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Abstract. There is a construction of random subsets of Z in which almost every

subset is Sidon (this was first done by Katznelson). More is true: almost every
subset is the finite union of quasi-independent sets. Also, if every Sidon subset of

Z\{0} is the finite union of quasi-independent sets, then the required number of
quasi-independent sets is bounded by a function of the Sidon constant. Analogs of

this last result are proved for all Abelian groups, and for other special Sidon sets (the

N -independent sets).

Sidon subsets have been characterized by Pisier as having proportional quasi-
independent subsets[8]. There remains the open problem of whether Sidon subsets
of Z must be finite unions of quasi-independent sets. Grow and Whicher produced
an interesting example of a Sidon set whose Pisier proportionality was 1/2 but
the set was not the union of two quasi-independent sets [3]. On the other hand,
this paper provides probabilistic evidence in favor of an affirmative answer with a
construction of random Sidon sets which borrows heavily from ideas of Professors
Katznelson and Malliavin [4,5,6]. Katznelson provided a random construction of
integer Sidon sets which, almost surely, were not dense in the Bohr compactifac-
tion of the integers [5,6]. This paper presents a modification of that construction
and emphasizes a stronger conclusion which is implicit in the earlier construction:
almost surely, the random sets are finite unions of quasi-independent sets (also of
N -independent sets, defined below). In this paper, random subsets of size O(log nj)
are chosen from disjoint arithmetic progressions of length nj (the maximum density
allowed for a Sidon set), with nj → ∞ fast enough and the progressions rapidly
dilated as j →∞.

This paper concludes with several deterministic results. If every Sidon subset
of Z\{0} is a finite union of quasi-independent sets, then the required number of
quasi-independent sets is bounded by a function of the Sidon constant. Analogs of
this result are proved for all Abelian groups, and for other special Sidon sets (the
N -independent sets). Throughout this paper, unspecified variables denote positive
integers.
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Definition. A subset F ⊂ Z is said to be N -independent if and only if, for all
integers αx ∈ [−N,N ], with αx 6= 0 for at most finitely many x,∑

x∈F

αxx = 0 →
∑
x∈F

|αx| = 0.

That is, among all linear relations with integer coefficients from [−N,N ], only the
trivial relation holds. (This definition differs from that of J. Bourgain, for whom
N -independence is a weaker form of quasi-independence.)

When N = 1 such sets are called quasi-independent and are Sidon [8]; when
N = 2 they are called dissociate [7].

Theorem 1. Let K ∈ R+, let integers Mj and pj satisfy

(1) 0 ≤ pj ≤ K log(j2)

and

(2) Mj > K
∑
q<j

Mqq
3 log(q2),

and set Qj equal to Mj · {1, . . . , j2}. For each j, and each i ∈ [1, pj ], choose gj,i

from Qj independently with uniform probability. Given N , let λ ∈ (0, 1/2] so that

(3) W (N,K, λ) = K[λ log(2N/λ) + (λ− 1) log(1− λ)] < 1/2.

Then, for almost all choices of {gj,i}, the index set for the random variables can
be partitioned into d1/λe + 1 sets of which one is finite and the rest index N -
independent subsets of Z.

Remark 1. Note that {x} is N -independent when x 6= 0. Since 0 /∈ Qj, the
finite set in Theorem 1 is also a finite union of N -independent sets. Since N -
independent sets are Sidon [8], as are the unions of finitely many Sidon sets [7],
almost all choices produce a Sidon set.

Remark 2. W (N,K, λ) is a non-decreasing function of λ ∈ (0, 1/2]:

∂W (N,K, λ)
∂λ

= K log(2N) + K log((1− λ)/λ) > 0.

Since limλ→0+ W (N,K, λ) = 0, there is a maximum λ(N,K) ∈ (0, 1/2] such that

W (N,K, λ(N,K)) ≤ 1/2.

