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ABSTRACT. There is a construction of random subsets of Z in which almost every
subset is Sidon (this was first done by Katznelson). More is true: almost every
subset is the finite union of quasi-independent sets. Also, if every Sidon subset of
Z\{0} is the finite union of quasi-independent sets, then the required number of
quasi-independent sets is bounded by a function of the Sidon constant. Analogs of
this last result are proved for all Abelian groups, and for other special Sidon sets (the
N-independent sets).

Sidon subsets have been characterized by Pisier as having proportional quasi-
independent subsets[8]. There remains the open problem of whether Sidon subsets
of Z must be finite unions of quasi-independent sets. Grow and Whicher produced
an interesting example of a Sidon set whose Pisier proportionality was 1/2 but
the set was not the union of two quasi-independent sets [3]. On the other hand,
this paper provides probabilistic evidence in favor of an affirmative answer with a
construction of random Sidon sets which borrows heavily from ideas of Professors
Katznelson and Malliavin [4,5,6]. Katznelson provided a random construction of
integer Sidon sets which, almost surely, were not dense in the Bohr compactifac-
tion of the integers [5,6]. This paper presents a modification of that construction
and emphasizes a stronger conclusion which is implicit in the earlier construction:
almost surely, the random sets are finite unions of quasi-independent sets (also of
N-independent sets, defined below). In this paper, random subsets of size O(log n,)
are chosen from disjoint arithmetic progressions of length n; (the maximum density
allowed for a Sidon set), with n; — oo fast enough and the progressions rapidly
dilated as j — oo.

This paper concludes with several deterministic results. If every Sidon subset
of Z\{0} is a finite union of quasi-independent sets, then the required number of
quasi-independent sets is bounded by a function of the Sidon constant. Analogs of
this result are proved for all Abelian groups, and for other special Sidon sets (the
N-independent sets). Throughout this paper, unspecified variables denote positive
integers.
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Definition. A subset F' C 7Z is said to be N-independent if and only if, for all
integers a, € [N, N], with a, # 0 for at most finitely many x,

Zamx:OHZkyﬂ:O.

zeF zeF

That is, among all linear relations with integer coefficients from [—N, N], only the
trivial relation holds. (This definition differs from that of J. Bourgain, for whom
N -independence is a weaker form of quasi-independence.)

When N = 1 such sets are called quasi-independent and are Sidon [8]; when
N = 2 they are called dissociate [7].

Theorem 1. Let K € R*, let integers M; and p; satisfy

(1) 0 < p; < Klog(j?)

and

(2) M; > K Myq®log(q?),
q<j

and set Q; equal to M; - {1,...,5%}. For each j, and each i € [1,p;], choose g;;
from Q; independently with uniform probability. Given N, let A € (0,1/2] so that

(3) W(N, K,\) = K[Alog(2N/X) + (A —1)log(1 —\)] < 1/2.

Then, for almost all choices of {g;.i}, the index set for the random variables can
be partitioned into [1/A] + 1 sets of which one is finite and the rest index N -
independent subsets of 7.

Remark 1. Note that {z} is N-independent when x # 0. Since 0 ¢ Q;, the
finite set in Theorem 1 is also a finite union of N-independent sets. Since N -
independent sets are Sidon [8], as are the unions of finitely many Sidon sets [7],
almost all choices produce a Sidon set.

Remark 2. W(N, K, \) is a non-decreasing function of A € (0,1/2]:

W (N, K, \)

B3\ = Klog(2N) + K log((1 = \)/A) > 0.

Since limy_,o+ W(N, K, \) = 0, there is a mazximum A\(N, K) € (0,1/2] such that
W(N,K,\N,K)) <1/2.

The theorem applies to any A in the non-empty interval (0, \(N, K)).

Likewise, W (N, K, \) is linear in K with a positive slope for A € (0,1/2]. In
that case, there is a unique K(N,\) > 0 such that W(N, K(N,\),\) = 1/2. For
example, K(N,1/2) =log(8N)~t. The theorem applies to any K in the non-empty
interval (0, K(N, \)).

