PROPORTIONS OF SIDON SETS ARE I₀ SUBSETS

L. THOMAS RAMSEY

University of Hawaii

October 28, 1994

ABSTRACT. It is proved that proportions of Sidon sets are I_0 subsets of controlled degree. That is, a set E is Sidon if and only if, there are r > 0 and positive integer nsuch that, for every finite subset $F \subset E$, there is $H \subset F$ with the cardinality of H at least r times the cardinality of F and $N(H) \leq n$ (N(H)) is a measure of the degree of being I_0). This paper leaves open David Grow's question of whether Sidon sets are finite unions of I_0 sets.

INTRODUCTION

An I_0 degree, N(E), will be defined below; it is finite if and only if E is an I_0 set and allows a quantification of being I_0 . The purpose of this paper is to prove the following theorem, which offers weak affirmative evidence to David Grow's question: must Sidon sets be finite unions of I_0 sets [G]?

Theorem 1. Let Γ be a discrete abelian group. Then $E \subset \Gamma$ is Sidon if and only if, there are some real r > 0 and positive integer n such that, for all finite $F \subset E$, there is some $H \subset F$ for which $|H| \ge r|F|$ and $N(E) \le n$.¹

In what follows, Γ is a discrete, abelian group and G its compact dual. M(G) is the Banach algebra of bounded Borel measures on G; $M_d(G)$ is the subalgebra of M(G) consisting of discrete measures. For $E \subset \Gamma$, B(E) is the Banach algebra of the restrictions to E of Fourier transforms of measures $\mu \in M(G)$; $B_d(E)$ consists of the restrictions to E of Fourier transforms of measures $\mu \in M_d(G)$. The closure of $B_d(E)$ in $\ell_{\infty}(E)$ is called AP(E) (the almost periodic functions restricted to E). $E \subset \Gamma$ is said to be **Sidon** if and only if $B(E) = \ell_{\infty}(E)$ [LR]; E is called an I_0 set if and only if $AP(E) = \ell_{\infty}(E)$ [HR]. The following definition offers a measure of being an I_0 set.

¹⁹⁹¹ Mathematics Subject Classification. 43A56.

Key words and phrases. Sidon, I_0 -set, almost periodic functions.

[|]H| denotes the cardinality of H. Unless otherwise specified, variables such as n denote positive integers.

Definition. Let D(N) denote the set of discrete measures μ on G for which

$$\mu = \sum_{j=1}^{N} c_j \delta_{t_j},$$

where $|c_j| \leq 1$ and $t_j \in G$ for each j. For $E \subset \Gamma$ and $\delta \in \mathcal{R}^+$, let $AP(E, N, \delta)$ be the set of $f \in \ell_{\infty}(E)$ for which there exists $\mu \in D(N)$ such that

$$\|f - \hat{\mu}\|_E \|_\infty \le \delta.$$

E is said to be $I(N, \delta)$ if the unit ball in $\ell_{\infty}(E)$ is a subset of $AP(E, N, \delta)$. The I_0 degree of E, N(E), is defined to be the first N such that E is I(N, 1/2); if no such N exists, N(E) is set equal to ∞ .

By the following theorem, I_0 sets are exactly those for which $N(E) < \infty$. The following theorem was known to Kahane, Mèla, Ramsey and Wells much earlier, but the authors like Kalton's more recent formulation and proof ([Kl],[Kh], [M], [RW]).

Theorem 2. For any discrete abelian group Γ and $E \subset \Gamma$, the following are equivalent:

- (1) E is an I_0 -set.
- (2) There is some real $\delta \in (0, 1)$ and some N for which E is $I(N, \delta)$.
- (3) There is some real $\delta \in (0,1)$ and some $M \in \mathcal{R}^+$ such that, for all f in the unit ball of $\ell_{\infty}(E)$, there are points $g_j \in G$ and complex numbers c_j with $|c_j| \leq M\delta^j$ for which

$$f = \hat{\mu} \mid_{\scriptscriptstyle E} \quad where \ \mu = \sum_{j=1}^{\infty} c_j \delta_{g_j}.$$

- (4) For all real $\delta \in (0,1)$ there is some N for which E is $I(N,\delta)$.
- (5) $B_d(E) = \ell_\infty(E).$

Corollary 3. For any discrete abelian group Γ and $E \subset \Gamma$, if E is $I(N, \delta)$ for some real $\delta \in (0, 1)$, then condition (3) holds with $M = 1/\delta$ and $\delta^{1/N}$ in the role of δ .

