Complex Reflection Group Coding

Hye Jung Kim

Thesis Committee:
Dr. J.B. Nation, Adviser
Dr. Ralph Freese

Graduate Committee:
Dr. Michelle Manes
Dr. Monique Chyba
Dr. Robert Little
Acknowledgements

I would like to thank my adviser, Dr. J.B. Nation, for being persistent and patient with me for the past two years. At times, I took two steps forward and three steps back and Dr. Nation was incredibly patient with me all the time. I would also like to thank all the professors who provided me with loads of knowledge in numerous areas of mathematics. I truly enjoyed all the classes that I was offered at the University of Hawai‘i at Manoa. I would like to thank SUPER-M for providing me with the two years of experience in the K-12 classrooms and making me realize where my passion and future lies. Last, but definitely not the least, I would like to thank my friends and family for always being so supportive of me and for always helping me find my way in numerous areas of life.
Contents

1 Introduction 4

2 Preliminaries 5
 2.1 Linear Algebra 5
 2.2 Reflection Groups 6

3 Subgroup Decoding 7
 3.1 Example: G25 Subgroup Decoding 8

4 Description of the New Algorithm 10

5 General Decoding Algorithm 12

6 Issues in Decoding 15

7 Future Research 15
Complex Reflection Group Coding

Hye Jung Kim

March 7, 2011

Abstract

Complex reflection groups for which the generalization of subgroup decoding method does not work at all are considered in this paper. A new method of decoding is introduced to effectively encode and decode the exceptional complex reflection groups. A general decoding algorithm is devised and the results of analysis are presented. Discussion of future research is presented as well.

1 Introduction

In 1968, Slepian introduced the idea of group codes using groups of orthogonal matrices for the Gaussian channel [1]. Afterwards, in 1996, Mittelholzer and Lahtonen published a comprehensive paper on real reflection group coding and an efficient decoding algorithm [3]. This was further refined by W. Wesley Peterson, J.B. Nation, and Marc Fossorier [4].

Regardless of the difference of geometry, Kim, Nation, and Shep- ler [5] extended the method described in [4] to codes based in certain complex reflection groups. For this paper, we address decoding algorithms for group codes based on other types of complex reflection groups. We will use the classifications of finite unitary groups generated by reflections as determined by Shephard and Todd [6]. The subgroup coding method [4] works well for a large class of groups including $G(r, 1, n)$, $G(r, k, n)$ and also some exceptional groups such as G_4, G_8, and G_{16} but without error correction properties as mentioned in [5]. However, the method does not work at all for some other exceptional complex reflection groups such as G_{25} and G_{26}.

The goal of this paper is to develop methods of encoding and decoding that will work effectively for group codes using groups for which the subgroup decoding method fails. The paper also includes
an analysis of why the basic type of decoding scheme works whenever the noise is sufficiently small.

2 Preliminaries

In this section we introduce definitions and notations that are used throughout the paper. Also included in this section are proofs of specific properties that arise and will be used.

2.1 Linear Algebra

To make this paper self-contained, we present definitions in linear algebra along with highlighted properties. The conjugate transpose of any matrix M will be denoted M^H.

Definition 2.1. A unitary matrix U is a square matrix such that $UU^H = I$. In other words, $U^H = U^{-1}$.

If the entries of the matrix are real, then unitary matrices are simply orthogonal matrices.

Definition 2.2. The standard inner product, $\langle x, y \rangle$, is defined to be $x^H y$.

With this definition, we can show a useful property that will be referred to in the following sections.

Proposition 2.3. $\langle M\vec{x}, \vec{y} \rangle = \langle \vec{x}, M^H \vec{y} \rangle$

Proof.

\[
\begin{align*}
\langle M\vec{x}, \vec{y} \rangle &= (M\vec{x})^H \vec{y} \\
&= \vec{x}^H M^H \vec{y} \\
&= \langle \vec{x}, M^H \vec{y} \rangle
\end{align*}
\]

Definition 2.4. A unitary group is a group of $n \times n$ unitary matrices with the usual matrix multiplication operation.

