ON PARTITIONING SIDON SETS WITH QUASI-INDEPENDENT SETS

K. T. HARRISON L. THOMAS RAMSEY

Murdoch University University of Hawaii

February 15, 1995

ABSTRACT. There is a construction of random subsets of \mathbb{Z} in which almost every subset is Sidon (this was first done by Katznelson). More is true: almost every subset is the finite union of quasi-independent sets. Also, if every Sidon subset of $\mathbb{Z}\setminus\{0\}$ is the finite union of quasi-independent sets, then the required number of quasi-independent sets is bounded by a function of the Sidon constant. Analogs of this last result are proved for all Abelian groups, and for other special Sidon sets (the *N*-independent sets).

Sidon subsets have been characterized by Pisier as having proportional quasiindependent subsets[8]. There remains the open problem of whether Sidon subsets of \mathbb{Z} must be finite unions of quasi-independent sets. Grow and Whicher produced an interesting example of a Sidon set whose Pisier proportionality was 1/2 but the set was not the union of two quasi-independent sets [3]. On the other hand, this paper provides probabilistic evidence in favor of an affirmative answer with a construction of random Sidon sets which borrows heavily from ideas of Professors Katznelson and Malliavin [4,5,6]. Katznelson provided a random construction of integer Sidon sets which, almost surely, were not dense in the Bohr compactifaction of the integers [5,6]. This paper presents a modification of that construction and emphasizes a stronger conclusion which is implicit in the earlier construction: almost surely, the random sets are finite unions of quasi-independent sets (also of N-independent sets, defined below). In this paper, random subsets of size $O(\log n_i)$ are chosen from disjoint arithmetic progressions of length n_i (the maximum density allowed for a Sidon set), with $n_i \to \infty$ fast enough and the progressions rapidly dilated as $j \to \infty$.

This paper concludes with several deterministic results. If every Sidon subset of $\mathbb{Z}\setminus\{0\}$ is a finite union of quasi-independent sets, then the required number of quasi-independent sets is bounded by a function of the Sidon constant. Analogs of this result are proved for all Abelian groups, and for other special Sidon sets (the *N*-independent sets). Throughout this paper, unspecified variables denote positive integers.

¹⁹⁹¹ Mathematics Subject Classification. 43A56.

Key words and phrases. Sidon, quasi-independent, dissociate, N-independent.

Definition. A subset $F \subset \mathbb{Z}$ is said to be N-independent if and only if, for all integers $\alpha_x \in [-N, N]$, with $\alpha_x \neq 0$ for at most finitely many x,

$$\sum_{x \in F} \alpha_x x = 0 \to \sum_{x \in F} |\alpha_x| = 0.$$

That is, among all linear relations with integer coefficients from [-N, N], only the trivial relation holds. (This definition differs from that of J. Bourgain, for whom N-independence is a weaker form of quasi-independence.)

When N = 1 such sets are called quasi-independent and are Sidon [8]; when N = 2 they are called dissociate [7].

Theorem 1. Let $K \in \mathbb{R}^+$, let integers M_j and p_j satisfy

(1)
$$0 \le p_j \le K \log(j^2)$$

and

(2)
$$M_j > K \sum_{q < j} M_q q^3 \log(q^2),$$

and set Q_j equal to $M_j \cdot \{1, \ldots, j^2\}$. For each j, and each $i \in [1, p_j]$, choose $g_{j,i}$ from Q_j independently with uniform probability. Given N, let $\lambda \in (0, 1/2]$ so that

(3)
$$W(N, K, \lambda) = K[\lambda \log(2N/\lambda) + (\lambda - 1)\log(1 - \lambda)] < 1/2.$$

Then, for almost all choices of $\{g_{j,i}\}$, the index set for the random variables can be partitioned into $\lceil 1/\lambda \rceil + 1$ sets of which one is finite and the rest index Nindependent subsets of \mathbb{Z} .

Remark 1. Note that $\{x\}$ is N-independent when $x \neq 0$. Since $0 \notin Q_j$, the finite set in Theorem 1 is also a finite union of N-independent sets. Since N-independent sets are Sidon [8], as are the unions of finitely many Sidon sets [7], almost all choices produce a Sidon set.

Remark 2. $W(N, K, \lambda)$ is a non-decreasing function of $\lambda \in (0, 1/2]$:

$$\frac{\partial W(N, K, \lambda)}{\partial \lambda} = K \log(2N) + K \log((1 - \lambda)/\lambda) > 0.$$

Since $\lim_{\lambda \to 0^+} W(N, K, \lambda) = 0$, there is a maximum $\lambda(N, K) \in (0, 1/2]$ such that

$$W(N, K, \lambda(N, K)) \le 1/2.$$

The theorem applies to any λ in the non-empty interval $(0, \lambda(N, K))$.

Likewise, $W(N, K, \lambda)$ is linear in K with a positive slope for $\lambda \in (0, 1/2]$. In that case, there is a unique $K(N, \lambda) > 0$ such that $W(N, K(N, \lambda), \lambda) = 1/2$. For example, $K(N, 1/2) = \log(8N)^{-1}$. The theorem applies to any K in the non-empty interval $(0, K(N, \lambda))$.

Condition (2) implies the next lemma.

