transforms of bounded Borel
measures on T) is the Banach space dual of Trigp(T) (the trigonometric polynomials
with spectrum in F'). For p € Trigp(T), let p,,, denote its summand in Trigg  r  (T)
under the natural decomposition. Then f € B(F),

.‘Mg
gh
S
S

Z ’f |kmFm HB(k Fm)HpmHoo
m—1

(Sup ||f|kmFm |B(k F, ) Z HpmHoo

< (r sup, 1F T Hoo)(%\lp\loo)

(27T7“||f|!oo)\|p\|oo

Thus, || f|lpr) < 277|f|loc. By the definition of Sidon constant, a(F) < 277 and
thus F'is Sidon. [

Proof of Theorem 17. As in the proof of Theorem 8, suppose that there is some
r € [1,00) such that, for all m, there is an abelian group I', and F,,, C T, for
which a(F),,) < r and u(F,,,m) > m. Let I' be the direct sum of the I';,’s. Embed
[, into T' canonically: = +— ~, where v,(m) = x and v,(j) = 0 for 7 # m. Under
this embedding, neither «(F},) nor v(F,,, m) changes. Let

F= Fo,.

1

18

Then for all m, v(F,m) > v(F,,,m) > m. Evidently, F' is not the finite union of I
sets.

To see that F'is a Sidon set, set E = F\{0} and E,, = F,,,\{0}. Then, {E,,}>°_,
is a sup-norm partition of E. Specifically, let G is the compact group dual to I" (T is
given the discrete topology). For p € Trigg(G), if p; denotes its natural summand
in Trigg, (I'), then

oo
D il < 7lplloo
j=1
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by Lemma 12.2.2 of page 370, [4]. To apply that lemma two things are required.
First, no E; may contain 0, which is true here. Second, in the language of [4], the
ranges of {p;}32, are 0-additive: given {g;}32; from G, there is some g € G for
which

(8) p(g) — ij(gj) =0.

Here’s a proof of equation (8). G is the infinite direct product of G,, = I/’;L That
is, g € G if and only if,

g: 7t — UGm, with  g(m) € Gy,.

Let g € G satisty g(j) = g;(j). Note that for any character v used in p;, (7v,g) is
determined by g(j) (because v is 0 in every other coordinate):

(v.9) = [ [(1(), 9(5)) = (1), 9()) = (v(3)» 95()) = (v, 95)-

S

Thus p(g) = >272,pi(9) = 22721 pj(g;)- Once it is known that E is sup-norm
partitioned by the FE}’s, then just as in the proof of Theorem 16 one has

a(F) < wsupa(Ey) < mr.
¢

That proves that F is Sidon. Since {0} is a Sidon set, and the union of two Sidon
sets is Sidon [11], F U {0} is Sidon. Because F' C E U {0}, that makes F' be Sidon
as well. [

Proof of Lemma 20. Let t equal the right-hand side of (4F). By Lemma 18, ¢ <
v(E,m). Consider next the reversed inequality. For finite F' C E there are Ij sets
I, r (possibly equal to () with Ip-degree no more than m such that

t
F=]JIr
q=1

Without loss of generality, it may be assumed that the I, r’s are disjoint for distinct
q’s. Hence

t

(9) Xe =D X, e

q=1

By using Alaoglu’s Theorem in /o, (I') = ¢1(I")* with successive subnets ¢ times,
there is a subnet Fj3 of the net of all finite subsets of E (ordered by increasing
inclusion) such that

lim X’q,Fg =f, for 1<q¢<t  weak-*inly(I).

p—o0
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This convergence implies pointwise convergence on I'.
Necessarily, fq = x,, for some set I, C I'. By equation (9),

t t
D xy = Jim D X, ., = Jim xp, = X
g=1 g=1
Thus, E is the disjoint union of the I,’s. Because each I is the limit of I, r, with

N(14,Fr,) < m, we have N(I;) < m by Proposition 5. [

We conclude this section by observing that the class of finite unions of Iy sets is
F, in 2.

Proposition 21. The class of subsets of I' which are finite unions of Iy sets is F,
in 2': they are | J{E CT | v(E,i) <i} where {E CT | v(E,i) <i} is closed in
2,

Proof. E is in the class if and only there are m and n such that v(E, m) < n. Since
v(E,m) < n implies v(E,i) < i for ¢ = max{m,n}, this class is equal to |J, U;
where

U={ECT | v(E,i)<i).