Condition (2) implies the next lemma.
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Lemma 2. Let K € RT, integers M; satisfy condition (2), Q; = M; -{1,...,5°},
and S; be a subset of Q; with at most K log(j?) points. A set E C U2 NSy is
N-independent if and only if, for all j > N, the sets ENS; are N-independent.

Proof. The “only if” follows from the fact that any subset of an N-independent set
is likewise N-independent. Consider the contrapositive of the converse. Assume
that F is not N-independent and let a be the coefficient sequence for a non-trivial
“N-relation” in E. Let J be the largest integer for which there is some =z € S
with a, # 0. If J = N, then « is supported in £ N Sy; hence £ N Sy is not
N-independent. Suppose that J > N. Then

0= Z Z QT + Z .

N<g<J xeENS, zeENSy

For z € S,, |z| < ¢*M,. Thus

S OY s Y Y e

N<q<J z€ENS, N<q<Jz€ENS,

SN >N

N<q<J z€ENS,

<N Y Klog(¢®)g* M,
N<g<J

<K ) log(d®)g’M,
N<qg<J

< My, by condition (2).

Thus

E QT

zeENSy

= |- Z Z a,r| < Mj.

N<g<J z€ENS,

However, each x € S is a multiple of M j; therefore

Since a,, # 0 for at least one x € ENSy, it follows that £N.S; is not N-independent.
Thus, whether J = N or J > N, EN S is not N-independent. [J

Lemma 3. Assume the hypotheses and notations of Theorem 1. Let {z; fil
range over random selections from @Q;. Let P; denote this proposition: for all

a = {ozi‘ b1, with «; an integer in [—N, N], the equality > 27 c,x; = 0 implies
that Y%7 | |o;] = 0 or that there are more than [Ap;] coefficients which are non-

2W —2
J

zero. Then the probability of P; being false is at most C'log(j) , where W is

defined in expression (3) of Theorem 1 and C = 8NK(1 — \).

Before describing the proof of Lemma 3, here is the proof of Theorem 1.
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Proof of Theorem 1. By Lemma 3, the probability of P; failing for infinitely many
positive integers j is at most

: 2W -2
Jim > Clog(q)g”™ 2,

q>t

which is 0 since W < 1/2 (by an integral comparison test). Thus, almost surely,
P; is true for all but finitely many j’s. P; implies that any set of at most [Ap;]
indices 7 must index distinct elements forming an N-independent set. Therefore,
for p; > 0, one can partition the p; indices (j,7) into [p;/[Ap;]] subsets each of
which indexes an N-independent subset of ;. Consequently, for p; > 0,

D D
( [Ap;] 1 (/\pj T
iy

[This partition bound holds trivially if p; = 0.] By Lemma 2, the union of N-
independent subsets from distinct @;’s, j > N, remains N-independent. Thus,
almost surely, the index set for the random variables {g; ;} is a union of at most
[1/A] sets which index N-independent sets together with a finite set; the finite set
comes from the finite number of j’s where j < N or where P; fails to be true. [

IN

Lemma 4. From a finite subset Q) of real numbers of size n, choose p points
at random, {g;}'_,, uniformly and independently. For any coefficient sequence
a={a;}t_,, let Cy denote the probability that

p
0="R(a) =) g
=1

If 30 || >0, then Co < n™t.

Proof. Suppose first that exactly one coefficient, say «;, is non-zero. Then R(a) =0
if and only if g; = 0. This has probability 0 if 0 ¢ @ and 1/n if 0 € Q. Next,
suppose that at least two coefficients are non-zero. Let t be the last integer such
that oy # 0. Then, R(«) = 0 if and only if

t—1
gr = —(a)”! Z Q; G-
i—1

Set the right-hand side above equal to R*(«). By the joint independence of the
random variables g;, 1 < i < p, g; is independent of R*(«). Also, P(g: = y) is
either 1/n or 0; the latter if y € @ and the former if not. Hence

P(R(a)=0)= > P(g = —2)P(R*(e) = x)

<(1/n) Y P(R*(a) = x)
=1/n-1
=1/n.
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Lemma 5. Let ¢(s) = slog(s) + (1 — s)log(1 — s), for s € (0,1). For A € (0,1),
pE Z+; and t € (_)" 1- )‘) N [_1/1); 1/p];

—pp(A+1) < |¢'(N)] = po(N).