Proof. This is implicit in Kalton's proof, and made explicit in [R]. \Box

One can weaken the conditions of interpolation and still attain an equivalent "degree" for I_0 sets [R].

Definition. Let C_1 and C_2 be closed subsets of the complex plane. For $E \subset \Gamma$, E is said to be $J(N, C_1, C_2)$ if and only if, for all $F \subset E$, there is some $\mu \in D(N)$ such that $\hat{\mu}(F) \subset C_1$ and $\hat{\mu}(E \setminus F) \subset C_2$. When $C_1 = \{z \mid \Re(z) \geq \delta\}$, and $C_2 = \{z \mid \Re(z) \leq -\delta\}$, $J(N, C_1, C_2)$ is abbreviated as $J(N, \delta)$. J(E) is defined to be the first N such that E is J(N, 1/2); if no such N exists, J(E) is set equal to ∞ .

The next theorem is proved in [R], and shows that E is I_0 if and only if $J(E) < \infty$.

Theorem 4. The following are equivalent:

- (1) E is an I_0 set.
- (2) E is $J(N, C_1, C_2)$ for some N and disjoint subsets C_1 and C_2 .
- (3) For all real $\delta \in (0,1)$, there is some N such that E is $J(N,\delta)$.

The next lemma relates $J(N, \delta)$ to J(E).

Lemma 5. If E is $J(N,\delta)$ for some $\delta \in (0,1)$, then $J(E) \leq KN$ where $K = \lfloor 1/(2\delta) \rfloor$.

Proof. Assume that E is $J(N, \delta)$. Then, for any $F \subset E$, there is some $\mu \in D_N$ such that

$$(\forall \gamma \in F) \left(\Re(\hat{\mu}(\gamma)) \ge \delta \right),$$

and

$$(\forall \gamma \in E \setminus F) \left(\Re(\hat{\mu}(\gamma)) \leq -\delta \right).$$

Because $K \geq 1/(2\delta)$, $K\delta \geq 1/2$ and thus

$$\Re\left(\widehat{K\mu}(\gamma)\right) \ge 1/2, \quad \text{for} \quad \gamma \in E,$$

while

$$\Re\left(\widehat{K\mu}(\gamma)\right) \leq -1/2, \text{ for } \gamma \in (E \setminus F).$$

One can write $K\mu$ as a sum of KN point masses with complex coefficients bounded by 1 in absolute value. Thus E is J(KN, 1/2) and $J(E) \leq KN$. \Box

It is readily evident that $J(E) \leq N(E)$. In [R], it is proved that there is a bounded relation between J(E) and N(E):

Theorem 6. There is a function ϕ with $\phi(\mathcal{Z}^+) \subset \mathcal{Z}^+$ such that, for all discrete abelian groups Γ and all $E \subset \Gamma$,

$$J(E) \le N(E) \le \phi(J(E)).$$

A key ingredient of the proof of Theorem 1 is this theorem [P]:

Theorem 7. E is a Sidon set if and only if, there is some $\delta > 0$ with the following property: for every finite $A \subset E$, there are points $g_j \in G$, $1 \leq j \leq N$ with $N \geq 2^{\delta|A|}$, such that

$$\sup_{\gamma \in A} |\gamma(g_i) - \gamma(g_j)| \ge \delta, \quad \text{for all} \quad i \neq j.$$

The last ingredients of the proof are Elton's theorem about sign-embeddings of ℓ_1^n into real Banach spaces [E] and Pajor's generalization of Elton's theorem to complex Banach spaces [Pa]. The proof given in this paper does not quote their theorems verbatim; rather, parts of the their proofs are adapted to this situation.

