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Abstract. It is proved that proportions of Sidon sets are I0 subsets of controlled

degree. That is, a set E is Sidon if and only if, there are r > 0 and positive integer n
such that, for every finite subset F ⊂ E, there is H ⊂ F with the cardinality of H at

least r times the cardinality of F and N(H) ≤ n (N(H) is a measure of the degree

of being I0). This paper leaves open David Grow’s question of whether Sidon sets
are finite unions of I0 sets.

Introduction

An I0 degree, N(E), will be defined below; it is finite if and only if E is an I0 set
and allows a quantification of being I0. The purpose of this paper is to prove the
following theorem, which offers weak affirmative evidence to David Grow’s question:
must Sidon sets be finite unions of I0 sets [G]?

Theorem 1. Let Γ be a discrete abelian group. Then E ⊂ Γ is Sidon if and only
if, there are some real r > 0 and positive integer n such that, for all finite F ⊂ E,
there is some H ⊂ F for which |H| ≥ r|F | and N(E) ≤ n.1

In what follows, Γ is a discrete, abelian group and G its compact dual. M(G) is
the Banach algebra of bounded Borel measures on G; Md(G) is the subalgebra of
M(G) consisting of discrete measures. For E ⊂ Γ, B(E) is the Banach algebra of
the restrictions to E of Fourier transforms of measures µ ∈ M(G); Bd(E) consists
of the restrictions to E of Fourier transforms of measures µ ∈ Md(G). The closure
of Bd(E) in `∞(E) is called AP (E) (the almost periodic functions restricted to E).
E ⊂ Γ is said to be Sidon if and only if B(E) = `∞(E) [LR]; E is called an I0 set
if and only if AP (E) = `∞(E) [HR]. The following definition offers a measure of
being an I0 set.
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Definition. Let D(N) denote the set of discrete measures µ on G for which

µ =
N∑

j=1

cjδtj
,

where |cj | ≤ 1 and tj ∈ G for each j. For E ⊂ Γ and δ ∈ R+, let AP (E,N, δ) be
the set of f ∈ `∞(E) for which there exists µ ∈ D(N) such that

‖f − µ̂ |
E
‖∞ ≤ δ.

E is said to be I(N, δ) if the unit ball in `∞(E) is a subset of AP (E,N, δ). The I0

degree of E, N(E), is defined to be the first N such that E is I(N, 1/2); if no such
N exists, N(E) is set equal to ∞.

By the following theorem, I0 sets are exactly those for which N(E) < ∞. The
following theorem was known to Kahane, Mèla, Ramsey and Wells much earlier,
but the authors like Kalton’s more recent formulation and proof ([Kl],[Kh], [M],
[RW]).

Theorem 2. For any discrete abelian group Γ and E ⊂ Γ, the following are equiv-
alent:

(1) E is an I0-set.
(2) There is some real δ ∈ (0, 1) and some N for which E is I(N, δ).
(3) There is some real δ ∈ (0, 1) and some M ∈ R+ such that, for all f in the

unit ball of `∞(E), there are points gj ∈ G and complex numbers cj with
|cj | ≤ Mδj for which

f = µ̂ |
E

where µ =
∞∑

j=1

cjδgj .

(4) For all real δ ∈ (0, 1) there is some N for which E is I(N, δ).
(5) Bd(E) = `∞(E).

Corollary 3. For any discrete abelian group Γ and E ⊂ Γ, if E is I(N, δ) for
some real δ ∈ (0, 1), then condition (3) holds with M = 1/δ and δ1/N in the role of
δ.

Proof. This is implicit in Kalton’s proof, and made explicit in [R]. �

One can weaken the conditions of interpolation and still attain an equivalent
“degree” for I0 sets [R].

Definition. Let C1 and C2 be closed subsets of the complex plane. For E ⊂ Γ, E
is said to be J(N,C1, C2) if and only if, for all F ⊂ E, there is some µ ∈ D(N)
such that µ̂(F ) ⊂ C1 and µ̂(E\F ) ⊂ C2. When C1 = {z | <(z) ≥ δ}, and
C2 = {z | <(z) ≤ −δ}, J(N,C1, C2) is abbreviated as J(N, δ). J(E) is defined to
be the first N such that E is J(N, 1/2); if no such N exists, J(E) is set equal to
∞.

The next theorem is proved in [R], and shows that E is I0 if and only if J(E) < ∞.
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Theorem 4. The following are equivalent:

(1) E is an I0 set.
(2) E is J(N,C1, C2) for some N and disjoint subsets C1 and C2.
(3) For all real δ ∈ (0, 1), there is some N such that E is J(N, δ).

The next lemma relates J(N, δ) to J(E).

Lemma 5. If E is J(N, δ) for some δ ∈ (0, 1), then J(E) ≤ KN where K =
d1/(2δ)e.