Lemma 2. Let $K \in \mathbb{R}^+$, integers M_j satisfy condition (2), $Q_j = M_j \cdot \{1, \ldots, j^2\}$, and S_j be a subset of Q_j with at most $K \log(j^2)$ points. A set $E \subset \bigcup_{j=N}^{\infty} S_j$ is *N*-independent if and only if, for all $j \geq N$, the sets $E \cap S_j$ are *N*-independent.

Proof. The "only if" follows from the fact that any subset of an N-independent set is likewise N-independent. Consider the contrapositive of the converse. Assume that E is not N-independent and let α be the coefficient sequence for a non-trivial "N-relation" in E. Let J be the largest integer for which there is some $x \in S_J$ with $\alpha_x \neq 0$. If J = N, then α is supported in $E \cap S_N$; hence $E \cap S_N$ is not N-independent. Suppose that J > N. Then

$$0 = \sum_{N \le q < J} \sum_{x \in E \cap S_q} \alpha_x x + \sum_{x \in E \cap S_J} \alpha_x x.$$

For $x \in S_q$, $|x| \le q^2 M_q$. Thus

$$\left| \sum_{N \leq q < J} \sum_{x \in E \cap S_q} \alpha_x x \right| \leq \sum_{N \leq q < J} \sum_{x \in E \cap S_q} |\alpha_x x|$$
$$\leq N \sum_{N \leq q < J} \sum_{x \in E \cap S_q} |x|$$
$$\leq N \sum_{N \leq q < J} K \log(q^2) q^2 M_q$$
$$\leq K \sum_{N \leq q < J} \log(q^2) q^3 M_q$$
$$< M_J, \quad \text{by condition (2).}$$

Thus

$$\left| \sum_{x \in E \cap S_J} \alpha_x x \right| = \left| -\sum_{N \le q < J} \sum_{x \in E \cap S_q} \alpha_x x \right| < M_J$$

However, each $x \in S_J$ is a multiple of M_J ; therefore

$$\sum_{x \in E \cap S_J} \alpha_x x = 0.$$

Since $\alpha_x \neq 0$ for at least one $x \in E \cap S_J$, it follows that $E \cap S_J$ is not N-independent. Thus, whether J = N or J > N, $E \cap S_J$ is not N-independent. \Box

Lemma 3. Assume the hypotheses and notations of Theorem 1. Let $\{x_i\}_{i=1}^{p_j}$ range over random selections from Q_j . Let P_j denote this proposition: for all $\alpha = \{\alpha_i\}_{i=1}^{p_j}$, with α_i an integer in [-N, N], the equality $\sum_{i=1}^{p_j} \alpha_i x_i = 0$ implies that $\sum_{i=1}^{p_j} |\alpha_i| = 0$ or that there are more than $\lceil \lambda p_j \rceil$ coefficients which are nonzero. Then the probability of P_j being false is at most $C \log(j) j^{2W-2}$, where W is defined in expression (3) of Theorem 1 and $C = 8NK(1 - \lambda)$.

Before describing the proof of Lemma 3, here is the proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, the probability of P_j failing for infinitely many positive integers j is at most

$$\lim_{t \to \infty} \sum_{q > t} C \log(q) q^{2W-2},$$

which is 0 since W < 1/2 (by an integral comparison test). Thus, almost surely, P_j is true for all but finitely many j's. P_j implies that any set of at most $\lceil \lambda p_j \rceil$ indices *i* must index distinct elements forming an *N*-independent set. Therefore, for $p_j > 0$, one can partition the p_j indices (j,i) into $\lceil p_j / \lceil \lambda p_j \rceil \rceil$ subsets each of which indexes an *N*-independent subset of Q_j . Consequently, for $p_j > 0$,

$$\lceil \frac{p_j}{\lceil \lambda p_j \rceil} \rceil \le \lceil \frac{p_j}{\lambda p_j} \rceil$$
$$= \lceil 1/\lambda \rceil.$$

[This partition bound holds trivially if $p_j = 0$.] By Lemma 2, the union of *N*-independent subsets from distinct Q_j 's, $j \ge N$, remains *N*-independent. Thus, almost surely, the index set for the random variables $\{g_{i,j}\}$ is a union of at most $\lceil 1/\lambda \rceil$ sets which index *N*-independent sets together with a finite set; the finite set comes from the finite number of *j*'s where j < N or where P_j fails to be true. \Box

Lemma 4. From a finite subset Q of real numbers of size n, choose p points at random, $\{g_i\}_{i=1}^p$, uniformly and independently. For any coefficient sequence $\alpha = \{\alpha_i\}_{i=1}^p$, let C_{α} denote the probability that

$$0 = \mathcal{R}(\alpha) = \sum_{i=1}^{p} \alpha_i g_i.$$

If $\sum_{i=1}^{p} |\alpha_i| > 0$, then $C_{\alpha} \le n^{-1}$.