Proposition 2.5. A unitary group acting on an n-dimensional vector space preserves the standard inner product, $\langle \vec{x}, \vec{y} \rangle = \vec{x}^H \vec{y}$. Moreover, a unitary matrix is an isometry on a vector space.
Proof. Let G be a unitary group and $g \in G$ and \vec{x}, \vec{y} be elements of the n-dimensional vector space. Then

$$\langle g\vec{x}, g\vec{y} \rangle = (g\vec{x})^H g\vec{y}$$
$$= \vec{x}^H g^H g\vec{y}$$
$$= \vec{x}^H \vec{y}$$
$$= \langle \vec{x}, \vec{y} \rangle$$

Hence $\langle g\vec{x}, g\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for all g, an element of the unitary group. Now we need to show that g is an isometry. Define distance as

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$$
$$= \sqrt{|x_1 - y_1|^2 + \cdots + |x_n - y_n|^2}$$
$$= \sqrt{(x - y)^H (x - y)}$$
$$= \sqrt{\langle x - y, x - y \rangle}.$$

So $d(g\vec{x}, g\vec{y}) = \sqrt{\langle g(x - y), g(x - y) \rangle} = \sqrt{\langle x - y, x - y \rangle} = d(\vec{x}, \vec{y})$, hence g is an isometry.

2.2 Reflection Groups

Now we proceed with definitions and properties regarding reflection groups. In this paper, only complex reflection groups are considered.

Definition 2.6. A reflection is an isometry on a vector space that fixes a hyperplane.

Definition 2.7. A reflection group is a group of unitary matrices that is generated by a set of reflections.

Every complex reflection can be represented algebraically as a linear transformation:

$$S(\vec{y}) = \vec{y} + (\lambda - 1)\langle \vec{\alpha}, \vec{y} \rangle \vec{\alpha},$$

where $\vec{\alpha}$ is the vector of unit length, and λ is a complex number of modulus 1. We can relate the above algebraic expression to the real reflection by setting λ to be -1.

Proposition 2.8. Conjugating a reflection by any group element yields another reflection.
Proof.

\[gSg^{-1}(\vec{y}) = gS(g^{-1}(\vec{y})) \]
\[= g(g^{-1}\vec{y} + (\lambda - 1)\langle \vec{\alpha}, g^{-1}\vec{y}\rangle \vec{\alpha}) \]
\[= gg^{-1}\vec{y} + (\lambda - 1)\langle \vec{\alpha}, g^{-1}\vec{y}\rangle g\vec{\alpha} \]
\[= \vec{y} + (\lambda - 1)\langle g\vec{\alpha}, \vec{y}\rangle g\vec{\alpha} \]
\[= S'(\vec{y}), \]

thus conjugation of reflections by any group element is another reflection. \(\square \)

Also, the inverse, or more generally any powers, of a reflection is a reflection.

As mentioned in the introduction, we will adopt the Shephard and Todd classification of finite unitary groups generated by reflections. The classification consists of \(G(r, p, n) \) which are considered in [5] and 34 exceptional cases numbered 4–37. This paper will consider various exceptional groups and the details of the exceptional groups will be discussed in the following sections.

3 Subgroup Decoding

For a group \(G \) of isometries acting on a vector space \(V \), the group code consists of the orbit of a fixed point \(\vec{x}_0 \in V \) under the vectors of \(G \). The point \(\vec{x}_0 \) is called the initial vector.

The set up for subgroup decoding consists of selecting a sequence of reflection subgroups of \(G \) such that

\[\{I\} = H_0 < H_1 < \cdots < H_{k-1} < H_k = G. \]

Then find all the distinct coset leaders of \(H_i \) over \(H_{i-1} \) and arrange them as spanning trees of coset leaders. The expression of a group element as a product of coset leaders is the canonical expression for that element. The idea will become more concrete through a detailed example in the following section.