The theorem applies to any λ in the non-empty interval (0, λ(N,K)).
Likewise, W (N,K, λ) is linear in K with a positive slope for λ ∈ (0, 1/2]. In

that case, there is a unique K(N,λ) > 0 such that W (N,K(N,λ), λ) = 1/2. For
example, K(N, 1/2) = log(8N)−1. The theorem applies to any K in the non-empty
interval (0,K(N,λ)).

Condition (2) implies the next lemma.
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Lemma 2. Let K ∈ R+, integers Mj satisfy condition (2), Qj = Mj · {1, . . . , j2},
and Sj be a subset of Qj with at most K log(j2) points. A set E ⊂ ∪∞j=NSj is
N -independent if and only if, for all j ≥ N , the sets E ∩ Sj are N -independent.

Proof. The “only if” follows from the fact that any subset of an N -independent set
is likewise N -independent. Consider the contrapositive of the converse. Assume
that E is not N -independent and let α be the coefficient sequence for a non-trivial
“N -relation” in E. Let J be the largest integer for which there is some x ∈ SJ

with αx 6= 0. If J = N , then α is supported in E ∩ SN ; hence E ∩ SN is not
N -independent. Suppose that J > N . Then

0 =
∑

N≤q<J

∑
x∈E∩Sq

αxx +
∑

x∈E∩SJ

αxx.

For x ∈ Sq, |x| ≤ q2Mq. Thus∣∣∣∣∣∣
∑

N≤q<J

∑
x∈E∩Sq

αxx

∣∣∣∣∣∣ ≤
∑

N≤q<J

∑
x∈E∩Sq

|αxx|

≤ N
∑

N≤q<J

∑
x∈E∩Sq

|x|

≤ N
∑

N≤q<J

K log(q2)q2Mq

≤ K
∑

N≤q<J

log(q2)q3Mq

< MJ , by condition (2).

Thus ∣∣∣∣∣ ∑
x∈E∩SJ

αxx

∣∣∣∣∣ =

∣∣∣∣∣∣−
∑

N≤q<J

∑
x∈E∩Sq

αxx

∣∣∣∣∣∣ < MJ .

However, each x ∈ SJ is a multiple of MJ ; therefore∑
x∈E∩SJ

αxx = 0.

Since αx 6= 0 for at least one x ∈ E∩SJ , it follows that E∩SJ is not N -independent.
Thus, whether J = N or J > N , E ∩ SJ is not N -independent. �

Lemma 3. Assume the hypotheses and notations of Theorem 1. Let {xi}
pj

i=1

range over random selections from Qj. Let Pj denote this proposition: for all
α = {αi}

pj

i=1, with αi an integer in [−N,N ], the equality
∑pj

i=1 αixi = 0 implies
that

∑pj

i=1 |αi| = 0 or that there are more than dλpje coefficients which are non-
zero. Then the probability of Pj being false is at most C log(j)j2W−2, where W is
defined in expression (3) of Theorem 1 and C = 8NK(1− λ).

Before describing the proof of Lemma 3, here is the proof of Theorem 1.
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Proof of Theorem 1. By Lemma 3, the probability of Pj failing for infinitely many
positive integers j is at most

lim
t→∞

∑
q>t

C log(q)q2W−2,

which is 0 since W < 1/2 (by an integral comparison test). Thus, almost surely,
Pj is true for all but finitely many j’s. Pj implies that any set of at most dλpje
indices i must index distinct elements forming an N -independent set. Therefore,
for pj > 0, one can partition the pj indices (j, i) into dpj/dλpjee subsets each of
which indexes an N -independent subset of Qj . Consequently, for pj > 0,

d pj

dλpje
e ≤ d pj

λpj
e

= d1/λe.

[This partition bound holds trivially if pj = 0.] By Lemma 2, the union of N -
independent subsets from distinct Qj ’s, j ≥ N , remains N -independent. Thus,
almost surely, the index set for the random variables {gi,j} is a union of at most
d1/λe sets which index N -independent sets together with a finite set; the finite set
comes from the finite number of j’s where j < N or where Pj fails to be true. �

Lemma 4. From a finite subset Q of real numbers of size n, choose p points
at random, {gi}p

i=1, uniformly and independently. For any coefficient sequence
α = {αi}p

i=1, let Cα denote the probability that

0 = R(α) =
p∑

i=1

αigi.