Proof. Suppose first that exactly one coefficient, say α_j , is non-zero. Then $\mathcal{R}(\alpha) = 0$ if and only if $g_j = 0$. This has probability 0 if $0 \notin Q$ and 1/n if $0 \in Q$. Next, suppose that at least two coefficients are non-zero. Let t be the last integer such that $\alpha_t \neq 0$. Then, $\mathcal{R}(\alpha) = 0$ if and only if

$$g_t = -(\alpha_t)^{-1} \sum_{i=1}^{t-1} \alpha_i g_i.$$

Set the right-hand side above equal to $\mathcal{R}^*(\alpha)$. By the joint independence of the random variables g_i , $1 \leq i \leq p$, g_t is independent of $\mathcal{R}^*(\alpha)$. Also, $P(g_t = y)$ is either 1/n or 0; the latter if $y \in Q$ and the former if not. Hence

$$P(\mathcal{R}(\alpha) = 0) = \sum_{x \in \mathbb{R}} P(g_t = -x) P(\mathcal{R}^*(\alpha) = x)$$
$$\leq (1/n) \sum_{x \in \mathcal{R}} P(\mathcal{R}^*(\alpha) = x)$$
$$= 1/n \cdot 1$$
$$= 1/n.$$

			L
_ 1			L
	_	_	

Lemma 5. Let $\phi(s) = s \log(s) + (1 - s) \log(1 - s)$, for $s \in (0, 1)$. For $\lambda \in (0, 1)$, $p \in \mathbb{Z}^+$, and $t \in (-\lambda, 1 - \lambda) \cap [-1/p, 1/p]$,

$$-p\phi(\lambda+t) \le |\phi'(\lambda)| - p\phi(\lambda).$$

Proof. Since ϕ'' is positive, this follows from Taylor's Remainder Theorem. For $\lambda \in (0, 1)$ and $t \in (-\lambda, 1 - \lambda)$,

$$\phi(\lambda + t) = \phi(\lambda) + \phi'(\lambda)t + \frac{\phi''(u)}{2}t^2,$$

for some u between λ and $\lambda + t$. One has $\phi'(u) = \log(u) - \log(1-u)$ and $\phi''(u) = u^{-1} + (1-u)^{-1} > 0$ for $u \in (0,1)$. Since both λ and $\lambda + t$ are in (0,1) the remainder term is non-negative and thus

$$\phi(\lambda + t) \ge \phi(\lambda) + \phi'(\lambda)t.$$

Therefore, to prove this lemma, it suffices to have

$$-p\phi'(\lambda)t \le |\phi'(\lambda)|.$$

Suppose that $\lambda \leq 1/2$. Then $\phi'(\lambda) = \log[\lambda/(1-\lambda)] \leq 0$. It follows from $t \leq 1/p$ that

$$[-p\phi'(\lambda)]t \le [-p\phi'(\lambda)](1/p) = -\phi'(\lambda).$$

If $\lambda > 1/2$, then $\phi'(\lambda) > 0$. It follows from $t \ge -1/p$ that

$$[-p\phi'(\lambda)]t \le [-p\phi'(\lambda)](-1/p) = \phi'(\lambda).$$

Proof of Lemma 3. Let p denote p_j . If $\lambda p \leq 1$, P_j is always true because $0 \notin Q_j$ and hence any "N-relation" requires at least two points of Q_j . So assume $\lambda p > 1$. The number of quasi-relations excluded by P_j is

(4)
$$D(p) = \sum_{w=1}^{\lceil \lambda p \rceil} \binom{p}{w} (2N)^w.$$

To see equation (4), think of a quasi-relation α with exactly *s* non-zero coefficients. There are $\binom{p}{s}$ locations for the non-zero coefficients; for each placement, there are 2N choices of a non-zero integer from [-N, N].

Use Stirling's approximation to factorials [1] to estimate $\binom{p}{sp}$ with $sp = \lceil \lambda p \rceil$:

(5)
$$\binom{p}{sp} \leq \frac{p^p \sqrt{2\pi p}}{e^p} \frac{e^{sp}}{(sp)^{sp} \sqrt{2\pi sp}} \frac{e^{p-sp}}{(p-sp)^{p-sp} \sqrt{2\pi (p-sp)}} * T$$

where

$$T \le e^{1/(12p)} * e^{1/(12ps)} * e^{1/[12(p-ps)]} \le e^{11/72} \le 1.17.$$

After removing common factors of the form e^x and p^x , one has

$$\begin{pmatrix} p \\ sp \end{pmatrix} \leq \sqrt{2\pi p} * \frac{1}{s^{sp}\sqrt{2\pi sp}} * \frac{1}{(1-s)^{p-sp}\sqrt{2\pi(p-sp)}} * T \\ \leq \frac{T}{\sqrt{2\pi sp}} * \frac{\sqrt{p}}{\sqrt{p-sp}} * s^{-sp}(1-s)^{sp-p} \\ \leq \frac{T}{\sqrt{2\pi sp}} * \frac{\sqrt{2p}}{\sqrt{p-1}} * e^{-p \cdot [s \log(s) + (1-s) \log(1-s)]}, \quad \text{since } p - sp \geq (p-1)/2, \\ \leq \frac{T}{\sqrt{\pi}} * \frac{\sqrt{p}}{\sqrt{2(p-1)}} * e^{-p \cdot \phi(s)}, \quad \text{since } sp \geq 2, \\ < e^{-p\phi(s)}, \quad \text{since } p > 2.$$