Proof. Since ¢" is positive, this follows from Taylor’s Remainder Theorem. For
A€ (0,1)and t € (A, 1—\),

¢"(u)

B +1) =60 + Wt + e,

for some u between A and A 4+ t. One has ¢'(u) = log(u) — log(1 — u) and ¢”(u) =
u 4+ (1—u)"t > 0 for u € (0,1). Since both A and A+t are in (0, 1) the remainder
term is non-negative and thus

(A +1) = p(A) + ¢/ (M)t

Therefore, to prove this lemma, it suffices to have

—p¢' (M)t < [¢'(A)]-

Suppose that A < 1/2. Then ¢'(\) = log[A/(1 — A)] < 0. It follows from ¢t < 1/p
that

[=pd (NIt < [-p¢' (V)] (1/p) = —=¢'(N).
If A > 1/2, then ¢'(\) > 0. It follows from ¢ > —1/p that

[=p¢' (Nt < [=p¢"(N])(=1/p) = ¢'(A).

O

Proof of Lemma 3. Let p denote p;. If Ap <1, P; is always true because 0 ¢ Q;
and hence any “N-relation” requires at least two points of ();. So assume Ap > 1.
The number of quasi-relations excluded by P; is

(@) IS (7).

w=1

To see equation (4), think of a quasi-relation a with exactly s non-zero coefficients.
There are (7;’) locations for the non-zero coefficients; for each placement, there are
2N choices of a non-zero integer from [—N, N].

Use Stirling’s approximation to factorials [1] to estimate ( SI; ) with sp = [Ap]:

(5) x T

(p) o PPV2mp e eP—op

sp eP  (sp)sP\/2mwsp (p — sp)P=sP/2m(p — sp)

where
T < e}/ (12p)  o1/(12p5)  L1/[12(p=ps)] < 11/72 < 1 17,
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After removing common factors of the form e” and p®, one has

P 1 1
< A\/27p * * * T
(sp) - p §5P\/2msp (1 — s)P=sp,/27(p — sp)
< ! * VP ks °P(1—s)P7P
V21sp /P —sp

T, V2 plslos(s)+(1-s) log(1-s)]
= Ve V-1 |
Tsp /P —

since p — sp > (p— 1)/2,

T VP _ :

—x——Y e P?0) gince sp > 2
SVE VR | "
< e () gince p > 2.

View ¢(s) with s = A + ¢ as in the previous lemma:

p < 1 - Ae—lxﬁ(/\)'
sp) T A

Now return to D(p). Since A < 1/2, the binomial coefficients in equation (4) are
dominated by the last one. Also, Ap > 1 and hence [Ap] < Ap+1 < 2Ap. Therefore

D(p) < Umn()@NWM
< (2Ap) - 3 — A e PPN | (2N)e’\p10g(2N)

— ANp(1 — X)ePW/E) - 1y equation (3).

By Lemma 4, the probability of P; failing is at most D(p)|Qj|_1, With |Q,| = 52,
p=p; < Klog(j?), and W > 0, one has

P(P; failing) < AN (1 — \) K log(j2)eX 108U W/K) j=2 — Clog(j)2V 2,

where C =8N (1 - \K. O

The Efficiency of the Proof. The proof doesn’t provide elegant estimates for
A in terms of a priori values of N and K. To evaluate the efficiency of the proof,
assume that p; = | Klog(j%)] (the maximum density allowed by condition (1) of
Theorem 1).