If \(g \in G \) is the group element corresponding to the message needed to be sent, encode it as \(\vec{x} = g^{-1}\vec{x}_0 \), where \(\vec{x}_0 \) is the initial vector. Note that \(g \) can be expressed as a product of coset leaders, \(g = c_kc_{k-1}\ldots c_2c_1 \), so the encoded vector is

\[\vec{x} = c_1^{-1}c_2^{-1}\ldots c_{k-1}^{-1}c_k^{-1}\vec{x}_0 \]
On the receiving side of the channel, \(\vec{r} = \vec{x} + \vec{n} \) is received, where \(\vec{n} \) is the noise added during the transmission. Decode the received vector by recursively finding a sequence of coset leaders \(d_1, \ldots, d_k \) such that for each \(j \), \(d_j \ldots d_1 \vec{r} \) minimizes the distance to the initial vector \(\vec{x}_0 \). In other words, to find the sequence of coset leaders, we go through the spanning trees of coset leaders and apply reflections so that at each step the vector obtained is closer to \(\vec{x}_0 \) in distance. Ideally, \(d_i = c_i \) for \(1 \leq i \leq k \), but this may not be the case with the addition of the noise. Further details of subgroup decoding are explained in detail in [4].

3.1 Example: G25 Subgroup Decoding

The subgroup decoding method is compatible, without satisfying error correction properties [5], with \(G(r, 1, n) \), \(G(r, k, n) \) and also some exceptional groups such as \(G4 \), \(G8 \), and \(G16 \). However, it is not compatible with certain other exceptional complex reflection groups. To make the concepts in the previous section more concrete and to show why subgroup decoding is not compatible with some exceptional complex reflection groups as classified by Shephard and Todd [6], take the complex reflection group G25 as an example. G25 is generated by 24 reflections and has a total of 648 elements. The following matrices generate the group G25 which lives in \(\mathbb{C}^3 \):

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \omega
\end{pmatrix}, \quad
B = \frac{-i}{\sqrt{3}} \begin{pmatrix}
\omega & \omega^2 & \omega^2 \\
\omega^2 & \omega & \omega^2 \\
\omega^2 & \omega^2 & \omega
\end{pmatrix}, \quad
C = \begin{pmatrix}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Note the presentation: \(A^3 = B^3 = C^3 = I \), \(ABA = BAB \), \(CBC = BCB \), \(AC = CA \). We use the following sequence of subgroups:

\[
\{I\} < \langle A \rangle < \langle A, B \rangle < \langle A, B, C \rangle
\]

\[
H_0 < H_1 < H_2 < H_3.
\]

The spanning trees for the coset leader graphs is as follows:

Coset leaders of \(H_1 \) over \(H_0 \)
It turns out that subgroup decoding does not work for our case. Set the initial vector to be \((3, -1, -1)\). Note that this initial vector is chosen so that each of the generating reflections moves the initial vector the same amount. Consider the example where \(CB^2C\) is the group element corresponding to the message. Note that \(CB^2C\) is the coset leader of \(H_3\) over \(H_2\). We encode it as \(C^{-1}(B^2)^{-1}C^{-1}\bar{x}_0 = C^2BC^2\bar{x}_0\) and send it through the channel. Even with no noise added during the transmission, when decoding, the coset leader \(B^2\) over \(H_1\) leads to a smaller distance. Overall the decoded vector is
BC^2B^2$, which is not equivalent to the message CB^2C. Statistically, out of the 648 elements of G, approximately half decode properly to the group element that was sent, depending on the initial vector chosen.

So upon figuring out that the idea did not work in reality, there were numerous attempts to alter certain parameters to see if it would work. Since the initial vector, subgroup sequence, and coset leaders are parameters at our disposal, different combinations of which were attempted, including trying millions of initial vectors.