View $\phi(s)$ with $s = \lambda + t$ as in the previous lemma:

$$\binom{p}{sp} \leq \frac{1-\lambda}{\lambda} e^{-p\phi(\lambda)}.$$

Now return to D(p). Since $\lambda \leq 1/2$, the binomial coefficients in equation (4) are dominated by the last one. Also, $\lambda p > 1$ and hence $\lceil \lambda p \rceil < \lambda p + 1 < 2\lambda p$. Therefore

$$D(p) \leq (\lceil \lambda p \rceil) {p \choose sp} (2N)^{\lceil \lambda p \rceil}$$

$$< (2\lambda p) \cdot \frac{1-\lambda}{\lambda} e^{-p\phi(\lambda)} \cdot (2N) e^{\lambda p \log(2N)}$$

$$= 4Np(1-\lambda) e^{p(W/K)}, \quad \text{by equation (3)}$$

By Lemma 4, the probability of P_j failing is at most $D(p)|Q_j|^{-1}$. With $|Q_j| = j^2$, $p = p_j \leq K \log(j^2)$, and $W \geq 0$, one has

$$P(P_j \text{ failing}) \le 4N(1-\lambda)K\log(j^2)e^{K\log(j^2)(W/K)}j^{-2} = C\log(j)j^{2W-2}$$

where $C = 8N(1 - \lambda)K$. \Box

The Efficiency of the Proof. The proof doesn't provide elegant estimates for λ in terms of *a priori* values of *N* and *K*. To evaluate the efficiency of the proof, assume that $p_j = \lfloor K \log(j^2) \rfloor$ (the maximum density allowed by condition (1) of Theorem 1).

One can view the choice of $K \log(j^2)$ points as approximately K/K_0 choices of sets of size $K_0 \log(j^2)$. Let $K_0 = K(N, 1/2)$. (By using Lagrange multipliers to find the maximum of $K\lambda$ subject to $\lambda \in [0, 1/2]$ and $W(N, K, \lambda) = 1/2$, one can show that the maximum occurs at the boundary of this manifold with $\lambda = 1/2$. Thus, $K_0 = K(N, 1/2)$ is optimal for this comparison argument.) The details require some explanation. Assume first that K is not an integer multiple of K_0 . Then one may find $K'_0 \in (0, K_0)$ for which $W(N, K'_0, 1/2) < 1/2$, $\lceil K/K_0 \rceil = \lceil K/K'_0 \rceil$, and Kis not an integer multiple of K'_0 . Then the number of N-independent sets required for sets chosen from Q_j 's with large j is

$$2\limsup_{j} \lceil \frac{\lfloor K \log(j^2) \rfloor}{\lfloor K'_0 \log(j^2) \rfloor} \rceil \le 2\limsup_{j} \lceil \frac{K \log(j^2)}{K'_0 \log(j^2) - 1} \rceil$$
$$= 2 \lceil K/K_0 \rceil.$$

Thus at most $2\lceil \log(8N)K \rceil$ *N*-independent sets are required for all but finitely many *j*'s (almost surely). If *K* is an integer multiple of K_0 , one can't choose $K'_0 < K_0$ without making $\lceil K/K'_0 \rceil$ greater than $\lceil K/K_0 \rceil$. In this case, the limsup is $\lceil 1 + K/K_0 \rceil$. In summary, the number of *N*-independent sets required for all but finitely many *j*'s, almost surely, is bounded by

$$2|1 + \log(8N)K|.$$

In the case of N = 2 and $K = 1.80 > \log(2)^{-1}$ (the latter is the asymptotic density of a quasi-independent set, as proved below), random sets chosen with a density greater than that of a quasi-independent set are a union of no more than 10 dissociate sets (for all but finitely many *j*'s, almost surely). The authors venture no guesses as to whether this is universally true of quasi-independent sets; the quasi-independent set $\{1, 6, 10, 12, 14\}$ is an example where three dissociate sets are required and the worst case known to date.

Fix K > 0, let $N \to \infty$, and consider $\lceil 1/\lambda(N, K)^{-} \rceil$ for some $\lambda(N, K)^{-} \in (0, \lambda(N, K))$ to be described. If $\lambda \in (0, 1/2]$ and

$$W(N, K, \lambda) = K[\lambda \log(2N/\lambda) + (\lambda - 1)\log(1 - \lambda)] \le 1/2,$$

then $K\lambda \log(2N) \leq 1/2$ and thus $\lambda \leq 1/(2K \log(2N))$. It follows that $\lambda(N, K) \to 0$ as $N \to \infty$. One has

$$(\lambda - 1)\log(1 - \lambda) < \lambda, \text{ for } \lambda \in (0, 1),$$

with

$$\lim_{\lambda \to 0^+} (\lambda - 1) \log(1 - \lambda) / \lambda = 1.$$

If $W^*(N, K, \lambda)$ is defined as $K\lambda[1 + \log(2N/\lambda)]$, one has $W(N, K, \lambda) < W^*(N, K, \lambda)$ for $\lambda \in (0, 1)$. Let $\lambda(N, K)^-$ be the last $\lambda \in (0, 1/2]$ such that $W^*(N, K, \lambda) \leq 1/2$. Since $W(N, K, \lambda) < W^*(N, K, \lambda)$ for $\lambda \in (0, 1)$, one has $\lambda(N, K)^- < \lambda(N, K)$. As shown earlier,

$$\lambda(N,K)^- < \lambda(N,K) \le 1/(2K\log(2N)).$$

Also, $\lim_{N\to\infty} W^*(N, K, (4K\log(2N))^{-1}) = 1/4 < 1/2$. Consequently, for N large enough,

$$1/(4K\log(2N)) < \lambda(N,K)^{-} < 1/(2K\log(2N))$$

and one may write

$$\lambda(N,K)^{-} = ((2+\epsilon_N)K\log(2N))^{-1}, \text{ for some } \epsilon_N \in (0,2).$$