L. THOMAS RAMSEY

PROOF OF THEOREM 1

Sufficiency. Suppose that $E \subset \Gamma$ has some real r > 0 and positive integer N such that, for every finite subset $F \subset E$,

$$(\exists H \subset F) (|H| \ge r|F| \text{ and } N(H) \le n).$$

Then *H* is I(n, 1/2). By Corollary 3, condition (3) of Theorem 2 holds with M = 2and $\delta = (1/2)^{1/n}$. It follows that, for every *f* in the unit ball of $\ell_{\infty}(E)$, there is some $\mu \in M_d(G)$ such that $\hat{\mu}|_H = f$ and

$$\|\mu\|_{M_d(G)} \le L = 2\sum_{j=1}^{\infty} 2^{-j/n} < \infty.$$

For all $f \in \ell_{\infty}(H)$, there is a constant L which depends only on n such that

$$||f||_{B_d(H)} \le L ||f||_{\ell_\infty(H)}.$$

Since $||f||_{B(H)} \le ||f||_{B_d(H)}$, one has

$$||f||_{B(H)} \le L ||f||_{\ell_{\infty}(H)}.$$

Thus H is a Sidon set with Sidon constant at most L, with L independent of $F \subset E$. That suffices to make E be Sidon, by Corollary 2.3 of [P].

Necessity. Suppose that E is Sidon. Apply Theorem 7. There is some $\delta > 0$ such that, for all finite $F \subset E$, there are at least $2^{\delta|F|}$ points g_j of G such that, for $i \neq j$,

(1)
$$\sup_{\gamma \in F} |\gamma(g_j) - \gamma(g_i)| \ge \delta.$$

Necessarily, $\delta \leq 2$.

Let $F \subset E$ of cardinality n. Enumerate F as $\gamma_1, \ldots, \gamma_n$. Choose p so that $\tau = 2\pi/p < \delta/2$. To be specific, let $p = 1 + \lceil 4\pi/\delta \rceil$. Let T denote the unit circle in the complex plane. Partition T into disjoint arcs, T_k , $1 \le k \le p$, of the form

$$T_k = \{ e^{i\theta} \mid (k-1)\tau \le \theta < k\tau \}.$$

Let $Q = \lceil (1 - 2^{-\delta/2})^{-1} \rceil$. and set $\tau' = \tau/Q$. Partition each T_k into Q arcs $U_{k,m}$ of the form

$$U_{k,m} = \{ e^{i\theta} \mid (k-1)\tau + (m-1)\tau' \le \theta < (k-1)\tau + m\tau' \},\$$

for $1 \leq m \leq Q$. Finally, let \mathcal{S}_0 denote a set of at least $2^{\delta|F|}$ points of G which satisfy inequality (1).

Define S_i inductively. Let

$$\mathcal{S}_k^i = \{ g \in \mathcal{S}_{i-1} \mid \gamma_i(g) \in T_k \}$$

and

$$\mathcal{S}_{k,m}^{i} = \{ g \in \mathcal{S}_{i-1} \mid \gamma_{i}(g) \in U_{k,m} \}.$$

Then

$$\mathcal{S}_{i-1} = \cup_{k=1}^p \mathcal{S}_k^i$$

and

$$\mathcal{S}_k^i = \cup_{m=1}^Q \mathcal{S}_{k,m}^i$$

There is some m(i,k) such that

$$|\mathcal{S}_{k,m(i,k)}^i| \le Q^{-1} |\mathcal{S}_k^i|.$$

So,

$$\left| \cup_{k=1}^{p} \mathcal{S}_{k,m(i,k)}^{i} \right| \leq Q^{-1} \left| \mathcal{S}_{i-1} \right|.$$

Let

$$\mathcal{S}_i = \mathcal{S}_{i-1} \setminus \bigcup_{k=1}^p \mathcal{S}_{k,m(i,k)}^i.$$

Then

$$|\mathcal{S}_i| \ge (1 - Q^{-1}) |\mathcal{S}_{i-1}|.$$

By induction one has

$$\left|\mathcal{S}_{n}\right| \geq (1 - Q^{-1})^{n} \left|\mathcal{S}_{0}\right|.$$

Note that $Q \ge (1 - 2^{-\delta/2})^{-1}$; consequently,

$$(1 - Q^{-1}) \ge 2^{-\delta/2}.$$

Therefore,

$$\begin{aligned} |\mathcal{S}_n| &\ge (1 - Q^{-1})^n \, |\mathcal{S}_0| \\ &\ge (2^{-\delta/2})^n 2^{\delta n} \\ &= 2^{n\delta/2}. \end{aligned}$$

For $1 \leq i \leq n$ and $1 \leq k < p$, let $I_{i,k}$ be the arc between $U_{k,m(i,k)}$ and $U_{k+1,m(i,k+1)}$. For k = p, let $I_{i,k}$ be the arc between $U_{k,m(i,k)}$ and $U_{1,m(i,1)}$. Necessarily,

(2)
$$I_{i,k} \subset \{ e^{i\theta} \mid (k-1)\tau + \tau' \le \theta < (k+1)\tau - \tau' \}.$$

The length (and hence the diameter) of each of these arcs is at most $(2 - 2/Q)\tau < 2 * (\delta/2) = \delta$.