One can view the choice of K log(j2) points as approximately K /Ky choices of
sets of size Ko log(j?). Let Ko = K(N,1/2). (By using Lagrange multipliers to find
the maximum of K\ subject to A € [0,1/2] and W(N, K,\) = 1/2, one can show
that the maximum occurs at the boundary of this manifold with A = 1/2. Thus,
Ky = K(N,1/2) is optimal for this comparison argument.) The details require
some explanation. Assume first that K is not an integer multiple of K. Then one
may find K|, € (0, Ky) for which W(N, K{,1/2) < 1/2, [K/Ky] = [K/K{], and K
is not an integer multiple of K. Then the number of N-independent sets required
for sets chosen from @;’s with large j is

| K log(j?)]
| K log(52)]

K log(j%)
K{log(5%) —1

1< 2hmsup[

]

21lim sup[

- 2[K/K01.
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Thus at most 2[log(8N)K'| N-independent sets are required for all but finitely
many j’s (almost surely). If K is an integer multiple of Ky, one can’t choose
K| < Ky without making [K/K|] greater than [K/Ky]|. In this case, the limsup
is [14+ K/Ky|. In summary, the number of N-independent sets required for all but
finitely many j’s, almost surely, is bounded by

2|1+ log(8N)K |.

In the case of N = 2 and K = 1.80 > log(2)~! (the latter is the asymptotic
density of a quasi-independent set, as proved below), random sets chosen with a
density greater than that of a quasi-independent set are a union of no more than 10
dissociate sets (for all but finitely many j’s, almost surely). The authors venture
no guesses as to whether this is universally true of quasi-independent sets; the
quasi-independent set {1, 6, 10,12, 14} is an example where three dissociate sets are
required and the worst case known to date.

Fix K > 0, let N — oo, and consider [1/A(N,K)~] for some A(N,K)~ €
(0, A(N, K)) to be described. If A € (0,1/2] and

W(N, K, \) = K[Aog(2N/XA) + (A — 1) log(1 — \)] < 1/2,

then K Alog(2N) < 1/2 and thus A < 1/(2K log(2N)). It follows that A(V, K) — 0
as N — oo. One has

(A—=1)log(l —X) <A, for XA e (0,1),
with

lim (A —1)log(1 — A)/A = 1.
Jim (A —1)log(1 —A)/

If W*(N, K, \) is defined as KA[14+1og(2N/))], one has W (N, K, \) < W*(N, K, \)
for A € (0,1). Let A\(N, K)~ be the last A € (0,1/2] such that W*(N, K, \) < 1/2.
Since W(N, K,\) < W*(N, K, \) for A € (0,1), one has A(N,K)~ < A(N, K). As
shown earlier,

AN, K)~ < AN, K) < 1/(2K log(2N)).

Also, limy_oo W*(N, K, (4K log(2N))™!) = 1/4 < 1/2. Consequently, for N large
enough,
1/(4K10g(2N)) < M(N,K)~ < 1/(2K log(2N))

and one may write
AMN,K)™ = ((2+ en)K log(2N))™!,  for some ey € (0,2).
By solving W*(N, K, \(N,K)~) = 1/2 with A(N, K)~ in this form, one finds that

en = 2[1 +log(2 + en) + log(K) + log(log(2N))]/ log(2N)
< 2[1 +log(4) + log(K) + log(log(2N))]/log(2N).

Therefore,
[1/AMN,K)" | =[(2+en)Klog(2N)],

with limy_.. exy = 0. By the previous equation for €y,
[1/A(N,K)™] = [2K {log(2N) + log(log(2N)) + log(K) + 1 + log(2 + en)} .

A lower bound for 1/ will follow from the next proposition.
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Proposition 6. Let m; be the maximum cardinality of an N-independent subset
of any arithmetic progression of the form S; =k-{1,...,j} with k # 0. Then

lim — 9 = !
j—oo log(j)  log(N +1)°

Proof. 1t is clear that m; does not depend upon the dilation factor k, so we may
set k = 1 for simplicity. The set {1, N+1,(N+1)% ..., (N +1)'} is N-independent
in S; where ¢t = |log(j)/log(N +1)|. Thus,
m; 1
lim inf J _ > .
j—oo log(j) ~ log(N +1)