By solving $W^*(N, K, \lambda(N, K)^-) = 1/2$ with $\lambda(N, K)^-$ in this form, one finds that

$$\epsilon_N = 2[1 + \log(2 + \epsilon_N) + \log(K) + \log(\log(2N))] / \log(2N)$$

$$\leq 2[1 + \log(4) + \log(K) + \log(\log(2N))] / \log(2N).$$

Therefore,

$$\lceil 1/\lambda(N,K)^{-} \rceil = \lceil (2+\epsilon_N)K\log(2N) \rceil,$$

with $\lim_{N\to\infty} \epsilon_N = 0$. By the previous equation for ϵ_N ,

$$\lceil 1/\lambda(N,K)^{-} \rceil = \lceil 2K \{ \log(2N) + \log(\log(2N)) + \log(K) + 1 + \log(2 + \epsilon_N) \} \rceil.$$

A lower bound for $1/\lambda$ will follow from the next proposition.

Proposition 6. Let m_j be the maximum cardinality of an N-independent subset of any arithmetic progression of the form $S_j = k \cdot \{1, \ldots, j\}$ with $k \neq 0$. Then

$$\lim_{j \to \infty} \frac{m_j}{\log(j)} = \frac{1}{\log(N+1)}.$$

Proof. It is clear that m_j does not depend upon the dilation factor k, so we may set k = 1 for simplicity. The set $\{1, N+1, (N+1)^2, \ldots, (N+1)^t\}$ is N-independent in S_j where $t = \lfloor \log(j) / \log(N+1) \rfloor$. Thus,

$$\liminf_{j \to \infty} \frac{m_j}{\log(j)} \ge \frac{1}{\log(N+1)}.$$

Second, any N-independent subset E has the property that, for distinct coefficient sequences α and α' from $\{0, 1, \ldots, N\}^E$,

$$\sum_{x \in E} \alpha_x x \neq \sum_{x \in E} \alpha'_x x.$$

If $E \subset S_j$ is N-independent of cardinality m_j , there are $(N+1)^{m_j}$ of these sums in $[0, N \sum_{x \in E} x]$. Thus, for $m_j > 1$,

$$(N+1)^{m_j} \le 1 + N \sum_{x \in E} x < 1 + N j m_j.$$

Thus $(N+1)^{m_j} \leq Njm_j$ (for $m_j > 1$) and

$$m_j \log(N+1) - \log(m_j) \le \log(j) + \log(N).$$

It follows that

$$\frac{m_j}{\log(j)} \left[\log(N+1) - \frac{\log(m_j)}{m_j} \right] \le 1 + \frac{\log(N)}{\log(j)}$$

Since $m_j \to \infty$ as $j \to \infty$,

$$\lim_{j \to \infty} \frac{\log(m_j)}{m_j} = 0$$

and hence

$$\log(N+1)\limsup_{j\to\infty} \frac{m_j}{\log(j)} = \limsup_{j\to\infty} \left\{ \frac{m_j}{\log(j)} \left[\log(N+1) - \frac{\log(m_j)}{m_j} \right] \right\}$$
$$\leq \limsup_{j\to\infty} \left[1 + \frac{\log N}{\log(j)} \right]$$
$$= 1.$$

Consequently,

$$\limsup_{j \to \infty} \frac{m_j}{\log(j)} \le \frac{1}{\log(N+1)}.$$

Proposition 6 implies that, for any choice of $\lambda(N, K)^-$ from $(0, \lambda(N, K))$,

$$\lceil 1/\lambda(N,K)^{-} \rceil \ge K \log(N+1).$$

First, by Proposition 6, if $K \log(j^2)$ distinct points are chosen from Q_j (of size j^2) and m_j is the maximum size of an N-independent subset of Q_j , the number of N-independent subsets required to cover those points is at least

$$\lim_{j \to \infty} \frac{\lfloor K \log(j^2) \rfloor}{m_j} = \lim_{j \to \infty} \frac{\log(j^2)}{m_j} \frac{K \log(j^2) - 1}{\log(j^2)} = K \log(N+1).$$

Second, note that Lemma 3 implies that almost all the random choices of Theorem 1 produce distinct elements of Q_j for all but finitely many j. Hence the above estimate applies to $\lceil 1/\lambda(N,K)^{-} \rceil$.

Some Deterministic Observations. For Sidon sets and M-independent sets, the question of whether they are a finite union of N-independent sets is "finitely-determined". To make this precise, the following definition is offered.

Definition. For subsets $E \subset \mathbb{Z}$, let $\mu(E, m) = \infty$ if E is not a finite union of *m*-independent sets; otherwise, let $\mu(E, m)$ be the minimum number of *m*-independent sets of which E is the union.

As in [7], let $\alpha(E)$ denote the Sidon constant of E for Sidon subsets of \mathbb{Z} , ∞ otherwise.