As in the proof of Lemma 2, equation (4F) and Lemma 18 imply that U; is closed
in2'. O

APPENDIX

Lemma 1. For E CT,

AP(E) = C(bT) | ;= C(E) |,= AP(I) |, .

Proof. Let us adopt as the definition of AP(F) that it is the closure in ¢ (E) of
B4(FE). First consider AP(E) = C(bI') |,. Let g € C(bI'). By [18, p. 32], there is
a sequence p; € My(G) such that 1; converges uniformly on I' to g. Necessarily,
since £ C I,

ﬁ; ’Ee Bd(E) and JILH;OIE’; |E: g ’E in £OO(E)

That puts g | ,€ AP(E). Conversely, suppose that w € AP(E). There is a sequence
of u; € My(G) such that 15 |, converges uniformly on E to w. Because E is dense
in £ and this convergence is uniform on F, it follows that

lim 7 |- =

Juce Hj ‘ 5 f
for some f which is a continuous function on E and f |, = w. Because bI' is compact
and Hausdorff, it is normal; thus Tietze’s extension theorem applies to f and there

is some g € C(bI') such that g |_= f [2]. Since £ C E,

w:f|E:g|E'

Thus, w € C(bT') |,.
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Next, consider C'(bT') |,= C(E) |,. Let f € C(E). As happened in the previous
paragraph, Tietze’s extension theorem provides some g € C'(bI') such that g ]f = f.

Since E C E, one has f |,= g |,. Conversely, suppose that g € C(bT'). Then
g | € C(E). Necessarily, since E C E,

9le=(915) s

Finally, consider C(0I') |,= AP(I') |,. Let f € AP(I'). By [18, p. 32], f
extends to a continous function g € C(bI'). Since E C T, f |,= g |,. Conversely,
let g € C(bT'); by [18, p. 32|, g |.€ AP(T"). Since E C T,

9le=(g1:) |e
O
Definition. E C T is called helsonian if and only if, E C bl is a Helson set in
bI'.
Proposition 2. E C I is helsonian if and only if B4(FE) = AP(FE).

Proof. Suppose that E C I is helsonian. Let f € AP(FE). By Lemma 1, there

is some g € C(F) such that g |,= f. By hypothesis, E C OI' is Helson; the
definition of Helson is that, for every continuous function g on E, there is some
€ L1(Gq) = My(G) such that i |_= g. Because I C E,

ﬂ ’E: g ’E:

Thus, AP(F) C B4(E); by condition (1) of Section 1, AP(E) = By(FE).
Next, suppose that AP(E) = By(E) and let f € C(E). By Lemma 1, f |,€
AP(FE); since AP(E) = By(E),

flo=ft]y, forsome pe My(G),

Since /i is continous on bI' and E C b, ju | is continuous on E. Because both /i -
and f are continuous on E, E is dense in E, and f |,= fi |, one has

f=il..
This makes E be a Helson subset of bI' and hence E helsonian. [

Proposition 3. Helsonian implies Sidon.

Proof. By [18, p.115, Th'm 5.6.3], E C bI" is Helson if and only if, there is some
K € R* such that, for all bounded Borel measures p supported on E,

il < Ko (ca)-

This applies to the discrete measures supported on F, u € My(E). Because E C T,
for p € My(E) one has fi continous on G with respect to the original compact
topology on G. Thus, for u € ¢1(E) = My(FE),

(A-1) el < Kllillc@)-
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Let W(G) be the space ¢1(FE), with the supremum norm. By (A-1) it is a closed
subspace of C(G) and equivalent under ¢ ="to ¢1(F). Therefore, using Banach
space dualities, ¢* is an equivalence between W (G)* and lo(E). Since W(G) is
a closed subspace of C(G), W(G)* is a quotient Banach space of C(G)* = M(G):
w € W(G)* if and only there is some v € M(G) such that w = v + W(G)*, where

W(G)* = {pe M(G) | n(W(G)) = {0} }.
Thus, for w € W(G)* and f € ¢1(E), if w = v + W(G)*, then

(0" (w), f) = (w, ¢(f)) = (. ).

