PROPORTIONS OF SIDON SETS ARE I_{0} SUBSETS

L. Thomas Ramsey
University of Hawaii

October 28, 1994

Abstract

It is proved that proportions of Sidon sets are I_{0} subsets of controlled degree. That is, a set E is Sidon if and only if, there are $r>0$ and positive integer n such that, for every finite subset $F \subset E$, there is $H \subset F$ with the cardinality of H at least r times the cardinality of F and $N(H) \leq n(N(H)$ is a measure of the degree of being I_{0}). This paper leaves open David Grow's question of whether Sidon sets are finite unions of I_{0} sets.

Introduction

An I_{0} degree, $N(E)$, will be defined below; it is finite if and only if E is an I_{0} set and allows a quantification of being I_{0}. The purpose of this paper is to prove the following theorem, which offers weak affirmative evidence to David Grow's question: must Sidon sets be finite unions of I_{0} sets [G]?

Theorem 1. Let Γ be a discrete abelian group. Then $E \subset \Gamma$ is Sidon if and only if, there are some real $r>0$ and positive integer n such that, for all finite $F \subset E$, there is some $H \subset F$ for which $|H| \geq r|F|$ and $N(E) \leq n .{ }^{1}$

In what follows, Γ is a discrete, abelian group and G its compact dual. $M(G)$ is the Banach algebra of bounded Borel measures on $G ; M_{d}(G)$ is the subalgebra of $M(G)$ consisting of discrete measures. For $E \subset \Gamma, B(E)$ is the Banach algebra of the restrictions to E of Fourier transforms of measures $\mu \in M(G) ; B_{d}(E)$ consists of the restrictions to E of Fourier transforms of measures $\mu \in M_{d}(G)$. The closure of $B_{d}(E)$ in $\ell_{\infty}(E)$ is called $A P(E)$ (the almost periodic functions restricted to E). $E \subset \Gamma$ is said to be Sidon if and only if $B(E)=\ell_{\infty}(E)[\mathrm{LR}] ; E$ is called an I_{0} set if and only if $A P(E)=\ell_{\infty}(E)[H R]$. The following definition offers a measure of being an I_{0} set.

[^0]Definition. Let $D(N)$ denote the set of discrete measures μ on G for which

$$
\mu=\sum_{j=1}^{N} c_{j} \delta_{t_{j}}
$$

where $\left|c_{j}\right| \leq 1$ and $t_{j} \in G$ for each j. For $E \subset \Gamma$ and $\delta \in \mathcal{R}^{+}$, let $A P(E, N, \delta)$ be the set of $f \in \ell_{\infty}(E)$ for which there exists $\mu \in D(N)$ such that

$$
\left\|f-\left.\hat{\mu}\right|_{E}\right\|_{\infty} \leq \delta
$$

E is said to be $I(N, \delta)$ if the unit ball in $\ell_{\infty}(E)$ is a subset of $A P(E, N, \delta)$. The I_{0} degree of $E, N(E)$, is defined to be the first N such that E is $I(N, 1 / 2)$; if no such N exists, $N(E)$ is set equal to ∞.

By the following theorem, I_{0} sets are exactly those for which $N(E)<\infty$. The following theorem was known to Kahane, Mèla, Ramsey and Wells much earlier, but the authors like Kalton's more recent formulation and proof ([Kl],[Kh], $[\mathrm{M}]$, [RW]).

Theorem 2. For any discrete abelian group Γ and $E \subset \Gamma$, the following are equivalent:
(1) E is an I_{0}-set.
(2) There is some real $\delta \in(0,1)$ and some N for which E is $I(N, \delta)$.
(3) There is some real $\delta \in(0,1)$ and some $M \in \mathcal{R}^{+}$such that, for all f in the unit ball of $\ell_{\infty}(E)$, there are points $g_{j} \in G$ and complex numbers c_{j} with $\left|c_{j}\right| \leq M \delta^{j}$ for which

$$
f=\left.\hat{\mu}\right|_{E} \quad \text { where } \mu=\sum_{j=1}^{\infty} c_{j} \delta_{g_{j}}
$$

(4) For all real $\delta \in(0,1)$ there is some N for which E is $I(N, \delta)$.
(5) $B_{d}(E)=\ell_{\infty}(E)$.