Theorem 7. If the m-independent subsets of \mathbb{Z} are unions of finitely many n-independent subsets, then there is a uniform bound on the number of n-independent subsets which are required.

Theorem 8. If every Sidon subset of $\mathbb{Z}\setminus\{0\}$ is the union of finitely many mindependent subsets, then then there is an increasing function $\phi : [1, \infty) \to \mathbb{Z}^+$ such that, for Sidon subsets E of $\mathbb{Z}\setminus\{0\}$ with $\alpha(E) \leq r$,

(6)
$$\mu(E,m) \le \phi(r)$$

The restriction to $r \ge 1$ is due to the fact that $\alpha(E) \ge 1$ for all $E \subset \mathbb{Z}$ [7]. The proofs of Theorems 7 and 8 will be facilitated by the following lemmas. The proof of the first follows closely from the definitions.

Lemma 9. For subsets E and F of \mathbb{Z} , if $F \subset E$ then $\alpha(F) \leq \alpha(E)$ and $\mu(F,m) \leq \mu(E,m)$. Also, for $m \leq n$, $\mu(E,m) \leq \mu(E,n)$.

Lemma 10. For $k \neq 0$ and $E \subset \mathbb{Z}$, $\alpha(E) = \alpha(kE)$ and $\mu(E, m) = \mu(kE, m)$.

Proof. That $\alpha(E) = \alpha(kE)$ is well-known. For $k \neq 0$, $F \subset \mathbb{Z}$ is *m*-independent if and only if kF is *m*-independent. Thus, if *E* is partitioned into F_i 's which are *m*-independent, then kE is partitioned by kF_i 's which remain *m*-independent and vice versa. \Box

Lemma 11. For $E \subset \mathbb{Z}$,

(7)
$$\mu(E,m) = \sup\{\mu(F,m) \mid F \subset E \quad \& \quad F \text{ is finite}\}.$$

Proof. Let t equal the right-hand side of equation (7). By Lemma 9, $\mu(E, m) \ge t$. Next, the reversed inequality will be proved. Let $E_s = E \cap [-s, s]$. Then

$$E = \cup_s E_s$$

and there are *m*-independent subsets $I_{q,s}$ (possibly equal to \emptyset) such that

$$E_s = \bigcup_{q < t} I_{q,s}.$$

Without loss of generality, it may be assumed that the $I_{q,s}$'s are disjoint for distinct q's. Hence

(8)
$$\chi_{E_s} = \sum_{q=1}^{t} \chi_{I_{q,s}}.$$

By a weak-limit argument, or by using Alaoglu's Theorem in $\ell_{\infty}(\mathbb{Z}) = \ell_1(\mathbb{Z})^*$, there is a subsequence s_j such that

$$\lim_{j \to \infty} \chi_{I_{q,s_j}} = f_q, \quad \text{for } 1 \le q \le t,$$

pointwise on \mathbb{Z} (or weak-* in $\ell_{\infty}(\mathbb{Z})$).

Necessarily, $f_q = \chi_{I_q}$ for some set $I_q \subset \mathbb{Z}$. By equation (8),

$$\sum_{q=1}^{t} \chi_{I_q} = \lim_{j \to \infty} \sum_{q=1}^{t} \chi_{I_{q,s_j}}$$
$$= \lim_{j \to \infty} \chi_{E_{s_j}}$$
$$= \chi_E.$$

Thus, E is the disjoint union of the I_q 's. To prove that the I_q 's are *m*-independent, suppose that I_q is not *m*-independent for some q. Then there is an "*m*-relation", specifically a finite set $W \subset I_q$ and integer coefficients $\alpha_x \in [-m, m]$ with $\alpha_x \neq 0$ such that

$$\sum_{x \in W} \alpha_x x = 0$$

Because $\chi_{I_{q,s_j}}$ converges pointwise to χ_{I_q} on \mathbb{Z} and W is finite, there is some j_0 such that $W \subset I_{q,s_j}$ for all $j \geq j_0$. That would make I_{q,s_j} fail to be *m*-independent, contrary to the hypotheses. So, I_q must be *m*-independent and hence $\mu(E,m) \leq t$. \Box

Proof of Theorem 7. Assume that no uniform bound holds. That is, for each t, there is an *m*-independent subset $E_t \subset \mathbb{Z}$ such that $\mu(E_t, n) \geq t$. By Lemma 11 there is a finite subset $F_t \subset E_t$ such that $\mu(F_t, n) \geq t$ (and of course remains *m*-independent). Let

$$F = \cup_t k_t F_t,$$

where the k_t 's are positive integers which increase rapidly enough to make F be *m*-independent. This will contradict the hypotheses, because Lemmas 9 and 10 imply that for all t

$$\mu(F,n) \ge \mu(k_t F_t, n) = \mu(F_t, n) \ge t.$$

One may choose k_t as follows. Let $k_1 = 1$. Given k_s for $s \leq t$, let D_t denote the maximum absolute value of the elements

$$\sum_{s \le t} \sum_{x \in k_s F_s} \alpha_x x, \quad \text{where } \alpha_x \text{ an integer in } [-m, m] \text{ for all } x.$$

Choose $k_{t+1} > D_t$. Here's an argument that F is then m-independent.