If
∑p

i=1 |αi| > 0, then Cα ≤ n−1.

Proof. Suppose first that exactly one coefficient, say αj , is non-zero. ThenR(α) = 0
if and only if gj = 0. This has probability 0 if 0 /∈ Q and 1/n if 0 ∈ Q. Next,
suppose that at least two coefficients are non-zero. Let t be the last integer such
that αt 6= 0. Then, R(α) = 0 if and only if

gt = −(αt)−1
t−1∑
i=1

αigi.

Set the right-hand side above equal to R∗(α). By the joint independence of the
random variables gi, 1 ≤ i ≤ p, gt is independent of R∗(α). Also, P (gt = y) is
either 1/n or 0; the latter if y ∈ Q and the former if not. Hence

P (R(α) = 0) =
∑
x∈R

P (gt = −x)P (R∗(α) = x)

≤ (1/n)
∑
x∈R

P (R∗(α) = x)

= 1/n · 1
= 1/n.

�
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Lemma 5. Let φ(s) = s log(s) + (1 − s) log(1 − s), for s ∈ (0, 1). For λ ∈ (0, 1),
p ∈ Z+, and t ∈ (−λ, 1− λ) ∩ [−1/p, 1/p],

−pφ(λ + t) ≤ |φ′(λ)| − pφ(λ).

Proof. Since φ′′ is positive, this follows from Taylor’s Remainder Theorem. For
λ ∈ (0, 1) and t ∈ (−λ, 1− λ),

φ(λ + t) = φ(λ) + φ′(λ)t +
φ′′(u)

2
t2,

for some u between λ and λ + t. One has φ′(u) = log(u)− log(1− u) and φ′′(u) =
u−1 +(1−u)−1 > 0 for u ∈ (0, 1). Since both λ and λ+ t are in (0, 1) the remainder
term is non-negative and thus

φ(λ + t) ≥ φ(λ) + φ′(λ)t.

Therefore, to prove this lemma, it suffices to have

−pφ′(λ)t ≤ |φ′(λ)|.

Suppose that λ ≤ 1/2. Then φ′(λ) = log[λ/(1 − λ)] ≤ 0. It follows from t ≤ 1/p
that

[−pφ′(λ)]t ≤ [−pφ′(λ)](1/p) = −φ′(λ).

If λ > 1/2, then φ′(λ) > 0. It follows from t ≥ −1/p that

[−pφ′(λ)]t ≤ [−pφ′(λ)](−1/p) = φ′(λ).

�

Proof of Lemma 3. Let p denote pj . If λp ≤ 1, Pj is always true because 0 /∈ Qj

and hence any “N -relation” requires at least two points of Qj . So assume λp > 1.
The number of quasi-relations excluded by Pj is

(4) D(p) =
dλpe∑
w=1

(
p

w

)
(2N)w.

To see equation (4), think of a quasi-relation α with exactly s non-zero coefficients.
There are

(
p
s

)
locations for the non-zero coefficients; for each placement, there are

2N choices of a non-zero integer from [−N,N ].
Use Stirling’s approximation to factorials [1] to estimate

(
p
sp

)
with sp = dλpe:

(5)
(

p

sp

)
≤ pp

√
2πp

ep

esp

(sp)sp
√

2πsp

ep−sp

(p− sp)p−sp
√

2π(p− sp)
∗ T

where
T ≤ e1/(12p) ∗ e1/(12ps) ∗ e1/[12(p−ps)] ≤ e11/72 ≤ 1.17.
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After removing common factors of the form ex and px, one has(
p

sp

)
≤

√
2πp ∗ 1

ssp
√

2πsp
∗ 1

(1− s)p−sp
√

2π(p− sp)
∗ T

≤ T√
2πsp

∗
√

p
√

p− sp
∗ s−sp(1− s)sp−p

≤ T√
2πsp

∗
√

2p√
p− 1

∗ e−p·[s log(s)+(1−s) log(1−s)], since p− sp ≥ (p− 1)/2,

≤ T√
π
∗

√
p√

2(p− 1)
∗ e−p·φ(s), since sp ≥ 2,

< e−pφ(s), since p > 2.