Proof. Assume that E is J(N, δ). Then, for any F ⊂ E, there is some µ ∈ DN

such that
(∀γ ∈ F ) (<(µ̂(γ)) ≥ δ) ,

and
(∀γ ∈ E\F ) (<(µ̂(γ)) ≤ −δ) .

Because K ≥ 1/(2δ), Kδ ≥ 1/2 and thus

<
(
K̂µ(γ)

)
≥ 1/2, for γ ∈ E,

while
<

(
K̂µ(γ)

)
≤ −1/2, for γ ∈ (E\F ).

One can write Kµ as a sum of KN point masses with complex coefficients bounded
by 1 in absolute value. Thus E is J(KN, 1/2) and J(E) ≤ KN . �

It is readily evident that J(E) ≤ N(E). In [R], it is proved that there is a
bounded relation between J(E) and N(E):

Theorem 6. There is a function φ with φ(Z+) ⊂ Z+ such that, for all discrete
abelian groups Γ and all E ⊂ Γ,

J(E) ≤ N(E) ≤ φ(J(E)).

A key ingredient of the proof of Theorem 1 is this theorem [P]:

Theorem 7. E is a Sidon set if and only if, there is some δ > 0 with the following
property: for every finite A ⊂ E, there are points gj ∈ G, 1 ≤ j ≤ N with
N ≥ 2δ|A|, such that

sup
γ∈A

|γ(gi)− γ(gj)| ≥ δ, for all i 6= j.

The last ingredients of the proof are Elton’s theorem about sign-embeddings of
`n
1 into real Banach spaces [E] and Pajor’s generalization of Elton’s theorem to

complex Banach spaces [Pa]. The proof given in this paper does not quote their
theorems verbatim; rather, parts of the their proofs are adapted to this situation.
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Proof of Theorem 1

Sufficiency. Suppose that E ⊂ Γ has some real r > 0 and positive integer N such
that, for every finite subset F ⊂ E,

(∃H ⊂ F ) (|H| ≥ r|F | and N(H) ≤ n) .

Then H is I(n, 1/2). By Corollary 3, condition (3) of Theorem 2 holds with M = 2
and δ = (1/2)1/n. It follows that, for every f in the unit ball of `∞(E), there is
some µ ∈ Md(G) such that µ̂ |

H
= f and

‖µ‖Md(G) ≤ L = 2
∞∑

j=1

2−j/n < ∞.

For all f ∈ `∞(H), there is a constant L which depends only on n such that

‖f‖Bd(H) ≤ L‖f‖`∞(H).

Since ‖f‖B(H) ≤ ‖f‖Bd(H), one has

‖f‖B(H) ≤ L‖f‖`∞(H).

Thus H is a Sidon set with Sidon constant at most L, with L independent of F ⊂ E.
That suffices to make E be Sidon, by Corollary 2.3 of [P].

Necessity. Suppose that E is Sidon. Apply Theorem 7. There is some δ > 0 such
that, for all finite F ⊂ E, there are at least 2δ|F | points gj of G such that, for i 6= j,

(1) sup
γ∈F

|γ(gj)− γ(gi)| ≥ δ.

Necessarily, δ ≤ 2.
Let F ⊂ E of cardinality n. Enumerate F as γ1, . . . , γn. Choose p so that

τ = 2π/p < δ/2. To be specific, let p = 1 + d4π/δe. Let T denote the unit circle in
the complex plane. Partition T into disjoint arcs, Tk, 1 ≤ k ≤ p, of the form

Tk = { eiθ | (k − 1)τ ≤ θ < kτ }.

Let Q = d(1− 2−δ/2)−1e. and set τ ′ = τ/Q. Partition each Tk into Q arcs Uk,m

of the form

Uk,m = { eiθ | (k − 1)τ + (m− 1)τ ′ ≤ θ < (k − 1)τ + mτ ′ },

for 1 ≤ m ≤ Q. Finally, let S0 denote a set of at least 2δ|F | points of G which
satisfy inequality (1).

Define Si inductively. Let

Si
k = { g ∈ Si−1 | γi(g) ∈ Tk }

and
Si

k,m = { g ∈ Si−1 | γi(g) ∈ Uk,m }.
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Then
Si−1 = ∪p

k=1S
i
k

and
Si

k = ∪Q
m=1Si

k,m.

There is some m(i, k) such that

|Si
k,m(i,k)| ≤ Q−1|Si

k|.

So, ∣∣∣∪p
k=1S

i
k,m(i,k)

∣∣∣ ≤ Q−1 |Si−1| .

Let
Si = Si−1\ ∪p

k=1 S
i
k,m(i,k).

Then
|Si| ≥ (1−Q−1) |Si−1| .