Suppose that F is not m-independent. Then there is a non-empty, finite set $W \subset F$ and integers $\alpha_x \in [-m, m]$ with $\alpha_x \neq 0$ such that

(9)
$$\sum_{x \in W} \alpha_x x = 0$$

Because W is finite and non-empty, there is a maximum t such that $W \cap k_t F_t \neq \emptyset$. If t = 1, then W is a subset of k_1F_1 and k_1F_1 fails to be *m*-independent (which contradicts the *m*-independence of F_1). So t > 1, and equation (9) can be rewritten as

(10)
$$\sum_{x \in W \cap k_t F_t} \alpha_x x = -\sum_{s < t} \sum_{x \in W \cap k_s F_s} \alpha_x x.$$

If $\sum_{x \in W \cap k_t F_t} \alpha_x x \neq 0$, then it is a non-zero multiple of k_t and

$$k_t \le \left| \sum_{x \in W \cap k_t F_t} \alpha_x x \right|$$
$$= \left| -\sum_{s < t} \sum_{x \in W \cap k_s F_s} \alpha_x x \right|$$
$$\le D_{t-1}.$$

This contradiction proves that

$$\sum_{x\in W\cap k_tF_t}\alpha_x x=0.$$

Since $\alpha_x \neq 0$ for at least one $x \in k_t F_t$, $k_t F_t$ fails to be *m*-independent. However, since $k_t > 0$, this contradicts the *m*-independence of F_t . \Box

Proof of Theorem 8. Suppose that, for every $r \ge 1$,

(11)
$$\sup\{\mu(E,m) \mid E \subset (\mathbb{Z} \setminus \{0\}) \quad \& \quad \alpha(E) \le r\} < \infty.$$

Then let $\phi(r)$ be that supremum; it is clearly increasing with r and meets the requirements of the theorem. Suppose, on the contrary, that there is some $r \ge 1$ for which inequality (11) is false. Then, for each t, there is some $E_t \subset \mathbb{Z} \setminus \{0\}$ for which $\alpha(E_t) \le r$ and $\mu(E_t, m) \ge t$. By Lemma 11, there is a finite subset $F_t \subset E_t$

for which $\mu(F_t, m) \ge t$ (and, of course, $\alpha(F_t) \le r$). As in the proof of Theorem 7, let

$$F = \cup_t k_t F_t,$$

for a rapidly increasing sequence of positive integers, $\{k_t\}_t$. For all t

$$\mu(F,m) \ge \mu(k_t F_t,m) = \mu(F_t,m) \ge t.$$

Thus, F will not be a finite union of m-independent sets. If F is Sidon, this will contradict the hypotheses of Theorem 8.

To make F be Sidon, let $k_1 = 1$; for t > 1, let $k_t > \pi^2 2^t M_{t-1}$ where M_t is the maximum absolute value of an element of

$$\cup_{s < t} k_s F_s.$$

Then, as in the proof of Proposition 12.2.4, pages 371–372 of [2], $\{k_tF_t\}_t$ is a supnorm partition for F: if p_t is a k_tF_t -polynomial (on T) and is non-zero for at most finitely-many t, then

$$\sum_{j=1}^{\infty} \|p_j\|_{\infty} \le 2\pi \|\sum_{j=1}^{\infty} p_j\|_{\infty}.$$

Recall that B(F) (the restrictions to F of Fourier-transforms of bounded Borel measures on T) is the Banach space dual of $\operatorname{Trig}_F(T)$ (the trigonometric polynomials with spectrum in F). For $p \in \operatorname{Trig}_F(T)$, let p_j denote its summand in $\operatorname{Trig}_{k_j F_j}(T)$ under the natural decomposition. Then for $f \in B(F)$,

$$\begin{split} | < f, p > | = \left| \sum_{j=1}^{\infty} < f, p_j > \right| \\ \leq \sum_{j=1}^{\infty} | < f, p_j > | \\ \leq \sum_{j=1}^{\infty} \| f |_{k_j F_j} \|_{B(k_j F_j)} \| p_j \|_{\infty} \\ \leq \left(\sup_t \| f |_{k_t F_t} \|_{B(k_t F_t)} \right) \sum_{j=1}^{\infty} \| p_j \|_{\infty} \\ \leq (r \sup_t \| f |_{k_t F_t} \|_{\infty}) (2\pi \| p \|_{\infty}), \quad \text{since } \alpha(k_t F_t) \leq r, \\ \leq (2\pi r \| f \|_{\infty}) \| p \|_{\infty}. \end{split}$$

Thus, $\|f\|_{B(F)} \leq 2\pi r \|f\|_{\infty}$. By the definition of Sidon constant, $\alpha(F) \leq 2\pi r$ and thus F is Sidon. \Box

One can extend the idea of *m*-independence to arbitrary abelian groups, by additionally restricting α_x to [-p, p) when 2p is the order of x, and to [-(p - 1)/2, (p + 1)/2) when the order of x is p and odd. Then Theorems 7 and 8 have more universal versions.

Theorem 12. Suppose that, for some integers m and n and all abelian groups G, m-independent sets are the finite unions of n-independent sets. Then, independent of the group G, there is a uniform bound on the number n-independent sets required.