Second, any N-independent subset E has the property that, for distinct coefficient
sequences o and o' from {0,1,..., N}¥

Z Qpx # Z al .

zeE rzel

If E C S; is N-independent of cardinality m;, there are (N 4 1)™/ of these sums
in [0, N} cpx]. Thus, for m; > 1,

(N+1)™ <1+ N> x<1+Njm;.
zeFE

Thus (N +1)™ < Njm; (for m; > 1) and
m;jlog(N + 1) — log(m;) < log(j) + log(N).
It follows that

; 1 ; log(N
M g 4 1) - 0BOM)] _ | Tom()

log(7) mj o] log(j)
Since m; — 0o as j — 00,
lim 1080M) _
J—oo My

and hence

log(N + 1) lim sup mj, = limsup{ mj, {bg(N +1)— log(mj)]}

< lim sup [1 +

J—o0

logN]

log(3)
—1.

Consequently,
lim sup mj — < 1 .
j—oo log(j) ~ log(N +1)
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Proposition 6 implies that, for any choice of A(N, K)~ from (0, \(N, K)),
[L/AMN,K)7] > Klog(N +1).
First, by Proposition 6, if K log(j?) distinct points are chosen from Q; (of size j?)

and m; is the maximum size of an N-independent subset of @);, the number of
N-independent subsets required to cover those points is at least

lim LE108G)] _ oy log(?) Klog(5%) =1 Klog(N + 1),
Second, note that Lemma 3 implies that almost all the random choices of Theorem
1 produce distinct elements of ); for all but finitely many j. Hence the above
estimate applies to [1/A(N, K)~].

Some Deterministic Observations. For Sidon sets and M-independent sets,
the question of whether they are a finite union of N-independent sets is “finitely-
determined”. To make this precise, the following definition is offered.

Definition. For subsets E C Z, let u(E,m) = oo if E is not a finite union of m-
independent sets; otherwise, let u(E,m) be the minimum number of m-independent
sets of which E is the union.

As in [7], let a(E) denote the Sidon constant of E for Sidon subsets of Z, oo
otherwise.

Theorem 7. If the m-independent subsets of Z are unions of finitely many n-
independent subsets, then there is a uniform bound on the number of n-independent
subsets which are required.

Theorem 8. If every Sidon subset of Z\{0} is the union of finitely many m-
independent subsets, then then there is an increasing function ¢ : [1,00) — Z7
such that, for Sidon subsets E of Z\{0} with a(E) <r,

(6) u(E,m) < é(r).

The restriction to r > 1 is due to the fact that a(F) > 1 for all E C Z [7]. The
proofs of Theorems 7 and 8 will be facilitated by the following lemmas. The proof
of the first follows closely from the definitions.

Lemma 9. For subsets E and F of Z, if FF C E then a(F) < a(E) and pu(F,m) <
u(E,m). Also, form <mn, p(E,m) < u(E,n).

Lemma 10. Fork # 0 and E C Z, o(F) = a(kE) and p(E,m) = p(kE,m).

Proof. That a(F) = a(kFE) is well-known. For k& # 0, F' C Z is m-independent
if and only if £F is m-independent. Thus, if E is partitioned into F;’s which are
m-independent, then kF is partitioned by kF;’s which remain m-independent and
vice versa. [l
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Lemma 11. For E C 7Z,

(7) wE,m)=sup{u(F,m) | FCE & F is finite}.

Proof. Let t equal the right-hand side of equation (7). By Lemma 9, u(E,m) > t.
Next, the reversed inequality will be proved. Let Ey = E N [—s,s]. Then

FE =U,FE;
and there are m-independent subsets I, s (possibly equal to ()) such that
ES - UqétI )8

Without loss of generality, it may be assumed that the I, ;’s are disjoint for distinct
q’s. Hence

t
(8) Xe, = D Xoy o
q=1

By a weak-limit argument, or by using Alaoglu’s Theorem in ¢ (Z) = £1(Z)*, there
is a subsequence s; such that

lim x, =/f;, forl1<gqg<t,
Jj—00 4,33
pointwise on Z (or weak-* in £, (Z)).
Necessarily, f, = X1, for some set I, C Z. By equation (8),

t t
g X1, = lim E Xi,..