Subgroup decoding works for the complex permutation groups $G(r,1,n)$, $G(r,k,n)$ and for at least some of the exceptional complex reflection groups, including G_4, G_8, and G_{16}. Whereas there is a slight chance that the perfect combination of these parameters were not found for G_{25} and G_{26}, it is convincing to think that this subgroup decoding method is not compatible with these exceptional complex reflection groups at all. This is what led to the development of the new method using complex reflection groups which is described in the following section.

4 Description of the New Algorithm

The setup consists of picking a particular complex reflection group G acting on a vector space $V = \mathbb{C}^n$. For each group element, choose a minimal length expression of g as a product of reflections to be its canonical form. That is, we consider the set of all reflections as a generating set for G. Let g represent a message. Since $g \in G$, $g = t_l t_{l-1} \ldots t_1$, where t_i are reflections in G.

We select an initial vector \vec{x}_0 on the unit sphere in V, and the code consists of $G\vec{x}_0 = \{g\vec{x}_0 : g \in G\}$. Let $\gamma : M \rightarrow G$ denote the correspondence between the message and the group elements. The details of γ are omitted since it does not effect our formulation.

The message \vec{m} has the corresponding group element $g = \gamma(\vec{m})$. Encode the message by applying g^{-1} to \vec{x}_0. So the message being sent is $\vec{x} = g^{-1}\vec{x}_0 = t_l^{-1} \ldots t_{l-1}^{-1} t_1^{-1} \vec{x}_0$. The received vector has the form $\vec{r} = \vec{x} + \vec{n}$ where \vec{n} is the channel noise.

Now decode iteratively by finding the sequence of reflections s_1, \ldots, s_n such that, for each k, $\vec{h}_k = s_k \ldots s_2 s_1 \vec{r}$ maximizes the real part of the dot product $\langle \vec{h}, \vec{x}_0 \rangle$ where \vec{h} is all the combination of k reflections applied to \vec{r}. So the overall product of the sequence,
\(g' = s_n \ldots s_{2s1} \) maximizes the dot product \(\langle \vec{h}, \vec{x}_0 \rangle \) where \(\vec{h} \) runs over all combinations of \(k \) or fewer reflections applied to \(\vec{r} \). Note the following theorem:

Theorem 4.1. Maximizing the real part of the dot product is equivalent to minimizing the distance between the sequence applied to the received vector and the initial vector.

Proof. Let \(\vec{z} = (z_1, z_2, \ldots, z_n) \) denote the received vector with the sequence of reflections applied to it and \(\vec{x} = (x_1, x_2, \ldots, x_n) \) denote the initial vector. The distance can be calculated as follows:

\[
||\vec{z} - \vec{x}||^2 = ||(z_1, z_2, \ldots, z_n) - (x_1, x_2, \ldots, x_n)||^2 \\
= ||(z_1 - x_1, z_2 - x_2, \ldots, z_n - x_n)||^2 \\
= |z_1 - x_1|^2 + |z_2 - x_2|^2 + \cdots + |z_n - x_n|^2 \\
= \{|z_1|^2 + |x_1|^2 - 2\text{Re}(z_1)x_1 + |z_2|^2 + |x_2|^2 - 2\text{Re}(z_2)x_2 + \cdots \\
+ |z_n|^2 + |x_n|^2 - 2\text{Re}(z_n)x_n\}
\]

The last equality is due to the fact that for any complex numbers \(a \) and \(b \), where \(b \) only has real nonzero components,

\[
|a - b|^2 = (a - b)(\overline{a - b}) \\
= a\overline{a} - a\overline{b} - \overline{a}b + \overline{b}b \\\n= |a|^2 + |b|^2 - \overline{a}b - ab \\
= |a|^2 + |b|^2 - (\overline{a} - a)b \\
= |a|^2 + |b|^2 - 2\text{Re}(a)b
\]

Since \(b \) only consists of real components,

\[
\text{Re}(a, b) = \text{Re}\{a^Hb\} \\
= \text{Re}(a)b
\]

Therefore, by the above calculations, it is clear that minimizing the distance is equivalent to maximizing the dot product. \(\square \)

Hence the decoding process can be shown pictorially as follows:
and continuing on until the maximum dot product is achieved. In the upcoming section, the proof will be provided that this process does terminate. Then decode by taking the received message as \(\vec{m}' = \gamma^{-1}(g') \).