However, because f =3 pcydy with 3° plcy| < 0o, we may use Fubini’s theo-
rem in the following calculation:

wﬁ:Lﬂmwm

= /G Z(—x,y)cy dv(z)

yek

_ ch/G<—:c,y> dv(z)

yer

= Z ey ()

yer
= (0, f).
Since this holds for all f € ¢1(E), ¢*(w) = ¥ |, in {o(E). Thus, since ¢* is onto
loo(E), B(E) = {5 (F) and hence E is Sidon. O
Proposition 4. B(F) = AP(E) implies that E is Iy.

Proof. Since
I fllE) = 11 flloos

the two Banach spaces have equivalent norms: there is some K € R such that

1f s < Kl[fll-

As in [11], this is equivalent to the Sidonicity of E: ¢« (E) = B(FE). Since AP(E) =
B(FE), one therefore has AP(F) = {(F) and thus F is an [y set. [

Example 5. Helsonian does not imply I.

Proof. In general, the union of two helsonian sets £ and F' is helsonian, because
the union of two Helson sets is Helson [4, 48-67] and

EUF=EUF.

Apply this to the sets {2"},, and {2" + n},, which are sufficiently lacunary to be
Iy sets and hence helsonian [19]. However, the two sets have some cluster points
in common in bZ and hence the function which is 1 on one of them and 0 on the
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other cannot be extended almost periodically to all of Z. To see that they have a
cluster point in common, note that there is a net {ng} C Z* such that ng — 0 in
bZ. By the compactness of bZ, there is a subnet 3; for which 2"5: is convergent in
bZ. By the continuity of the group operations in bZ,

li{n 210 = li%rn(Z”Bt +ng,).
0

Kalton’s Theorem Revisited. This result of Kalton’s is close to previous
work by Kahane, J.-F. Méla, Ramsey and Wells [7,12,15].

Definition. Let D(N) denote the set of discrete measures pn on G for which

N
H = Z Cj(Stj,
7j=1

where |c;| <1 and t; € G for each j. For E CT and § € RT, let AP(E,N,J) be
the set of [ € boo(E) for which there exists p € D(N) such that

E is said to be I(N,0) if the unit ball in {o(F) is a subset of AP(E, N,6).

Lemma 6. For E CT and § € RT, the set AP(E, N,0) is closed in C¥ (the space
of all complex functions on E with the topology of pointwise convergence).

Proof. Let f, be a net of functions from AP(FE,N,§) which converge to some
f € CE. Let puo € D(N) satisfy

[fo = o | lloe <0
Write g, as

N
- § Ci,a(sti’oﬁ
=1

with |¢; o] <1 and t; € G for all i. Because G and the unit disc of C are compact,
one may choose successive subnets of the a’s so that, if one labels the final net with

B,
liénciﬁ =c¢; €C and liglti’ﬁ =t; € G, forall i.

Of course, |¢;| < 1. Let p = Zzlil ci0¢,. Since the topology on G is that given by
uniform convergence on compact subsets of I', we have, for all x € I and each 1,

lim 3, () = (=2, ti,5) = (=, 1) = 3y, ().

It follows that, for all x € E C T,

hm pp(x) = hchZ 55,51 P Zcz(St (x).

Therefore, for all x € F,
|f(@) = fi@)] = lim | f5 () — fp () < 6.
Thus f € AP(E,N,0). O
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Theorem 7. For any discrete abelian group I' and E C T, the following are equiv-
alent:

(1) E is an Iy set.

(2) There is some § € (0,1) and some N for which E is I(N,?).

(3) There is some § € (0,1) and some M € RT such that, for all f in the
unit ball of {s(E), there are points g; € G and complex numbers c; with
lcj| < M&7 for which

oo
f=p|, wherep= ch5gj.
j=1

(4) For all § € (0,1) there is some N for which E is I(N,J).
(5) Ba(E) = loo(E).

Proof. Assume (1) above, and consider (2) with § = 1/2. Let T denote the complex
numbers of modulus 1 and T¥ the set of all functions on E with values in T.
Condition (1) implies that

(A-2) T c | JAP(E,n,1/5).