Corollary 3. For any discrete abelian group Γ and $E \subset \Gamma$, if E is $I(N, \delta)$ for some real $\delta \in(0,1)$, then condition (3) holds with $M=1 / \delta$ and $\delta^{1 / N}$ in the role of δ.

Proof. This is implicit in Kalton's proof, and made explicit in $[\mathrm{R}]$.
One can weaken the conditions of interpolation and still attain an equivalent "degree" for I_{0} sets $[\mathrm{R}]$.

Definition. Let C_{1} and C_{2} be closed subsets of the complex plane. For $E \subset \Gamma, E$ is said to be $J\left(N, C_{1}, C_{2}\right)$ if and only if, for all $F \subset E$, there is some $\mu \in D(N)$ such that $\hat{\mu}(F) \subset C_{1}$ and $\hat{\mu}(E \backslash F) \subset C_{2}$. When $C_{1}=\{z \mid \Re(z) \geq \delta\}$, and $C_{2}=\{z \mid \Re(z) \leq-\delta\}, J\left(N, C_{1}, C_{2}\right)$ is abbreviated as $J(N, \delta) . J(E)$ is defined to be the first N such that E is $J(N, 1 / 2)$; if no such N exists, $J(E)$ is set equal to ∞.

The next theorem is proved in $[\mathrm{R}]$, and shows that E is I_{0} if and only if $J(E)<\infty$.

Theorem 4. The following are equivalent:
(1) E is an I_{0} set.
(2) E is $J\left(N, C_{1}, C_{2}\right)$ for some N and disjoint subsets C_{1} and C_{2}.
(3) For all real $\delta \in(0,1)$, there is some N such that E is $J(N, \delta)$.

The next lemma relates $J(N, \delta)$ to $J(E)$.
Lemma 5. If E is $J(N, \delta)$ for some $\delta \in(0,1)$, then $J(E) \leq K N$ where $K=$ $\lceil 1 /(2 \delta)\rceil$.

Proof. Assume that E is $J(N, \delta)$. Then, for any $F \subset E$, there is some $\mu \in D_{N}$ such that

$$
(\forall \gamma \in F)(\Re(\hat{\mu}(\gamma)) \geq \delta),
$$

and

$$
(\forall \gamma \in E \backslash F)(\Re(\hat{\mu}(\gamma)) \leq-\delta) .
$$

Because $K \geq 1 /(2 \delta), K \delta \geq 1 / 2$ and thus

$$
\Re(\widehat{K \mu}(\gamma)) \geq 1 / 2, \quad \text { for } \quad \gamma \in E
$$

while

$$
\Re(\widehat{K \mu}(\gamma)) \leq-1 / 2, \quad \text { for } \quad \gamma \in(E \backslash F)
$$

One can write $K \mu$ as a sum of $K N$ point masses with complex coefficients bounded by 1 in absolute value. Thus E is $J(K N, 1 / 2)$ and $J(E) \leq K N$.

It is readily evident that $J(E) \leq N(E)$. In [R], it is proved that there is a bounded relation between $J(E)$ and $N(E)$:

Theorem 6. There is a function ϕ with $\phi\left(\mathcal{Z}^{+}\right) \subset \mathcal{Z}^{+}$such that, for all discrete abelian groups Γ and all $E \subset \Gamma$,

$$
J(E) \leq N(E) \leq \phi(J(E))
$$

A key ingredient of the proof of Theorem 1 is this theorem $[\mathrm{P}]$:
Theorem 7. E is a Sidon set if and only if, there is some $\delta>0$ with the following property: for every finite $A \subset E$, there are points $g_{j} \in G, 1 \leq j \leq N$ with $N \geq 2^{\delta|A|}$, such that

$$
\sup _{\gamma \in A}\left|\gamma\left(g_{i}\right)-\gamma\left(g_{j}\right)\right| \geq \delta, \quad \text { for all } \quad i \neq j
$$

The last ingredients of the proof are Elton's theorem about sign-embeddings of ℓ_{1}^{n} into real Banach spaces $[\mathrm{E}]$ and Pajor's generalization of Elton's theorem to complex Banach spaces [Pa]. The proof given in this paper does not quote their theorems verbatim; rather, parts of the their proofs are adapted to this situation.