This decoding algorithm can be generalized and this is what leads us to the next section.

5 General Decoding Algorithm

In this section the generalization of the previous section is provided. We start off with the generic description of the decoding algorithm. The basic decoding algorithm considered have the following parameters:

- a finite unitary group \(G \) acting on a vector space \(V \)
- an initial vector \(\vec{x}_0 \) of unit length in \(V \)
- a generating set \(X \) for \(G \).

The codewords consists of the orbit of the initial vector \(\vec{x}_0 \) under the action of \(G \), same as in the subgroup decoding case. Every message has a corresponding group element of \(G \). Let \(g \) be the corresponding group element. The canonical representation of the group element is as products of elements of \(X \). Note that this expression may not be unique. The codeword \(\vec{x} = g^{-1}\vec{x}_0 \) is transmitted. The received vector is \(\vec{r} = \vec{x} + \vec{n} \) where \(\vec{n} \) is the noise added during the transmission. Let \(\vec{r}_0 = \vec{r} \). Given \(\vec{r}_k \), we can apply the transformation \(c_{k+1} \in X \cup \{I\} \) to obtain \(\vec{r}_{k+1} = c_{k+1}\vec{r}_k \) and then repeat the process. If \(c_{k+1} = I \), we terminate the process. \(c_{k+1} \) is chosen such that either of the following holds:

(A) \(c_{k+1} \) minimizes \(||c_{k+1}\vec{r}_k - \vec{x}_0|| \)
(B) c_{k+1} is the first such that $||c_{k+1} \vec{r}_k - \vec{x}_0|| < ||\vec{r}_{k} - \vec{x}_0|| - \frac{1}{2}\delta$ and if no such exists, then $c_{k+1} = I$.

Note that if we choose c_{k+1} as in (B), we may decrease the number of checks that are being done.

Note that the generating set X is arbitrary. For a reflection group G, there are two extremes for X: the minimal generating set, or the set of all reflections. First we investigate if the procedure terminates and decodes correctly.

Let us assume that

\[
\text{(‡) if } \vec{x}_0 \neq \vec{w} \in G \vec{x}_0,
\]

then there exists $c \in X$ such that $||cw - \vec{x}_0|| < ||\vec{w} - \vec{x}_0||$. For each codeword \vec{w}, let

\[
C_M(\vec{w}) = \{c \in X \cup \{I\} : ||cw - \vec{x}_0|| \text{ is minimal}\}.
\]

Note that (‡) is equivalent to if $\vec{w} \neq \vec{x}_0$, then $I \notin C_M(\vec{w})$. Define

\[
\delta = \min\{||\vec{w} - \vec{x}_0|| - ||cw - \vec{x}_0||\}
\]

where the minimum is taken over all $\vec{w} \in G\vec{x}_0 - \vec{x}_0$ and $c \in C_M(\vec{w})$.

Now, we have the following theorem that shows that when noise is small, the algorithm terminates and decodes the message properly.

Theorem 5.1. If $||\vec{r} - \vec{x}|| < \frac{\delta}{3}$, then the algorithm terminates in at most $\lceil \frac{6}{\delta} \rceil$ steps with $c_k \ldots c_1 \in gH$, where H is the stabilizer of \vec{x}_0.