By induction one has
|Sn| ≥ (1−Q−1)n |S0| .

Note that Q ≥ (1− 2−δ/2)−1; consequently,

(1−Q−1) ≥ 2−δ/2.

Therefore,

|Sn| ≥ (1−Q−1)n |S0|

≥ (2−δ/2)n2δn

= 2nδ/2.

For 1 ≤ i ≤ n and 1 ≤ k < p, let Ii,k be the arc between Uk,m(i,k) and
Uk+1,m(i,k+1). For k = p, let Ii,k be the arc between Uk,m(i,k) and U1,m(i,1). Neces-
sarily,

(2) Ii,k ⊂ { eiθ | (k − 1)τ + τ ′ ≤ θ < (k + 1)τ − τ ′ }.

The length (and hence the diameter) of each of these arcs is at most (2− 2/Q)τ <
2 ∗ (δ/2) = δ.

It is possible for Ii,k = ∅, which will happen when k < p, m(i, k) = Q and
m(i, k + 1) = 1; it will also happen when k = p, m(i, k) = Q and m(i, 1) = 1.
Otherwise, eikτ is in the closure of Ii,k: it is in Ii,k when m(i, k + 1) > 1 and when
k = p and m(i, 1) > 1. When m(i, k + 1) = 1 and Ii,k 6= ∅,

{eiθ | (k − 1)τ + (Q− 1)τ ′ ≤ θ < kτ} ⊂ Ii,k.

Likewise, when m(i, 1) = 1 and Ii,p 6= ∅,

{eiθ | (p− 1)τ + (Q− 1)τ ′ ≤ θ < pτ} ⊂ Ii,p.
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For all other j 6= k, there is an arc of length τ ′ between Ii,k and eijτ (e.g.,
Uk,m(i,k) or Uk+1,m(i,k+1) when 1 ≤ k < p).

Each sequence {ki}n
i=1, with 1 ≤ ki ≤ p, defines a cylinder in `∞(F ) of the

following form:
W [{ki}n

i=1] = { f ∈ `∞(F ) | f(γi) ∈ Ii,ki
}.

For g ∈ G, let fg(γ) = γ(g) for γ ∈ F . Because these cylinders are disjoint, each fg

is in at most one of them. Sn was chosen to guarantee the fg would be in at least
one cylinder for g ∈ Sn. For g ∈ Sn, let h(g) = {ki}n

i=1 define the cylinder which
contains fg.

Because each cylinder has diameter less than δ, inequality (1) implies that each
cylinder contains at most one fg for g ∈ Sn. Hence

|Sn| = |h(Sn)|.

For any subset H ⊂ F , let ΠH be this projection: for f ∈ `∞(F ),

ΠH(f) = f |
H

.

By Corollary 2 of [Pa, p. 742], there is a constant c′′ > 0 which depends only on
δ/2 and p (which itself depends only on δ) such that there are some H ⊂ F and
integers a < b from [1, p] such that

|H| ≥ c′′|F |

and
{a, b}H ⊂ ΠH(h(Sn)).

Case 1: |(a − b) mod p| ≥ 2. On the circle, there are two arcs between eiaτ

and eibτ . Choose c so that eicτ is the center of the shorter of these two arcs,
a ≤ c ≤ a + p. Necessarily c 6= a and c 6= b. c is either a half-integer or an integer.
If c is an integer, then eicτ is separated by arcs of length τ ′ from Ii,a and Ii,b. If
c is a half-integer, c− 1/2 and c + 1/2 are both integers which are distinct from a
and b. Since there are arcs of length τ ′ between each of ei(c−1/2)τ and ei(c+1/2)τ

and each of Ii,a and Ii,b, there are arcs of length τ ′ between eicτ and each of Ii,a

and Ii,b.
Case 1A. Assume that a < c < b. Let z2 ∈ Ii,b and z1 ∈ Ii,a. Then

Ii,b = { eiθ | x ≤ θ ≤ y },

where x and y can be chosen to satisfy

x ≥ bτ − τ + τ ′ and y ≤ bτ + τ − τ ′.

[See equation (2).] Moreover, since eicτ is separated from Ii,b by an arc of length
τ ′, and both cτ < bτ and x < bτ , we have

cτ + τ ′ ≤ x.

Because eicτ is the center of the shorter of the two arcs between eiaτ and eibτ ,

bτ − cτ ≤ π/2.
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Since δ ≤ 2 and τ < δ/2 (and τ ′ > 0), we have z2 = eiθ with

cτ + τ ′ ≤ θ < cτ + π/2 + 1.

Hence
e−icτz2 = ei(θ−cτ), with τ ′ ≤ θ − cτ ≤ π/2 + 1.