It is possible for $I_{i,k} = \emptyset$, which will happen when k < p, m(i,k) = Q and m(i,k+1) = 1; it will also happen when k = p, m(i,k) = Q and m(i,1) = 1. Otherwise, $e^{ik\tau}$ is in the closure of $I_{i,k}$: it is in $I_{i,k}$ when m(i,k+1) > 1 and when k = p and m(i,1) > 1. When m(i,k+1) = 1 and $I_{i,k} \neq \emptyset$,

$$\{e^{i\theta} \mid (k-1)\tau + (Q-1)\tau' \le \theta < k\tau\} \subset I_{i,k}.$$

Likewise, when m(i, 1) = 1 and $I_{i,p} \neq \emptyset$,

$$\{e^{i\theta} \mid (p-1)\tau + (Q-1)\tau' \le \theta < p\tau\} \subset I_{i,p}.$$

L. THOMAS RAMSEY

For all other $j \neq k$, there is an arc of length τ' between $I_{i,k}$ and $e^{ij\tau}$ (e.g., $U_{k,m(i,k)}$ or $U_{k+1,m(i,k+1)}$ when $1 \leq k < p$).

Each sequence $\{k_i\}_{i=1}^n$, with $1 \leq k_i \leq p$, defines a cylinder in $\ell_{\infty}(F)$ of the following form:

$$W[\{k_i\}_{i=1}^n] = \{ f \in \ell_{\infty}(F) \mid f(\gamma_i) \in I_{i,k_i} \}.$$

For $g \in G$, let $f_g(\gamma) = \gamma(g)$ for $\gamma \in F$. Because these cylinders are disjoint, each f_g is in at most one of them. S_n was chosen to guarantee the f_g would be in at least one cylinder for $g \in S_n$. For $g \in S_n$, let $h(g) = \{k_i\}_{i=1}^n$ define the cylinder which contains f_g .

Because each cylinder has diameter less than δ , inequality (1) implies that each cylinder contains at most one f_g for $g \in S_n$. Hence

$$|\mathcal{S}_n| = |h(\mathcal{S}_n)|.$$

For any subset $H \subset F$, let Π^H be this projection: for $f \in \ell_{\infty}(F)$,

$$\Pi^H(f) = f \mid_H$$

By Corollary 2 of [Pa, p. 742], there is a constant c'' > 0 which depends only on $\delta/2$ and p (which itself depends only on δ) such that there are some $H \subset F$ and integers a < b from [1, p] such that

|H| > c''|F|

and

$$\{a,b\}^H \subset \Pi^H(h(\mathcal{S}_n)).$$

Case 1: $|(a - b) \mod p| \geq 2$. On the circle, there are two arcs between $e^{ia\tau}$ and $e^{ib\tau}$. Choose c so that $e^{ic\tau}$ is the center of the shorter of these two arcs, $a \leq c \leq a + p$. Necessarily $c \neq a$ and $c \neq b$. c is either a half-integer or an integer. If c is an integer, then $e^{ic\tau}$ is separated by arcs of length τ' from $I_{i,a}$ and $I_{i,b}$. If c is a half-integer, c - 1/2 and c + 1/2 are both integers which are distinct from a and b. Since there are arcs of length τ' between each of $e^{i(c-1/2)\tau}$ and $e^{i(c+1/2)\tau}$ and each of $I_{i,a}$ and $I_{i,b}$, there are arcs of length τ' between $e^{ic\tau}$ and each of $I_{i,a}$ and $I_{i,b}$.

Case 1A. Assume that a < c < b. Let $z_2 \in I_{i,b}$ and $z_1 \in I_{i,a}$. Then

$$I_{i,b} = \{ e^{i\theta} \mid x \le \theta \le y \},\$$

where x and y can be chosen to satisfy

$$x \ge b\tau - \tau + \tau'$$
 and $y \le b\tau + \tau - \tau'$.