Proof of Theorem 1

Sufficiency. Suppose that $E \subset \Gamma$ has some real $r>0$ and positive integer N such that, for every finite subset $F \subset E$,

$$
(\exists H \subset F)(|H| \geq r|F| \quad \text { and } \quad N(H) \leq n) .
$$

Then H is $I(n, 1 / 2)$. By Corollary 3, condition (3) of Theorem 2 holds with $M=2$ and $\delta=(1 / 2)^{1 / n}$. It follows that, for every f in the unit ball of $\ell_{\infty}(E)$, there is some $\mu \in M_{d}(G)$ such that $\left.\hat{\mu}\right|_{H}=f$ and

$$
\|\mu\|_{M_{d}(G)} \leq L=2 \sum_{j=1}^{\infty} 2^{-j / n}<\infty .
$$

For all $f \in \ell_{\infty}(H)$, there is a constant L which depends only on n such that

$$
\|f\|_{B_{d}(H)} \leq L\|f\|_{\ell_{\infty}(H)}
$$

Since $\|f\|_{B(H)} \leq\|f\|_{B_{d}(H)}$, one has

$$
\|f\|_{B(H)} \leq L\|f\|_{\ell_{\infty}(H)}
$$

Thus H is a Sidon set with Sidon constant at most L, with L independent of $F \subset E$. That suffices to make E be Sidon, by Corollary 2.3 of [P].

Necessity. Suppose that E is Sidon. Apply Theorem 7. There is some $\delta>0$ such that, for all finite $F \subset E$, there are at least $2^{\delta|F|}$ points g_{j} of G such that, for $i \neq j$,

$$
\begin{equation*}
\sup _{\gamma \in F}\left|\gamma\left(g_{j}\right)-\gamma\left(g_{i}\right)\right| \geq \delta . \tag{1}
\end{equation*}
$$

Necessarily, $\delta \leq 2$.
Let $F \subset E$ of cardinality n. Enumerate F as $\gamma_{1}, \ldots, \gamma_{n}$. Choose p so that $\tau=2 \pi / p<\delta / 2$. To be specific, let $p=1+\lceil 4 \pi / \delta\rceil$. Let T denote the unit circle in the complex plane. Partition T into disjoint arcs, $T_{k}, 1 \leq k \leq p$, of the form

$$
T_{k}=\left\{e^{i \theta} \mid(k-1) \tau \leq \theta<k \tau\right\} .
$$

Let $Q=\left\lceil\left(1-2^{-\delta / 2}\right)^{-1}\right\rceil$. and set $\tau^{\prime}=\tau / Q$. Partition each T_{k} into $Q \operatorname{arcs} U_{k, m}$ of the form

$$
U_{k, m}=\left\{e^{i \theta} \mid(k-1) \tau+(m-1) \tau^{\prime} \leq \theta<(k-1) \tau+m \tau^{\prime}\right\},
$$

for $1 \leq m \leq Q$. Finally, let \mathcal{S}_{0} denote a set of at least $2^{\delta|F|}$ points of G which satisfy inequality (1).

Define \mathcal{S}_{i} inductively. Let

$$
\mathcal{S}_{k}^{i}=\left\{g \in \mathcal{S}_{i-1} \mid \gamma_{i}(g) \in T_{k}\right\}
$$

and

$$
\mathcal{S}_{k, m}^{i}=\left\{g \in \mathcal{S}_{i-1} \mid \gamma_{i}(g) \in U_{k, m}\right\} .
$$

Then

$$
\mathcal{S}_{i-1}=\cup_{k=1}^{p} \mathcal{S}_{k}^{i}
$$

and

$$
\mathcal{S}_{k}^{i}=\cup_{m=1}^{Q} \mathcal{S}_{k, m}^{i} .
$$

There is some $m(i, k)$ such that

$$
\left|\mathcal{S}_{k, m(i, k)}^{i}\right| \leq Q^{-1}\left|\mathcal{S}_{k}^{i}\right| .
$$

So,

$$
\left|\cup_{k=1}^{p} \mathcal{S}_{k, m(i, k)}^{i}\right| \leq Q^{-1}\left|\mathcal{S}_{i-1}\right| .
$$

Let

$$
\mathcal{S}_{i}=\mathcal{S}_{i-1} \backslash \cup_{k=1}^{p} \mathcal{S}_{k, m(i, k)}^{i}
$$

Then

$$
\left|\mathcal{S}_{i}\right| \geq\left(1-Q^{-1}\right)\left|\mathcal{S}_{i-1}\right|
$$