View φ(s) with s = λ + t as in the previous lemma:(
p

sp

)
≤ 1− λ

λ
e−pφ(λ).

Now return to D(p). Since λ ≤ 1/2, the binomial coefficients in equation (4) are
dominated by the last one. Also, λp > 1 and hence dλpe < λp+1 < 2λp. Therefore

D(p) ≤ (dλpe)
(

p

sp

)
(2N)dλpe

< (2λp) · 1− λ

λ
e−pφ(λ) · (2N)eλp log(2N)

= 4Np(1− λ)ep(W/K), by equation (3).

By Lemma 4, the probability of Pj failing is at most D(p)|Qj |−1. With |Qj | = j2,
p = pj ≤ K log(j2), and W ≥ 0, one has

P (Pj failing) ≤ 4N(1− λ)K log(j2)eK log(j2)(W/K)j−2 = C log(j)j2W−2,

where C = 8N(1− λ)K. �

The Efficiency of the Proof. The proof doesn’t provide elegant estimates for
λ in terms of a priori values of N and K. To evaluate the efficiency of the proof,
assume that pj = bK log(j2)c (the maximum density allowed by condition (1) of
Theorem 1).

One can view the choice of K log(j2) points as approximately K/K0 choices of
sets of size K0 log(j2). Let K0 = K(N, 1/2). (By using Lagrange multipliers to find
the maximum of Kλ subject to λ ∈ [0, 1/2] and W (N,K, λ) = 1/2, one can show
that the maximum occurs at the boundary of this manifold with λ = 1/2. Thus,
K0 = K(N, 1/2) is optimal for this comparison argument.) The details require
some explanation. Assume first that K is not an integer multiple of K0. Then one
may find K ′

0 ∈ (0,K0) for which W (N,K ′
0, 1/2) < 1/2, dK/K0e = dK/K ′

0e, and K
is not an integer multiple of K ′

0. Then the number of N -independent sets required
for sets chosen from Qj ’s with large j is

2 lim sup
j

d bK log(j2)c
bK ′

0 log(j2)c
e ≤ 2 lim sup

j
d K log(j2)
K ′

0 log(j2)− 1
e

= 2dK/K0e.
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Thus at most 2dlog(8N)Ke N -independent sets are required for all but finitely
many j’s (almost surely). If K is an integer multiple of K0, one can’t choose
K ′

0 < K0 without making dK/K ′
0e greater than dK/K0e. In this case, the limsup

is d1+K/K0e. In summary, the number of N -independent sets required for all but
finitely many j’s, almost surely, is bounded by

2b1 + log(8N)Kc.

In the case of N = 2 and K = 1.80 > log(2)−1 (the latter is the asymptotic
density of a quasi-independent set, as proved below), random sets chosen with a
density greater than that of a quasi-independent set are a union of no more than 10
dissociate sets (for all but finitely many j’s, almost surely). The authors venture
no guesses as to whether this is universally true of quasi-independent sets; the
quasi-independent set {1, 6, 10, 12, 14} is an example where three dissociate sets are
required and the worst case known to date.

Fix K > 0, let N → ∞, and consider d1/λ(N,K)−e for some λ(N,K)− ∈
(0, λ(N,K)) to be described. If λ ∈ (0, 1/2] and

W (N,K, λ) = K[λ log(2N/λ) + (λ− 1) log(1− λ)] ≤ 1/2,

then Kλ log(2N) ≤ 1/2 and thus λ ≤ 1/(2K log(2N)). It follows that λ(N,K) → 0
as N →∞. One has

(λ− 1) log(1− λ) < λ, for λ ∈ (0, 1),

with
lim

λ→0+
(λ− 1) log(1− λ)/λ = 1.