[See equation (2).] Moreover, since $e^i c\tau$ is separated from $I_{i,b}$ by an arc of length τ' , and both $c\tau < b\tau$ and $x < b\tau$, we have

$$c\tau + \tau' \le x.$$

Because $e^{ic\tau}$ is the center of the shorter of the two arcs between $e^{ia\tau}$ and $e^{ib\tau}$,

$$b\tau - c\tau \leq \pi/2.$$

Since $\delta \leq 2$ and $\tau < \delta/2$ (and $\tau' > 0$), we have $z_2 = e^{i\theta}$ with

$$c\tau + \tau' \le \theta < c\tau + \pi/2 + 1$$

Hence

$$e^{-ic\tau}z_2 = e^{i(\theta - c\tau)}$$
, with $\tau' \le \theta - c\tau \le \pi/2 + 1$.

Thus $e^{-ic\tau}z_2$ is in the top half-plane, with

$$\Re(e^{-ic\tau}z_2) \ge \tau'' = \min\{\sin(\tau'), \sin(\pi/2+1)\} > 0.$$

Likewise, $e^{-ic\tau}z_1$ is in the lower half-plane, with

$$\Re(e^{-ic\tau}z_1) \le -\tau'' < 0.$$

Because $\{a, b\}^H \subset \Pi^H(h(\mathcal{S}_n))$, for any $A \subset H$ there is some $g \in \mathcal{S}_n$ such that $h(g)(\gamma) = b$ for $\gamma \in A$ and $h(g)(\gamma) = a$ for $\gamma \in H \setminus A$. Let $\mu = e^{-ic\tau} \delta_g$; $\mu \in D(1)$. Because $h(g)(\gamma_i) = b$ if and only if $\gamma_i(g) \in I_{i,b}$, for $\gamma \in A$ we have

$$\Re(\widehat{e^{-ic\tau}\delta_g}(\gamma)) = \Re(e^{-ic\tau}\gamma(g)) \ge \tau''$$

Likewise, for $\gamma_i \in H \setminus A$, $\gamma_i(g) \in I_{i,a}$ and hence

$$\Re(\widehat{e^{-ic\tau}\delta_g}(\gamma)) = \Re(e^{-ic\tau}\gamma(g)) \le -\tau''$$

This proves that H is $J(1, \tau'')$.

Case 1B. Assume that b < c < a + p. Let $z_2 \in I_{i,a}$ and $z_1 \in I_{i,b}$. Then $z_2 = e^{i\theta}$ with

$$c\tau + \tau' \le \theta < c\tau + \pi/2 + 1,$$

and

$$e^{-ic\tau}z_2 = e^{i(\theta - c\tau)}$$
, with $\tau' \le \theta - c\tau < \pi/2 + 1$.

Thus $e^{-ic\tau}z_2$ is in the top half-plane, with

$$\Re(e^{-ic\tau}z_2) \ge \tau'' > 0.$$

Likewise, $e^{-ic\tau}z_1$ is in the lower half-plane, with

$$\Re(e^{-ic\tau}z_1) \le -\tau'' < 0.$$

Because $\{a, b\}^H \subset \Pi^B(h(\mathcal{S}_n))$, for any $A \subset B$ there is some $g \in \mathcal{S}_n$ such that $h(g)(\gamma) = a$ for $\gamma \in A$ and $h(g)(\gamma) = b$ for $\gamma \in H \setminus A$. Let $\mu = e^{-ic\tau} \delta_g$; again, $\mu \in D(1)$. Because $h(g)(\gamma_i) = a$ if and only if $\gamma_i(g) \in I_{i,a}$, for $\gamma \in A$ we have

$$\Re(\widehat{e^{-ic\tau}\delta_g}(\gamma)) = \Re(e^{-ic\tau}\gamma(g)) \ge \tau''.$$

Likewise, for $\gamma_i \in H \setminus A$, $\gamma_i(g) \in I_{i,b}$ and hence

$$\Re(\widehat{e^{-ic\tau}\delta_g}(\gamma)) = \Re(e^{-ic\tau}\gamma(g)) \le -\tau''.$$

This proves that H is $J(1, \tau'')$.