Theorem 13. Suppose there is an integer m such that, for all abelian groups G and all Sidon subsets E of $G \setminus \{0\}$, E is a finite union of m-independent sets. Then there is an increasing function $\phi : [0, \infty) \to \mathbb{Z}^+$ such that, if $E \subset (G \setminus \{0\})$ for any abelian group G and $\alpha(E) \leq r$, then $\mu(E, m) \leq \phi(r)$.

Proof of Theorem 12. Suppose that, for every t, there is an m-independent subset E_t of some abelian group G_t such that $\mu(E_t, n) \ge t$. Let G be the infinite direct sum of the G_t 's: $g \in G$ if and only if

$$g:\mathbb{Z}^+\to \cup_t G_t$$

with $g(t) \in G_t$ for all t and $g(t) \neq 0$ for at most finitely many t [assume that the groups are presented additively]. Embed G_t into G canonically: $x \mapsto g_x$ where $g_x(t) = x$ and $g_x(s) = 0$ for $s \neq t$. View G_t as identical with its isomorphic embedding; E_t remains *m*-independent under the embedding and $\mu(E_t, n)$ is unchanged. It should be clear that

$$E = \cup_t E_t \subset G$$

is m-independent while

$$\mu(E, n) \ge \mu(E_t, n) \ge t$$
, for all t .

So E is not the finite union of n-independent sets, contrary to the hypotheses. \Box

Proof of Theorem 13. As in the proof of Theorem 8, suppose that there is some $r \in [1, \infty)$ such that, for all t, there is an abelian group G_t and $E_t \subset G_t \setminus \{0\}$ for which $\alpha(E_t) \leq r$ and $\mu(E_t, m) \geq t$. As in the proof of Theorem 12, let G be the direct sum of the G_t 's and view G_t as embedded in G. Under this embedding, neither $\alpha(E_t)$ nor $\mu(E_t, m)$ changes. Let

$$E = \cup_t E_t.$$

Then E is not the union of finitely many m-independent sets.

To see that E is a Sidon set, note that $\{E_t\}_t$ is a sup-norm partition of E. Specifically, if Γ is the compact group dual to G (G is given the discrete topology), then for $p \in \operatorname{Trig}_E(\Gamma)$, with p_j its natural summand in $\operatorname{Trig}_{E_i}(\Gamma)$,

$$\sum_{j=1}^{\infty} \|p_j\|_{\infty} \le \pi \|p\|_{\infty},$$

by Lemma 12.2.2 of page 370, [2]. To apply that lemma two things are required. First, no E_j may contain 0, which is true here. Second, in the language of [2], the ranges of $\{p_j\}_{j=1}^{\infty}$ are 0-additive: given $\{\gamma_j\}_{j=1}^{\infty}$ from Γ , there is some $\gamma \in \Gamma$ for which

(12)
$$\left| p(\gamma) - \sum_{j=1}^{\infty} p_j(\gamma_j) \right| = 0.$$

Here's a proof of equation (12). Γ is the infinite direct product of $\Gamma_t = \widehat{G}_t$: $\gamma \in \Gamma$ if and only if

$$\gamma: \mathbb{Z}^+ \to \cup_t \Gamma_t$$
, with $\gamma(t) \in \Gamma_t$.

Let $\gamma \in \Gamma$ satisfy $\gamma(j) = \gamma_j(j)$. Note that for a character g used in p_j , $\langle g, \gamma \rangle$ is determined by $\gamma(j)$ because g is 0 in every other coordinate:

$$< g, \gamma >= \prod_{s} < g(s), \gamma(s) >= < g(j), \gamma(j) >= < g(j), \gamma_{j}(j) >= < g, \gamma_{j} > .$$

Thus

$$p(\gamma) = \sum_{j=1}^{\infty} p_j(\gamma)$$
$$= \sum_{j=1}^{\infty} p_j(\gamma_j).$$

Once it is known that E is sup-norm partitioned by the E_t 's, then just as in the proof of Theorem 8 one has

$$\alpha(E) \le \pi \sup_t \alpha(E_t) \le \pi r.$$

That proves that E is Sidon. \Box

References

- William H. Beyer, Editor, CRC Standard Mathematical Tables, 28th Edition, CRC Press, Inc., Boca Raton, Florida, 1981, pp. 58-59.
- [2] Colin C. Graham and O. Carruth McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, pp. 371–372.
- [3] David Grow and William C. Whicher, Finite Unions of Quasi-Independent Sets 27(4) (1984), Canad. Math. Bull., 490–493.
- [4] Yitzhak Katznelson and Paul Malliavin, Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction 262 (1966), CRAS (Ser. A), 490-492.
- [5] Yitzhak Katznelson, Suites aleatoires d'entiers 336 (1973), Lecture Notes in Math., 148-152.
- [6] Yitzhak Katznelson, Sequences of Integers Dense in the Bohr Group (June 1973), Proc. Roy. Inst. of Tech., 73–86.
- [7] Jorge M. López and Kenneth M. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975, pp. 19–44.
- [8] Gilles Pisier, Arithmetic Characterization of Sidon Sets 8 (1983), Bull. AMS, 87–89.

MATHEMATICS, KELLER HALL, 2565 THE MALL, HONOLULU, HAWAII 96822

HARRISON@CSUVAX1.CSU.MURDOCH.EDU.AU OR RAMSEY@MATH.HAWAII.EDU