If W ∗(N,K, λ) is defined as Kλ[1+log(2N/λ)], one has W (N,K, λ) < W ∗(N,K, λ)
for λ ∈ (0, 1). Let λ(N,K)− be the last λ ∈ (0, 1/2] such that W ∗(N,K, λ) ≤ 1/2.
Since W (N,K, λ) < W ∗(N,K, λ) for λ ∈ (0, 1), one has λ(N,K)− < λ(N,K). As
shown earlier,

λ(N,K)− < λ(N,K) ≤ 1/(2K log(2N)).

Also, limN→∞ W ∗(N,K, (4K log(2N))−1) = 1/4 < 1/2. Consequently, for N large
enough,

1/(4K log(2N)) < λ(N,K)− < 1/(2K log(2N))

and one may write

λ(N,K)− = ((2 + εN )K log(2N))−1, for some εN ∈ (0, 2).

By solving W ∗(N,K, λ(N,K)−) = 1/2 with λ(N,K)− in this form, one finds that

εN = 2[1 + log(2 + εN ) + log(K) + log(log(2N))]/ log(2N)

≤ 2[1 + log(4) + log(K) + log(log(2N))]/ log(2N).

Therefore,
d1/λ(N,K)−e = d(2 + εN )K log(2N)e,

with limN→∞ εN = 0. By the previous equation for εN ,

d1/λ(N,K)−e = d2K {log(2N) + log(log(2N)) + log(K) + 1 + log(2 + εN )}e.

A lower bound for 1/λ will follow from the next proposition.



8 K. T. HARRISON L. THOMAS RAMSEY

Proposition 6. Let mj be the maximum cardinality of an N -independent subset
of any arithmetic progression of the form Sj = k · {1, . . . , j} with k 6= 0. Then

lim
j→∞

mj

log(j)
=

1
log(N + 1)

.

Proof. It is clear that mj does not depend upon the dilation factor k, so we may
set k = 1 for simplicity. The set {1, N +1, (N +1)2, . . . , (N +1)t} is N -independent
in Sj where t = blog(j)/ log(N + 1)c. Thus,

lim inf
j→∞

mj

log(j)
≥ 1

log(N + 1)
.

Second, any N -independent subset E has the property that, for distinct coefficient
sequences α and α′ from {0, 1, . . . , N}E ,∑

x∈E

αxx 6=
∑
x∈E

α′xx.

If E ⊂ Sj is N -independent of cardinality mj , there are (N + 1)mj of these sums
in [0, N

∑
x∈E x]. Thus, for mj > 1,

(N + 1)mj ≤ 1 + N
∑
x∈E

x < 1 + Njmj .

Thus (N + 1)mj ≤ Njmj (for mj > 1) and

mj log(N + 1)− log(mj) ≤ log(j) + log(N).

It follows that

mj

log(j)

[
log(N + 1)− log(mj)

mj

]
≤ 1 +

log(N)
log(j)

.

Since mj →∞ as j →∞,

lim
j→∞

log(mj)
mj

= 0

and hence

log(N + 1) lim sup
j→∞

mj

log(j)
= lim sup

j→∞

{
mj

log(j)

[
log(N + 1)− log(mj)

mj

]}
≤ lim sup

j→∞

[
1 +

log N

log(j)

]
= 1.

Consequently,

lim sup
j→∞

mj

log(j)
≤ 1

log(N + 1)
.

�
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Proposition 6 implies that, for any choice of λ(N,K)− from (0, λ(N,K)),

d1/λ(N,K)−e ≥ K log(N + 1).

First, by Proposition 6, if K log(j2) distinct points are chosen from Qj (of size j2)
and mj is the maximum size of an N -independent subset of Qj , the number of
N -independent subsets required to cover those points is at least

lim
j→∞

bK log(j2)c
mj

= lim
j→∞

log(j2)
mj

K log(j2)− 1
log(j2)

= K log(N + 1).

Second, note that Lemma 3 implies that almost all the random choices of Theorem
1 produce distinct elements of Qj for all but finitely many j. Hence the above
estimate applies to d1/λ(N,K)−e.

Some Deterministic Observations. For Sidon sets and M -independent sets,
the question of whether they are a finite union of N -independent sets is “finitely-
determined”. To make this precise, the following definition is offered.