By induction one has

$$
\left|\mathcal{S}_{n}\right| \geq\left(1-Q^{-1}\right)^{n}\left|\mathcal{S}_{0}\right| .
$$

Note that $Q \geq\left(1-2^{-\delta / 2}\right)^{-1}$; consequently,

$$
\left(1-Q^{-1}\right) \geq 2^{-\delta / 2} .
$$

Therefore,

$$
\begin{aligned}
\left|\mathcal{S}_{n}\right| & \geq\left(1-Q^{-1}\right)^{n}\left|\mathcal{S}_{0}\right| \\
& \geq\left(2^{-\delta / 2}\right)^{n} 2^{\delta n} \\
& =2^{n \delta / 2} .
\end{aligned}
$$

For $1 \leq i \leq n$ and $1 \leq k<p$, let $I_{i, k}$ be the arc between $U_{k, m(i, k)}$ and $U_{k+1, m(i, k+1)}$. For $k=p$, let $I_{i, k}$ be the arc between $U_{k, m(i, k)}$ and $U_{1, m(i, 1)}$. Necessarily,

$$
\begin{equation*}
I_{i, k} \subset\left\{e^{i \theta} \mid(k-1) \tau+\tau^{\prime} \leq \theta<(k+1) \tau-\tau^{\prime}\right\} . \tag{2}
\end{equation*}
$$

The length (and hence the diameter) of each of these arcs is at most $(2-2 / Q) \tau<$ $2 *(\delta / 2)=\delta$.

It is possible for $I_{i, k}=\emptyset$, which will happen when $k<p, m(i, k)=Q$ and $m(i, k+1)=1$; it will also happen when $k=p, m(i, k)=Q$ and $m(i, 1)=1$. Otherwise, $e^{i k \tau}$ is in the closure of $I_{i, k}$: it is in $I_{i, k}$ when $m(i, k+1)>1$ and when $k=p$ and $m(i, 1)>1$. When $m(i, k+1)=1$ and $I_{i, k} \neq \emptyset$,

$$
\left\{e^{i \theta} \mid(k-1) \tau+(Q-1) \tau^{\prime} \leq \theta<k \tau\right\} \subset I_{i, k} .
$$

Likewise, when $m(i, 1)=1$ and $I_{i, p} \neq \emptyset$,

$$
\left\{e^{i \theta} \mid(p-1) \tau+(Q-1) \tau^{\prime} \leq \theta<p \tau\right\} \subset I_{i, p} .
$$

For all other $j \neq k$, there is an arc of length τ^{\prime} between $I_{i, k}$ and $e^{i j \tau}$ (e.g., $U_{k, m(i, k)}$ or $U_{k+1, m(i, k+1)}$ when $\left.1 \leq k<p\right)$.

Each sequence $\left\{k_{i}\right\}_{i=1}^{n}$, with $1 \leq k_{i} \leq p$, defines a cylinder in $\ell_{\infty}(F)$ of the following form:

$$
W\left[\left\{k_{i}\right\}_{i=1}^{n}\right]=\left\{f \in \ell_{\infty}(F) \mid f\left(\gamma_{i}\right) \in I_{i, k_{i}}\right\} .
$$

For $g \in G$, let $f_{g}(\gamma)=\gamma(g)$ for $\gamma \in F$. Because these cylinders are disjoint, each f_{g} is in at most one of them. \mathcal{S}_{n} was chosen to guarantee the f_{g} would be in at least one cylinder for $g \in \mathcal{S}_{n}$. For $g \in \mathcal{S}_{n}$, let $h(g)=\left\{k_{i}\right\}_{i=1}^{n}$ define the cylinder which contains f_{g}.