Case 2A: b = a + 1. Because $\{a, b\}^H \subset \Pi^H(h(\mathcal{S}_n))$, for every $A \subset H$ there are g_1 and g_2 such that

$$(\forall \gamma \in A) (h(g_1)(\gamma) = b \text{ and } h(g_2)(\gamma) = a),$$

while

$$(\forall \gamma \in H \setminus A) (h(g_2)(\gamma) = a \text{ and } h(g_2)(\gamma) = b)$$

The arc $U_{i,m(i,b)}$ is between $I_{i,b}$ and $I_{i,a}$. Let

$$U_{i,m(i,b)} = \{ e^{i\theta} \mid a' \le \theta < b' \},\$$

for some a' and b' such that $a\tau \leq a' < b' \leq b\tau$. If $z \in I_{i,b}$, then $z = e^{i\theta}$ for some θ such that

$$b' \le \theta < b\tau + \tau - \tau'.$$

[See inclusion (2).] Likewise, if $z \in I_{i,a}$, then $z = e^{i\theta}$ for some θ such that

$$a\tau - \tau + \tau' \le \theta < a'.$$

Thus, when $\gamma_i(g_1) \in I_{i,b}$ and $\gamma_i(g_2) \in I_{i,a}$,

$$\gamma_i(g_1 - g_2) = \gamma_i(g_1) / \gamma_i(g_2) = e^{i\theta}$$

with

$$\tau' \le b' - a' < \theta < (b - a)\tau + 2\tau - 2\tau' = (3 - 2/Q)\tau < 3.$$

Thus, when $\gamma \in A$, $\gamma(g_1 - g_2)$ is in the upper half-plane and

$$\Re(\gamma(g_1 - g_2)) \ge \tau''' = \min\{\sin(\tau'), \sin(3)\}.$$

When $\gamma_i(g_1) \in I_{i,a}$ and $\gamma_i(g_2) \in I_{i,b}$, then

$$\gamma_i(g_1 - g_2) = \gamma_i(g_1) / \gamma_i(g_2) = e^{i\theta}$$

with

$$-3 < (-3 + 2/Q)\tau < \theta < a' - b' = -\tau'.$$

Thus, when $\gamma \in H \setminus A$, This puts $\gamma_i(g_1 - g_2)$ in the lower half plane with

$$\Re(\gamma(g_1 - g_2)) \le -\tau'''$$

This makes $H \neq J(1, \tau''')$ set.

Case 2B: a = 1 and b = p. This is just like Case 2A, if one treats a as p + 1 and switch the roles of a and b.

Set $\tau''' = \min\{\tau'', \tau'''\}$. Every finite $F \subset E$ has $H \subset F$ such that

$$|H| \ge c''|F|$$

and H is $J(1, \tau''')$. By Lemma 5, $J(H) \leq \lceil 2/\tau''' \rceil$. By Theorem 5, $N(H) \leq \phi(J(H))$ for a function ϕ which is independent of E. Note that J(H) depends only on τ'''' which in turn depends only on δ (and is independent of $F \subset E$). Also, c'' depends only on δ , and is independent of $F \subset E$. \Box

8

References

- [E] John Elton, Sign-Embeddings of ℓ_1^n **279** (September, 1983), TAMS, 113–124.
- [G] David Grow, Sidon Sets and I₀-Sets **53** (1987), Colloquium Mathematicum, 269–270.
- [HR] S. Hartman and C. Ryll-Nardzewski, Almost Periodic Extensions of Functions 12 (1964), Colloquium Mathematicum, 23–39.
- [Kh] J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson 15 (1966), Colloquium Mathematicum, 87–92.
- [Kl] J. N. Kalton, On Vector-Valued Inequalities For Sidon Sets and Sets of Interpolation 54 (1993), Colloquium Mathematicum, 233–244.
- [LR] Jorge M. López and Kenneth A. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975, p. 4.
- [M] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman 29 (1968), Colloquium Mathematicum, 167–193.
- [Pa] Alain Pajor, Plongement de ℓ_1^n dans les espaces de Banach complexes **296** (May, 1983), CRAS, 741–743.
- [P] Gilles Pisier, Conditions D'Entropie Et Caracterisations Arithmetique Des Ensembles de Sidon.
- [RW] L. Thomas Ramsey and Benjamin B. Wells, Interpolation Sets in Bounded Groups 10(1) (1984), Houston Journal of Mathematics, 117–125.
- [R] L. Thomas Ramsey, I₀-Sets Are "Finitely Describable", preprint.
- [P] Gilles Pisier, Arithmetic Characterization of Sidon Sets 8 (1983), Bull. AMS, 87–89.

MATHEMATICS, KELLER HALL, 2565 THE MALL, HONOLULU, HAWAII 96822

RAMSEY@MATH.HAWAII.EDU OR RAMSEY@UHUNIX.UHCC.HAWAII.EDU