Definition. For subsets E ⊂ Z, let µ(E,m) = ∞ if E is not a finite union of m-
independent sets; otherwise, let µ(E,m) be the minimum number of m-independent
sets of which E is the union.

As in [7], let α(E) denote the Sidon constant of E for Sidon subsets of Z, ∞
otherwise.

Theorem 7. If the m-independent subsets of Z are unions of finitely many n-
independent subsets, then there is a uniform bound on the number of n-independent
subsets which are required.

Theorem 8. If every Sidon subset of Z\{0} is the union of finitely many m-
independent subsets, then then there is an increasing function φ : [1,∞) → Z+

such that, for Sidon subsets E of Z\{0} with α(E) ≤ r,

(6) µ(E,m) ≤ φ(r).

The restriction to r ≥ 1 is due to the fact that α(E) ≥ 1 for all E ⊂ Z [7]. The
proofs of Theorems 7 and 8 will be facilitated by the following lemmas. The proof
of the first follows closely from the definitions.

Lemma 9. For subsets E and F of Z, if F ⊂ E then α(F ) ≤ α(E) and µ(F,m) ≤
µ(E,m). Also, for m ≤ n, µ(E,m) ≤ µ(E,n).

Lemma 10. For k 6= 0 and E ⊂ Z, α(E) = α(kE) and µ(E,m) = µ(kE,m).

Proof. That α(E) = α(kE) is well-known. For k 6= 0, F ⊂ Z is m-independent
if and only if kF is m-independent. Thus, if E is partitioned into Fi’s which are
m-independent, then kE is partitioned by kFi’s which remain m-independent and
vice versa. �
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Lemma 11. For E ⊂ Z,

(7) µ(E,m) = sup{µ(F,m) | F ⊂ E & F is finite}.

Proof. Let t equal the right-hand side of equation (7). By Lemma 9, µ(E,m) ≥ t.
Next, the reversed inequality will be proved. Let Es = E ∩ [−s, s]. Then

E = ∪sEs

and there are m-independent subsets Iq,s (possibly equal to ∅) such that

Es = ∪q≤tIq,s.

Without loss of generality, it may be assumed that the Iq,s’s are disjoint for distinct
q’s. Hence

(8) χ
Es

=
t∑

q=1

χ
Iq,s

.

By a weak-limit argument, or by using Alaoglu’s Theorem in `∞(Z) = `1(Z)∗, there
is a subsequence sj such that

lim
j→∞

χ
Iq,sj

= fq, for 1 ≤ q ≤ t,

pointwise on Z (or weak-* in `∞(Z)).
Necessarily, fq = χ

Iq
for some set Iq ⊂ Z. By equation (8),

t∑
q=1

χ
Iq

= lim
j→∞

t∑
q=1

χ
Iq,sj

= lim
j→∞

χ
Esj

= χ
E
.

Thus, E is the disjoint union of the Iq’s. To prove that the Iq’s are m-independent,
suppose that Iq is not m-independent for some q. Then there is an “m-relation”,
specifically a finite set W ⊂ Iq and integer coefficients αx ∈ [−m,m] with αx 6= 0
such that ∑

x∈W

αxx = 0.

Because χ
Iq,sj

converges pointwise to χ
Iq

on Z and W is finite, there is some
j0 such that W ⊂ Iq,sj

for all j ≥ j0. That would make Iq,sj
fail to be m-

independent, contrary to the hypotheses. So, Iq must be m-independent and hence
µ(E,m) ≤ t. �

Proof of Theorem 7. Assume that no uniform bound holds. That is, for each t,
there is an m-independent subset Et ⊂ Z such that µ(Et, n) ≥ t. By Lemma 11
there is a finite subset Ft ⊂ Et such that µ(Ft, n) ≥ t (and of course remains
m-independent). Let

F = ∪tktFt,



ON PARTITIONING SIDON SETS WITH QUASI-INDEPENDENT SETS 11

where the kt’s are positive integers which increase rapidly enough to make F be
m-independent. This will contradict the hypotheses, because Lemmas 9 and 10
imply that for all t

µ(F, n) ≥ µ(ktFt, n) = µ(Ft, n) ≥ t.