Because each cylinder has diameter less than δ, inequality (1) implies that each cylinder contains at most one f_{g} for $g \in \mathcal{S}_{n}$. Hence

$$
\left|\mathcal{S}_{n}\right|=\left|h\left(\mathcal{S}_{n}\right)\right| .
$$

For any subset $H \subset F$, let Π^{H} be this projection: for $f \in \ell_{\infty}(F)$,

$$
\Pi^{H}(f)=\left.f\right|_{H} .
$$

By Corollary 2 of [Pa, p. 742], there is a constant $c^{\prime \prime}>0$ which depends only on $\delta / 2$ and p (which itself depends only on δ) such that there are some $H \subset F$ and integers $a<b$ from [1, p] such that

$$
|H| \geq c^{\prime \prime}|F|
$$

and

$$
\{a, b\}^{H} \subset \Pi^{H}\left(h\left(\mathcal{S}_{n}\right)\right)
$$

Case 1: $|(a-b) \bmod p| \geq 2$. On the circle, there are two arcs between $e^{i a \tau}$ and $e^{i b \tau}$. Choose c so that $e^{i c \tau}$ is the center of the shorter of these two arcs, $a \leq c \leq a+p$. Necessarily $c \neq a$ and $c \neq b . c$ is either a half-integer or an integer. If c is an integer, then $e^{i c \tau}$ is separated by arcs of length τ^{\prime} from $I_{i, a}$ and $I_{i, b}$. If c is a half-integer, $c-1 / 2$ and $c+1 / 2$ are both integers which are distinct from a and b. Since there are arcs of length τ^{\prime} between each of $e^{i(c-1 / 2) \tau}$ and $e^{i(c+1 / 2) \tau}$ and each of $I_{i, a}$ and $I_{i, b}$, there are arcs of length τ^{\prime} between $e^{i c \tau}$ and each of $I_{i, a}$ and $I_{i, b}$.

Case 1A. Assume that $a<c<b$. Let $z_{2} \in I_{i, b}$ and $z_{1} \in I_{i, a}$. Then

$$
I_{i, b}=\left\{e^{i \theta} \mid x \leq \theta \leq y\right\}
$$

where x and y can be chosen to satisfy

$$
x \geq b \tau-\tau+\tau^{\prime} \quad \text { and } \quad y \leq b \tau+\tau-\tau^{\prime}
$$

[See equation (2).] Moreover, since $e^{i} c \tau$ is separated from $I_{i, b}$ by an arc of length τ^{\prime}, and both $c \tau<b \tau$ and $x<b \tau$, we have

$$
c \tau+\tau^{\prime} \leq x
$$

Because $e^{i c \tau}$ is the center of the shorter of the two arcs between $e^{i a \tau}$ and $e^{i b \tau}$,

$$
b \tau-c \tau \leq \pi / 2
$$

Since $\delta \leq 2$ and $\tau<\delta / 2$ (and $\tau^{\prime}>0$), we have $z_{2}=e^{i \theta}$ with

$$
c \tau+\tau^{\prime} \leq \theta<c \tau+\pi / 2+1
$$

Hence

$$
e^{-i c \tau} z_{2}=e^{i(\theta-c \tau)}, \quad \text { with } \quad \tau^{\prime} \leq \theta-c \tau \leq \pi / 2+1
$$

Thus $e^{-i c \tau} z_{2}$ is in the top half-plane, with

$$
\Re\left(e^{-i c \tau} z_{2}\right) \geq \tau^{\prime \prime}=\min \left\{\sin \left(\tau^{\prime}\right), \sin (\pi / 2+1)\right\}>0
$$

Likewise, $e^{-i c \tau} z_{1}$ is in the lower half-plane, with

$$
\Re\left(e^{-i c \tau} z_{1}\right) \leq-\tau^{\prime \prime}<0
$$

Because $\{a, b\}^{H} \subset \Pi^{H}\left(h\left(\mathcal{S}_{n}\right)\right)$, for any $A \subset H$ there is some $g \in \mathcal{S}_{n}$ such that $h(g)(\gamma)=b$ for $\gamma \in A$ and $h(g)(\gamma)=a$ for $\gamma \in H \backslash A$. Let $\mu=e^{-i c \tau} \delta_{g} ; \mu \in D(1)$. Because $h(g)\left(\gamma_{i}\right)=b$ if and only if $\gamma_{i}(g) \in I_{i, b}$, for $\gamma \in A$ we have

$$
\Re\left(\widehat{e^{-i c \tau}} \delta_{g}(\gamma)\right)=\Re\left(e^{-i c \tau} \gamma(g)\right) \geq \tau^{\prime \prime}
$$

Likewise, for $\gamma_{i} \in H \backslash A, \gamma_{i}(g) \in I_{i, a}$ and hence

$$
\Re\left(\widehat{e^{-i c \tau} \delta_{g}}(\gamma)\right)=\Re\left(e^{-i c \tau} \gamma(g)\right) \leq-\tau^{\prime \prime}
$$