Thus e−icτz2 is in the top half-plane, with

<(e−icτz2) ≥ τ ′′ = min{sin(τ ′), sin(π/2 + 1)} > 0.

Likewise, e−icτz1 is in the lower half-plane, with

<(e−icτz1) ≤ −τ ′′ < 0.

Because {a, b}H ⊂ ΠH(h(Sn)), for any A ⊂ H there is some g ∈ Sn such that
h(g)(γ) = b for γ ∈ A and h(g)(γ) = a for γ ∈ H\A. Let µ = e−icτδg; µ ∈ D(1).
Because h(g)(γi) = b if and only if γi(g) ∈ Ii,b, for γ ∈ A we have

<( ̂e−icτδg(γ)) = <(e−icτγ(g)) ≥ τ ′′

Likewise, for γi ∈ H\A, γi(g) ∈ Ii,a and hence

<( ̂e−icτδg(γ)) = <(e−icτγ(g)) ≤ −τ ′′

This proves that H is J(1, τ ′′).
Case 1B. Assume that b < c < a + p. Let z2 ∈ Ii,a and z1 ∈ Ii,b. Then

z2 = eiθ with
cτ + τ ′ ≤ θ < cτ + π/2 + 1,

and
e−icτz2 = ei(θ−cτ), with τ ′ ≤ θ − cτ < π/2 + 1.

Thus e−icτz2 is in the top half-plane, with

<(e−icτz2) ≥ τ ′′ > 0.

Likewise, e−icτz1 is in the lower half-plane, with

<(e−icτz1) ≤ −τ ′′ < 0.

Because {a, b}H ⊂ ΠB(h(Sn)), for any A ⊂ B there is some g ∈ Sn such that
h(g)(γ) = a for γ ∈ A and h(g)(γ) = b for γ ∈ H\A. Let µ = e−icτδg; again,
µ ∈ D(1). Because h(g)(γi) = a if and only if γi(g) ∈ Ii,a, for γ ∈ A we have

<( ̂e−icτδg(γ)) = <(e−icτγ(g)) ≥ τ ′′.

Likewise, for γi ∈ H\A, γi(g) ∈ Ii,b and hence

<( ̂e−icτδg(γ)) = <(e−icτγ(g)) ≤ −τ ′′.
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This proves that H is J(1, τ ′′).
Case 2A: b = a + 1. Because {a, b}H ⊂ ΠH(h(Sn)), for every A ⊂ H there are

g1 and g2 such that

(∀γ ∈ A) (h(g1)(γ) = b and h(g2)(γ) = a) ,

while
(∀γ ∈ H\A) (h(g2)(γ) = a and h(g2)(γ) = b) .

The arc Ui,m(i,b) is between Ii,b and Ii,a. Let

Ui,m(i,b) = {eiθ | a′ ≤ θ < b′},

for some a′ and b′ such that aτ ≤ a′ < b′ ≤ bτ . If z ∈ Ii,b, then z = eiθ for some θ
such that

b′ ≤ θ < bτ + τ − τ ′.

[See inclusion (2).] Likewise, if z ∈ Ii,a, then z = eiθ for some θ such that

aτ − τ + τ ′ ≤ θ < a′.

Thus, when γi(g1) ∈ Ii,b and γi(g2) ∈ Ii,a,

γi(g1 − g2) = γi(g1)/γi(g2) = eiθ

with
τ ′ ≤ b′ − a′ < θ < (b− a)τ + 2τ − 2τ ′ = (3− 2/Q)τ < 3.

Thus, when γ ∈ A, γ(g1 − g2) is in the upper half-plane and

<(γ(g1 − g2)) ≥ τ ′′′ = min{sin(τ ′), sin(3)}.

When γi(g1) ∈ Ii,a and γi(g2) ∈ Ii,b, then

γi(g1 − g2) = γi(g1)/γi(g2) = eiθ

with
−3 < (−3 + 2/Q)τ < θ < a′ − b′ = −τ ′.

Thus, when γ ∈ H\A, This puts γi(g1 − g2) in the lower half plane with

<(γ(g1 − g2)) ≤ −τ ′′′.

This makes H a J(1, τ ′′′) set.
Case 2B: a = 1 and b = p. This is just like Case 2A, if one treats a as p + 1

and switch the roles of a and b.
Set τ ′′′′ = min{τ ′′, τ ′′′}. Every finite F ⊂ E has H ⊂ F such that

|H| ≥ c′′|F |

and H is J(1, τ ′′′′). By Lemma 5, J(H) ≤ d2/τ ′′′′e. By Theorem 5, N(H) ≤
φ(J(H)) for a function φ which is independent of E. Note that J(H) depends only
on τ ′′′′ which in turn depends only on δ (and is independent of F ⊂ E). Also, c′′

depends only on δ, and is independent of F ⊂ E. �
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