One may choose kt as follows. Let k1 = 1. Given ks for s ≤ t, let Dt denote the
maximum absolute value of the elements∑

s≤t

∑
x∈ksFs

αxx, where αx an integer in [−m,m] for all x.

Choose kt+1 > Dt. Here’s an argument that F is then m-independent.
Suppose that F is not m-independent. Then there is a non-empty, finite set

W ⊂ F and integers αx ∈ [−m,m] with αx 6= 0 such that

(9)
∑
x∈W

αxx = 0.

Because W is finite and non-empty, there is a maximum t such that W ∩ ktFt 6= ∅.
If t = 1, then W is a subset of k1F1 and k1F1 fails to be m-independent (which
contradicts the m-independence of F1). So t > 1, and equation (9) can be rewritten
as

(10)
∑

x∈W∩ktFt

αxx = −
∑
s<t

∑
x∈W∩ksFs

αxx.

If
∑

x∈W∩ktFt
αxx 6= 0, then it is a non-zero multiple of kt and

kt ≤

∣∣∣∣∣ ∑
x∈W∩ktFt

αxx

∣∣∣∣∣
=

∣∣∣∣∣−∑
s<t

∑
x∈W∩ksFs

αxx

∣∣∣∣∣
≤ Dt−1.

This contradiction proves that ∑
x∈W∩ktFt

αxx = 0.

Since αx 6= 0 for at least one x ∈ ktFt, ktFt fails to be m-independent. However,
since kt > 0, this contradicts the m-independence of Ft. �

Proof of Theorem 8. Suppose that, for every r ≥ 1,

(11) sup{µ(E,m) | E ⊂ (Z\{0}) & α(E) ≤ r} < ∞.

Then let φ(r) be that supremum; it is clearly increasing with r and meets the
requirements of the theorem. Suppose, on the contrary, that there is some r ≥ 1
for which inequality (11) is false. Then, for each t, there is some Et ⊂ Z\{0} for
which α(Et) ≤ r and µ(Et,m) ≥ t. By Lemma 11, there is a finite subset Ft ⊂ Et
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for which µ(Ft,m) ≥ t (and, of course, α(Ft) ≤ r). As in the proof of Theorem 7,
let

F = ∪tktFt,

for a rapidly increasing sequence of positive integers, {kt}t. For all t

µ(F,m) ≥ µ(ktFt,m) = µ(Ft,m) ≥ t.

Thus, F will not be a finite union of m-independent sets. If F is Sidon, this will
contradict the hypotheses of Theorem 8.

To make F be Sidon, let k1 = 1; for t > 1, let kt > π22tMt−1 where Mt is the
maximum absolute value of an element of

∪s<tksFs.

Then, as in the proof of Proposition 12.2.4, pages 371–372 of [2], {ktFt}t is a sup-
norm partition for F : if pt is a ktFt-polynomial (on T ) and is non-zero for at most
finitely-many t, then

∞∑
j=1

‖pj‖∞ ≤ 2π‖
∞∑

j=1

pj‖∞.

Recall that B(F ) (the restrictions to F of Fourier-transforms of bounded Borel
measures on T ) is the Banach space dual of Trig

F
(T ) (the trigonometric polynomials

with spectrum in F ). For p ∈ Trig
F
(T ), let pj denote its summand in Trig

kjFj
(T )

under the natural decomposition. Then for f ∈ B(F ),

| < f, p > | =

∣∣∣∣∣∣
∞∑

j=1

< f, pj >

∣∣∣∣∣∣
≤

∞∑
j=1

| < f, pj > |

≤
∞∑

j=1

‖f |
kjFj

‖
B(kjFj)‖pj‖∞

≤
(

sup
t
‖f |

ktFt
‖

B(ktFt)

) ∞∑
j=1

‖pj‖∞

≤ (r sup
t
‖f |

ktFt
‖∞)(2π‖p‖∞), since α(ktFt) ≤ r,

≤ (2πr‖f‖∞)‖p‖∞.