This proves that H is $J\left(1, \tau^{\prime \prime}\right)$.
Case 1B. Assume that $b<c<a+p$. Let $z_{2} \in I_{i, a}$ and $z_{1} \in I_{i, b}$. Then $z_{2}=e^{i \theta}$ with

$$
c \tau+\tau^{\prime} \leq \theta<c \tau+\pi / 2+1
$$

and

$$
e^{-i c \tau} z_{2}=e^{i(\theta-c \tau)}, \quad \text { with } \quad \tau^{\prime} \leq \theta-c \tau<\pi / 2+1
$$

Thus $e^{-i c \tau} z_{2}$ is in the top half-plane, with

$$
\Re\left(e^{-i c \tau} z_{2}\right) \geq \tau^{\prime \prime}>0
$$

Likewise, $e^{-i c \tau} z_{1}$ is in the lower half-plane, with

$$
\Re\left(e^{-i c \tau} z_{1}\right) \leq-\tau^{\prime \prime}<0
$$

Because $\{a, b\}^{H} \subset \Pi^{B}\left(h\left(\mathcal{S}_{n}\right)\right)$, for any $A \subset B$ there is some $g \in \mathcal{S}_{n}$ such that $h(g)(\gamma)=a$ for $\gamma \in A$ and $h(g)(\gamma)=b$ for $\gamma \in H \backslash A$. Let $\mu=e^{-i c \tau} \delta_{g}$; again, $\mu \in D(1)$. Because $h(g)\left(\gamma_{i}\right)=a$ if and only if $\gamma_{i}(g) \in I_{i, a}$, for $\gamma \in A$ we have

$$
\Re\left(\widehat{e^{-i c \tau}} \delta_{g}(\gamma)\right)=\Re\left(e^{-i c \tau} \gamma(g)\right) \geq \tau^{\prime \prime}
$$

Likewise, for $\gamma_{i} \in H \backslash A, \gamma_{i}(g) \in I_{i, b}$ and hence

$$
\Re\left(\widehat{e^{-i c \tau}} \delta_{g}(\gamma)\right)=\Re\left(e^{-i c \tau} \gamma(g)\right) \leq-\tau^{\prime \prime}
$$

This proves that H is $J\left(1, \tau^{\prime \prime}\right)$.
Case 2A: $b=a+1$. Because $\{a, b\}^{H} \subset \Pi^{H}\left(h\left(\mathcal{S}_{n}\right)\right)$, for every $A \subset H$ there are g_{1} and g_{2} such that

$$
(\forall \gamma \in A)\left(h\left(g_{1}\right)(\gamma)=b \quad \text { and } \quad h\left(g_{2}\right)(\gamma)=a\right),
$$

while

$$
(\forall \gamma \in H \backslash A)\left(h\left(g_{2}\right)(\gamma)=a \quad \text { and } \quad h\left(g_{2}\right)(\gamma)=b\right) .
$$

The $\operatorname{arc} U_{i, m(i, b)}$ is between $I_{i, b}$ and $I_{i, a}$. Let

$$
U_{i, m(i, b)}=\left\{e^{i \theta} \mid a^{\prime} \leq \theta<b^{\prime}\right\}
$$

for some a^{\prime} and b^{\prime} such that $a \tau \leq a^{\prime}<b^{\prime} \leq b \tau$. If $z \in I_{i, b}$, then $z=e^{i \theta}$ for some θ such that

$$
b^{\prime} \leq \theta<b \tau+\tau-\tau^{\prime}
$$

[See inclusion (2).] Likewise, if $z \in I_{i, a}$, then $z=e^{i \theta}$ for some θ such that

$$
a \tau-\tau+\tau^{\prime} \leq \theta<a^{\prime}
$$

Thus, when $\gamma_{i}\left(g_{1}\right) \in I_{i, b}$ and $\gamma_{i}\left(g_{2}\right) \in I_{i, a}$,

$$
\gamma_{i}\left(g_{1}-g_{2}\right)=\gamma_{i}\left(g_{1}\right) / \gamma_{i}\left(g_{2}\right)=e^{i \theta}
$$

with

$$
\tau^{\prime} \leq b^{\prime}-a^{\prime}<\theta<(b-a) \tau+2 \tau-2 \tau^{\prime}=(3-2 / Q) \tau<3
$$