j—oo %5
q=1 q=1

= lim yx, _
J—0Q S5

Thus, F is the disjoint union of the I,’s. To prove that the I,’s are m-independent,
suppose that I, is not m-independent for some g. Then there is an “m-relation”,
specifically a finite set W C I, and integer coefficients o, € [—m,m] with o, # 0

such that
Z azx = 0.
zeW

Because converges pointwise to on Z and W is finite, there is some
Ig,s. Iq )

Jjo such that ‘W C Igs, for all j > jo. That would make I, fail to be m-
independent, contrary to the hypotheses. So, I, must be m-independent and hence
wE,m) <t. O

Proof of Theorem 7. Assume that no uniform bound holds. That is, for each ¢,
there is an m-independent subset E; C Z such that p(Ey,n) > t. By Lemma 11
there is a finite subset F} C FE; such that u(Fi,n) > t (and of course remains

m-independent). Let
F - UtktFt,
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where the k;’s are positive integers which increase rapidly enough to make F' be
m-independent. This will contradict the hypotheses, because Lemmas 9 and 10
imply that for all ¢

M(Fv TL) > H(ktFtvn) = M(Ftvn) > t.

One may choose k; as follows. Let k1 = 1. Given kg for s < t, let D; denote the

maximum absolute value of the elements

g E azr, where a, an integer in [—m,m] for all x.
s<t x€ksF

Choose ki1 > D;. Here’s an argument that F'is then m-independent.
Suppose that F' is not m-independent. Then there is a non-empty, finite set
W C F and integers a, € [—m,m] with a, # 0 such that

(9) Z azxr = 0.

zeW

Because W is finite and non-empty, there is a maximum ¢ such that W Nk, F} # 0.
If t = 1, then W is a subset of k1 F} and ki F} fails to be m-independent (which
contradicts the m-independence of Fy). So ¢t > 1, and equation (9) can be rewritten
as

(10) Z amx:—z Z Q.

ZL’GkagFt s<t erﬂngg

If > cwnr, F, @ # 0, then it is a non-zero multiple of k; and

ky < Z QT

ZEGWOktFt

Y Y aw

s<t zeWnksFs
< D; ;.

This contradiction proves that

Z a,x = 0.

xEWﬁktFt

Since «, # 0 for at least one x € ki F}, ki F; fails to be m-independent. However,
since k; > 0, this contradicts the m-independence of F;. [

Proof of Theorem 8. Suppose that, for every r > 1,
(11) sup{u(E,m) | E C (Z\{0}) & «a(F)<r} < .

Then let ¢(r) be that supremum; it is clearly increasing with r and meets the
requirements of the theorem. Suppose, on the contrary, that there is some r > 1
for which inequality (11) is false. Then, for each ¢, there is some E; C Z\{0} for
which «(FE;) < r and u(Ey,m) > t. By Lemma 11, there is a finite subset F; C E;
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for which p(F;,m) >t (and, of course, a(F;) < r). As in the proof of Theorem 7,
let
F = Uk Fy,

for a rapidly increasing sequence of positive integers, {k;};. For all ¢

,u,(F, m) > H(ktFtam) = N(Ftvm) > t.
Thus, F' will not be a finite union of m-independent sets. If F' is Sidon, this will
contradict the hypotheses of Theorem 8.

To make F be Sidon, let k; = 1; for t > 1, let k; > w22'M,;_; where M, is the
maximum absolute value of an element of

Us<tksFs.