Thus, ‖f‖
B(F ) ≤ 2πr‖f‖∞. By the definition of Sidon constant, α(F ) ≤ 2πr and

thus F is Sidon. �

One can extend the idea of m-independence to arbitrary abelian groups, by
additionally restricting αx to [−p, p) when 2p is the order of x, and to [−(p −
1)/2, (p + 1)/2) when the order of x is p and odd. Then Theorems 7 and 8 have
more universal versions.
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Theorem 12. Suppose that, for some integers m and n and all abelian groups G,
m-independent sets are the finite unions of n-independent sets. Then, independent
of the group G, there is a uniform bound on the number n-independent sets required.

Theorem 13. Suppose there is an integer m such that, for all abelian groups G
and all Sidon subsets E of G\{0}, E is a finite union of m-independent sets. Then
there is an increasing function φ : [0,∞) → Z+ such that, if E ⊂ (G\{0}) for any
abelian group G and α(E) ≤ r, then µ(E,m) ≤ φ(r).

Proof of Theorem 12. Suppose that, for every t, there is an m-independent subset
Et of some abelian group Gt such that µ(Et, n) ≥ t. Let G be the infinite direct
sum of the Gt’s: g ∈ G if and only if

g : Z+ → ∪tGt

with g(t) ∈ Gt for all t and g(t) 6= 0 for at most finitely many t [assume that the
groups are presented additively]. Embed Gt into G canonically: x 7→ gx where
gx(t) = x and gx(s) = 0 for s 6= t. View Gt as identical with its isomorphic embed-
ding; Et remains m-independent under the embedding and µ(Et, n) is unchanged.
It should be clear that

E = ∪tEt ⊂ G

is m-independent while

µ(E,n) ≥ µ(Et, n) ≥ t, for all t.

So E is not the finite union of n-independent sets, contrary to the hypotheses. �

Proof of Theorem 13. As in the proof of Theorem 8, suppose that there is some
r ∈ [1,∞) such that, for all t, there is an abelian group Gt and Et ⊂ Gt\{0} for
which α(Et) ≤ r and µ(Et,m) ≥ t. As in the proof of Theorem 12, let G be the
direct sum of the Gt’s and view Gt as embedded in G. Under this embedding,
neither α(Et) nor µ(Et,m) changes. Let

E = ∪tEt.

Then E is not the union of finitely many m-independent sets.
To see that E is a Sidon set, note that {Et}t is a sup-norm partition of E.

Specifically, if Γ is the compact group dual to G (G is given the discrete topology),
then for p ∈ Trig

E
(Γ), with pj its natural summand in Trig

Ej
(Γ),

∞∑
j=1

‖pj‖∞ ≤ π‖p‖∞,

by Lemma 12.2.2 of page 370, [2]. To apply that lemma two things are required.
First, no Ej may contain 0, which is true here. Second, in the language of [2], the
ranges of {pj}∞j=1 are 0-additive: given {γj}∞j=1 from Γ, there is some γ ∈ Γ for
which

(12)

∣∣∣∣∣∣p(γ)−
∞∑

j=1

pj(γj)

∣∣∣∣∣∣ = 0.
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Here’s a proof of equation (12). Γ is the infinite direct product of Γt = Ĝt: γ ∈ Γ
if and only if

γ : Z+ → ∪tΓt, with γ(t) ∈ Γt.

Let γ ∈ Γ satisfy γ(j) = γj(j). Note that for a character g used in pj , < g, γ > is
determined by γ(j) because g is 0 in every other coordinate:

< g, γ >=
∏
s

< g(s), γ(s) >=< g(j), γ(j) >=< g(j), γj(j) >=< g, γj > .

Thus

p(γ) =
∞∑

j=1

pj(γ)

=
∞∑

j=1

pj(γj).

Once it is known that E is sup-norm partitioned by the Et’s, then just as in the
proof of Theorem 8 one has

α(E) ≤ π sup
t

α(Et) ≤ πr.

That proves that E is Sidon. �
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