Proof. The process terminates in at most

\[
\max \frac{||\vec{w} - \vec{x}_0||}{\frac{\delta}{3}} \leq \frac{6}{\delta}
\]

steps, without counting the last step where the identity is chosen. Now that we know that the process terminates, we must show that it decodes the message properly. It suffices to show that the process does not terminate until $||c_n \ldots c_1 \vec{r} - \vec{x}_0|| < \frac{\delta}{2}$, where the assumption (‡) is useful. At the k^{th} step, set $g' = c_k \ldots c_1$ and $\vec{w} = g' \vec{x} = g' g^{-1} \vec{x}_0$ and $\vec{r}_k = g' \vec{r}$. If $\vec{w} = \vec{x}_0$, we are done. Suppose $\vec{w} \neq \vec{x}_0$. Note that $||\vec{w} - \vec{r}_k|| < \frac{\delta}{3}$, since

\[
||\vec{r} - \vec{x}|| = ||\vec{r} - g^{-1} \vec{x}_0||
= ||g' \vec{r} - g' g^{-1} \vec{x}_0||
= ||\vec{w} - \vec{r}_k||.
\]
By (1), since $\vec{w} \neq \vec{x}_0$, there exists some $c \in C_M(\vec{w})$ such that $||c\vec{w} - \vec{x}_0|| < ||\vec{w} - \vec{x}_0||$. Since

$$\delta = \min\{||\vec{w} - \vec{x}_0|| - ||c\vec{w} - \vec{x}_0||\}$$

where the minimum is taken over all $\vec{w} \in G\vec{x}_0 - \vec{x}_0$ and $c \in C_M(\vec{w})$,

$$||c\vec{w} - \vec{x}_0|| + \delta < ||\vec{w} - \vec{x}_0||.$$

By triangle inequality,

$$||c\vec{r}_k - \vec{x}_0|| \leq ||c\vec{r}_k - c\vec{w}|| + ||c\vec{w} - \vec{x}_0||$$

$$< \frac{\delta}{3} + ||c\vec{w} - \vec{x}_0||$$

Also,

$$||\vec{r}_k - \vec{x}_0|| \geq ||\vec{w} - \vec{x}_0|| - ||\vec{r}_k - \vec{w}||$$

$$\geq ||c\vec{w} - \vec{x}_0|| + \delta - ||\vec{r}_k - \vec{w}||$$

$$> ||c\vec{w} - \vec{x}_0|| + \delta - \frac{\delta}{3}$$

$$= ||c\vec{w} - \vec{x}_0|| + \frac{2\delta}{3}$$

So,

$$||\vec{r}_k - \vec{x}_0|| > ||c\vec{w} - \vec{x}_0|| + \frac{2\delta}{3},$$

which is the same as

$$||\vec{r}_k - \vec{x}_0|| - \frac{\delta}{3} > ||c\vec{w} - \vec{x}_0|| + \frac{\delta}{3}.$$

Now, putting it all together, we have

$$||c\vec{r}_k - \vec{x}_0|| < \frac{\delta}{3} + ||c\vec{w} - \vec{x}_0|| < ||\vec{r}_k - \vec{x}_0|| - \frac{\delta}{3}$$

thus c_{k+1} is at least $\frac{\delta}{3}$ closer. \qed

Thus we just showed that the new algorithm in the previous section actually terminates and decodes to the correct group element.
6 Issues in Decoding

In the real reflection group codes using the subgroup decoding method, the decoding was unique. In the case of complex reflection group codes as defined above, there needs to be a lookup table. This is due to the fact that the representation of group elements, as products of reflections, is generally not unique. The process decodes to a group element that is equal to the group element being sent, however the representation may be different. This arises because of the fact that each group element can be expressed as a product of reflections, but there need not be a unique minimal length expression.

7 Future Research

The new algorithm can be improved upon to require fewer checks to decode. There may be further analysis that needs to be done prior to cutting down steps, however, it seems very feasible for the process to be shorter. Also, further analysis and understanding will be needed to see exactly why the subgroup decoding is not compatible with certain exceptional groups while it does work for others. At this point, we are not entirely certain why it does not work, we only are aware that it does not.

References