Then, as in the proof of Proposition 12.2.4, pages 371-372 of (2|, {k:F}}; is a sup-
norm partition for F: if p; is a kyFy-polynomial (on T') and is non-zero for at most

finitely-many ¢, then
D lpillos <27 Y pilloc
j=1 j=1

Recall that B(F) (the restrictions to F' of Fourier-transforms of bounded Borel
measures on T') is the Banach space dual of Trig,, (T') (the trigonometric polynomials
with spectrum in F'). For p € Trig, (T), let p; denote its summand in Trig, . (T)

under the natural decomposition. Then for f € B(F),

oo
< ZHf ‘kij HB(kij)HijOO

o0
< <Sgp‘|f |ktFt HB(ktFt)> ZHijOO
j=1

<.
Il
—

rSUP IS li s, lloo)(27l[Plloc),  since alkeFi) <,

< (
< (277{| flloo) P[] oo-

Thus, | fll s < 277[f[lcc. By the definition of Sidon constant, a(F) < 27r and
thus F' is Sidon. [

One can extend the idea of m-independence to arbitrary abelian groups, by
additionally restricting a, to [—p,p) when 2p is the order of x, and to [—(p —
1)/2,(p + 1)/2) when the order of x is p and odd. Then Theorems 7 and 8 have
more universal versions.



ON PARTITIONING SIDON SETS WITH QUASI-INDEPENDENT SETS 13

Theorem 12. Suppose that, for some integers m and n and all abelian groups G,
m-independent sets are the finite unions of n-independent sets. Then, independent
of the group G, there is a uniform bound on the number n-independent sets required.

Theorem 13. Suppose there is an integer m such that, for all abelian groups G
and all Sidon subsets E of G\{0}, E is a finite union of m-independent sets. Then
there is an increasing function ¢ : [0,00) — ZT such that, if E C (G\{0}) for any
abelian group G and a(E) <, then u(E,m) < ¢(r).

Proof of Theorem 12. Suppose that, for every ¢, there is an m-independent subset
E, of some abelian group G} such that u(E;,n) > t. Let G be the infinite direct
sum of the G4’s: g € G if and only if

g: 7" — UGy

with ¢(t) € G for all t and g(t) # 0 for at most finitely many ¢ [assume that the
groups are presented additively]. Embed G; into G canonically: = — ¢, where
9.(t) = z and g,(s) =0 for s # t. View G; as identical with its isomorphic embed-
ding; E; remains m-independent under the embedding and p(E;, n) is unchanged.
It should be clear that

EFE=UFk CG

is m-independent while
w(E,n) > u(Ey,n) >t, for allt.

So F is not the finite union of n-independent sets, contrary to the hypotheses. [J

Proof of Theorem 13. As in the proof of Theorem 8, suppose that there is some
r € [1,00) such that, for all ¢, there is an abelian group G; and E; C G\{0} for
which «(F;) < r and p(E;, m) > t. As in the proof of Theorem 12, let G be the
direct sum of the G4’s and view G; as embedded in G. Under this embedding,
neither a(Fy) nor pu(E, m) changes. Let

E - UtEt-

Then E is not the union of finitely many m-independent sets.

To see that E is a Sidon set, note that {F;}; is a sup-norm partition of F.
Specifically, if T" is the compact group dual to G (G is given the discrete topology),
then for p € Trig, (I'), with p; its natural summand in TrigEj (),

oo
> lIpsllse < wllplloo,

j=1

by Lemma 12.2.2 of page 370, [2]. To apply that lemma two things are required.
First, no E; may contain 0, which is true here. Second, in the language of [2], the
ranges of {p;}52, are 0-additive: given {v;}32; from I, there is some v € I' for
which

(12) p(v) — ij ()| = 0.
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Here’s a proof of equation (12). T' is the infinite direct product of T'y = é\t :vel
if and only if
vl Z+ — UtFt, with ’)/(t) € Ft.

Let v € T satisfy v(j) = v;(j). Note that for a character g used in p;, < g, > is
determined by «y(j) because g is 0 in every other coordinate:

< g7 >=[] <9(s),7(s) >=< 9(), 1) >=< 9(4),1(j) >=<g,7; > -

S

Thus

=> pi(v)

Once it is known that E is sup-norm partitioned by the E}’s, then just as in the
proof of Theorem 8 one has

a(F) < ngp a(Ey) < o

That proves that E is Sidon. [
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