Thus, when $\gamma \in A, \gamma\left(g_{1}-g_{2}\right)$ is in the upper half-plane and

$$
\Re\left(\gamma\left(g_{1}-g_{2}\right)\right) \geq \tau^{\prime \prime \prime}=\min \left\{\sin \left(\tau^{\prime}\right), \sin (3)\right\}
$$

When $\gamma_{i}\left(g_{1}\right) \in I_{i, a}$ and $\gamma_{i}\left(g_{2}\right) \in I_{i, b}$, then

$$
\gamma_{i}\left(g_{1}-g_{2}\right)=\gamma_{i}\left(g_{1}\right) / \gamma_{i}\left(g_{2}\right)=e^{i \theta}
$$

with

$$
-3<(-3+2 / Q) \tau<\theta<a^{\prime}-b^{\prime}=-\tau^{\prime} .
$$

Thus, when $\gamma \in H \backslash A$, This puts $\gamma_{i}\left(g_{1}-g_{2}\right)$ in the lower half plane with

$$
\Re\left(\gamma\left(g_{1}-g_{2}\right)\right) \leq-\tau^{\prime \prime \prime}
$$

This makes H a $J\left(1, \tau^{\prime \prime \prime}\right)$ set.
Case 2B: $a=1$ and $b=p$. This is just like Case 2A, if one treats a as $p+1$ and switch the roles of a and b.

Set $\tau^{\prime \prime \prime \prime}=\min \left\{\tau^{\prime \prime}, \tau^{\prime \prime \prime}\right\}$. Every finite $F \subset E$ has $H \subset F$ such that

$$
|H| \geq c^{\prime \prime}|F|
$$

and H is $J\left(1, \tau^{\prime \prime \prime \prime}\right)$. By Lemma 5, $J(H) \leq\left\lceil 2 / \tau^{\prime \prime \prime \prime \prime}\right\rceil$. By Theorem 5, $N(H) \leq$ $\phi(J(H))$ for a function ϕ which is independent of E. Note that $J(H)$ depends only on $\tau^{\prime \prime \prime \prime}$ which in turn depends only on δ (and is independent of $F \subset E$). Also, $c^{\prime \prime}$ depends only on δ, and is independent of $F \subset E$.

References

[E] John Elton, Sign-Embeddings of $\ell_{1}^{n} 279$ (September, 1983), TAMS, 113-124.
[G] David Grow, Sidon Sets and $I_{0}-$ Sets 53 (1987), Colloquium Mathematicum, 269-270.
[HR] S. Hartman and C. Ryll-Nardzewski, Almost Periodic Extensions of Functions 12 (1964), Colloquium Mathematicum, 23-39.
[Kh] J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson 15 (1966), Colloquium Mathematicum, 87-92.
[K1] J. N. Kalton, On Vector-Valued Inequalities For Sidon Sets and Sets of Interpolation 54 (1993), Colloquium Mathematicum, 233-244.
[LR] Jorge M. López and Kenneth A. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975, p. 4.
[M] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman 29 (1968), Colloquium Mathematicum, 167-193.
[Pa] Alain Pajor, Plongement de ℓ_{1}^{n} dans les espaces de Banach complexes 296 (May, 1983), CRAS, 741-743.
[P] Gilles Pisier, Conditions D'Entropie Et Caracterisations Arithmetique Des Ensembles de Sidon.
[RW] L. Thomas Ramsey and Benjamin B. Wells, Interpolation Sets in Bounded Groups 10(1) (1984), Houston Journal of Mathematics, 117-125.
[R] L. Thomas Ramsey, I_{0}-Sets Are "Finitely Describable", preprint.
[P] Gilles Pisier, Arithmetic Characterization of Sidon Sets 8 (1983), Bull. AMS, 87-89.

Mathematics, Keller Hall, 2565 The Mall, Honolulu, Hawail 96822

RAMSEY@MATH.HAWAII.EDU OR RAMSEY@UHUNIX.UHCC.HAWAII.EDU

[^0]: 1991 Mathematics Subject Classification. 43A56.
 Key words and phrases. Sidon, I_{0}-set, almost periodic functions.
 ${ }^{1}|H|$ denotes the cardinality of H. Unless otherwise specified, variables such as n denote positive integers.