Since AP(E,n,1/5) is closed in C¥ as is T¥ (under the topology of pointwise
convergence), AP(E,n,1/5) NT¥ is a closed subset of T¥ and hence measurable.
Because condition (A-2) involves the union of sets which increase with n, there
is some N for which the measure of AP(E,N,1/5) N T is at least 1/2 for the
Haar measure on T?. Since T¥ is a connected topological group, a theorem of
Kemperman’s implies that AP(E,N,1/5) - AP(E,N,1/5) = T¥ [9]. So, for any
f € TE, there are functions f; and fy in AP(E, N,1/5) N T¥ such that f = fi fo.
There are discrete measures p1 and ps in D(N) such that p7 approximates f; within
1/5 on E and ji3 approximates fo within 1/5 on E. It follows that, for z € E,

(@) — v ()] = |(f - f2) (@) — (@) ()|
< @) [fale) - ()] + @ (@) (@) - m()]
< 1/54 (1/5) * (|fala)| + 1/5) = (1/5)(11/5) < 1/2.

Note that p; * g can be represented as a sum of N? point masses with complex
coefficients bounded by 1 in absolute value:

N N
K * p2 = <Z Cié:tm-) * Zdj‘syj = Z(Cidj)(smﬁyj'
j=1

i=1 4,

Finally, note that g on E with [|g||oc < 1 is an average of two functions in TZ:
there exists g; and go in TF such that ¢ = (g1 + g2)/2. [In C, project g(z) to
two points of modulus one whose line segment joining them is perpendicular to the
radial segment from 0 to g(z). If g(xz) = 0, let ¢g1(z) = 1 while go(z) = —1.] If
pi € D(N?) approximates g; within 1/2, then

lg = pis iz | lloo < (1/2) (lgs = 71 | lloo + g2 = 73 o llo0)
< (1/2)(1/2+1/2) = 1/2.
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This puts g in AP(E,2N?,1/2).
(2) implies (3). Condition (2) will be applied inductively. Let f € ¢ (E) with
| fllcoc < 1. There is some p; € D(N) such that

1f =51 [ oo <6

Next, suppose p; € D(N) have been selected for ¢ < J, such that
J .
1fF=> 6 i | I < 67
i=1
Apply condition (2) to
J .
g=0" (f =) o |E)
i=1

to obtain p 741 € D(IN) such that

lg = 53 15 lloo < 0.

Then
J+1 .
1F =D 0" failloe = 67 llg — 71 | lloo
i=1

< 5J+1.

By the induction principle, there is a sequence p; € D(N) such that

o -
f=2 0"l
i=1

One may enumerate the point masses used in u; consecutively for each 7, say as
dz,, so that the coefficient of d,, is bounded by 6~ for (i — 1)N < j < iN. Let ¢;
be this coefficient. Then, since § € (0, 1),

cil <87 = §lI/NT=1 < §G/N)=1 — (1 /5)(51/N)I,
J

This proves condition (3) with M = 1/6 and 6/ in the role of 4.
(3) implies (4). Let condition (3) hold with M and some ¢’ € (0,1) and consider
any 0 € (0,1) for condition (4). Since §’ € (0, 1) there is some N’ such that

M > () =M@V /1-8) <0
J=N'+1
Specifically, one needs

(N’ +1)log(¢") <log([6(1 —¢&")/M])
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and hence
N' > {log([6(1 — ¢")/M])/log(¢")} — 1.

For j < N', set m; = [M(5')7].
Let f be in the unit ball of /o (F). By condition (3), there are coefficients c;
and elements ¢; of G such that |c;| < M(§’)7 and

o]
f=il,, where M:chdtj.

Jj=1

Let p; = [|c;[]; necessarily, p; < m;. Set ¢; = |c;|e'% for some real ;. Then

mj
Cj5tj = E Cj,i(stj,i,
i=1

where ¢;; = t; for all 7 and

e'fi for 1<i<pj,
cji=1q €%l —pj+1), for i=p;
0, for @ > p;.

It follows that
1f =7 1s o) <6,

where
N’ N’ m;
Vv = E Cj(stj = E E Ci,j(sti’j
j=1 j=1i=1
: N’ . : : :
is a sum of N” = 77", m; point masses with coefficients bounded by one in

absolute value. Thus f € AP(E,N",$) and FE is an I(N",0) set.

(4) implies (5). (4) implies (2), which has been shown to imply (3). Let
fel=E). If f=0, f € By(E) trivially. If f # 0, apply (3) to g = f/||f]le to
obtain a discrete measure p such that i |,= g. Clearly,

Flloott o= .

(5) implies (1). By equation (1) of the introduction, B4(E) C AP(FE) C
lo(E). If B4(E) ={lx(FE), then AP(E) = {5 (FE) and hence E is an I set. [
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