DyNAMIC MODELLING OF NEURAL
MORPHOGENESIS USING MATHEMATICAL
CONTROL THEORY

A THESIS SUBMITTED TO THE DEPARTMENT OF MATH-
EMATICS OF THE UNIVERSITY OF HAWAI‘T IN PARTIAL
FULFILLMENT OF PLAN B FOR THE MASTER’'S DEGREE
IN MATHEMATICS.

April 15, 2011

By
John Rader

Graduate Committee:

Dr. J.B. Nation, Graduate Chair
Dr. Monique Chyba, Chairman
Dr. Michelle Manes
Dr. Robert Little

Thesis Committee:
Dr. Marcelo Kobayashi
Dr. Leslie Wilson

Dr. Frederic Mercier



ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Monique
Chyba for her constant enthusiasm, enduring patience,
and guidance. Without her, this thesis would not have
been possible. Secondly, I would like to thank Dr. Fred-
eric Mercier for sharing his expert knowledge of biology

and his patience in explaining it to lowly mathematicians.

I would also like to thank Luca Invernizzi, Dario Caz-
zaro, and Giulio Telleschi for their technical support and
assistance in Matlab programming. Finally, I would like to
thank the students, staff and faculty of the Department of
Mathematics, and the friends and teachers I've had among
them, for their past three years of support and encourage-

ment.



DYNAMIC MODELLING OF NEURAL MORPHOGENESIS
USING MATHEMATICAL CONTROL THEORY

JOHN RADER

ABSTRACT. Within the last 20 years, new biological structures called fractones,
named in honor of the late Dr. Benoit Mandelbrot due to their fractal-like ap-
pearance, have been discovered by cell biologists. Their primary purposes are
theorized to pertain to the major processes of the life cycle of cells, namely
mitosis, migration, and differentiation. Building on the back of the discretized
diffusion equations, we construct a control theoretic model of how these frac-
tones interact with the cells and the associated growth factors produced by the
cells in order to gain insight into the growth process as a whole. We then use
the computational model to produce numerical simulations of the biological
system. We also discuss several open problems that pertain to the system, and
finally explain why this problem expands the field of control theory.

0. INTRODUCTION

This paper is organized under the following section headings:
1. BACKGROUND INFORMATION
1.1 Historical Usage of Mathematics in Biology
1.1.1 Historical Usage of Control Theory in Biology
2. BIOLOGICAL MOTIVATION
2.1 Biological Background
3. MATHEMATICAL MOTIVATION
3.1 Mathematical Background
4. ONE DIMENSIONAL MODEL
5. Two DIMENSIONAL MODEL
5.1 Configuration and State Space
5.2 Diffusion Space
5.3 Mitosis
5.3.1 Algorithm For Deformation of Cell(t)
5.3.2 Subspace Evolution Post-Mitosis
6. MATHEMATICAL STATE OF THE PROBLEM
6.1 Existence of Solutions
6.1 Uniqueness of Solutions
OPEN QUESTIONS
NEwW CLASS OF PROBLEMS IN CONTROL THEORY
SIMULATIONS
10. FUTURE WORK
11. APPENDIX
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1. BACKGROUND INFORMATION

The process of neurulation and subsequent events of the brain’s formation involve
multiple growth factors that induce proliferation, differentiation, and migration of
cells. The distribution and activation of these growth factors in space and time
will determine the morphogenic events of the developing mamalian brain. However,
the process organizing the distribution and availability of growth factors within the
neuroepithelium is not understood. Structures, termed fractones, directly contact
neural stem and progenitor cells, capture and concentrate said growth factors, and
are associated with cell proliferation [32, 43, 44]. Hence, our hypothesis is that
fractones are the captors that spatially control the activation of growth factors in
a precise location to generate a morphogenic event.

To validate this hypothesis, we propose to develop and analyze a mathemat-
ical model predicting cell proliferation from the spatial distribution of fractones.
Dynamic mathematical modeling, i.e. models that represents change in rates over
time, serves several purposes [22]. Using computer simulations, by mimicking the
assumed forces resulting in a system behavior, the model helps us to understand
the nonlinear dynamics of the system under study. Such approach is especially well
suited for biological systems whose complexity renders a purely analytical approach
unrealistic. Moreover, it allows us to overcome the excessively demanding purely
experimental approach to understand a biological system. Our primary goal in this
paper is to develop a model that contains the crucial features of our hypothesis and,
at the same time, is sufficiently simple to allow an understanding of the underlying
principles of the observed system.

We propose to model this biological process as a control system, the control de-
picting the spatial distribution of the active fractones. This is a novel approach with
respect to the most commonly reaction-diffusion models seen in the literature on
morphogenesis, however it is not that surprising. Indeed, control theory is instru-
mental to overcome many challenges faced by scientists to design systems with a very
high degree of complexity and interaction with the environment [11, 12, 51]. Ex-
amples of its applicability in physical and biological systems are numerous [53, 54].

1.1. Historical Usage of Mathematics in Biology. The history of mathemat-
ics used to solve problems arising from biology dates back several hundred years to
the times of Bernoulli and Euler. Prior to the mid 1900s, though, biology served
primarily as the inspiration to understanding larger problems rather than as a prac-
tical field to be studied under the rigors of applied mathematics. Many problems in
the field, even simplified with strong assumptions and in their least-complex forms,
were unable to be solved using traditional techniques of mathematicians due to
their complexity. Researchers of the day were either forced to pay understudies to
perform hundreds, perhaps thousands, of hand calculations, or they would make
drastic simplifications of their models merely to gain insight into the behavior of
the system, and, as a consequence, many would make incorrect conclusions when
compared versus real-world data. However, at times, some models were found to
be accurate when compared to known data, and thus were accepted as theory (this
is most likely due to acceptable simplifications, those not significant to the model
as a whole).
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Once the mid 20" century arrived, and with it the advent of the computer,
researchers finally had the luxury of being able to analyze complex systems with-
out unnecessary simplifications. And with the creation of the personal computer
and modern computational software (as well as the internet and supercomputing
clusters) in the 1980s, scientists and researchers could now fully model the most
complex system without any necessary simplifications and can find solutions (albeit
numeric) for a variety of problems.

Much of what has been attempted to solve or has been solved using mathematics
in the field of biology is summarized in Table 1.

1.1.1. Historical Usage of Control Theory in Biology. The appearance and usage
of control theory in the field of biology is a relatively new idea, dating back only a
few decades. The first real evidence of the usage of control theory to understand a
biological process originates with Norbert Wiener [59], who developed many of the
ideas of feedback and filtering in the early 1940s in collaboration with the Harvard
physiologist Arturo Rosenblueth, who was, in turn, heavily influenced by the work
of his colleague Walter Cannon [10], who coined the term homeostasis in 1932 to
refer to feedback mechanisms for set-point regulation in living organisms. Rudolf
Kalman [29] often used biological analogies in his discussion of control systems
theory, and so did many other early researchers.

Modern biological control, enveloped in the more general field of systems biol-
ogy, eminates from the work of Ludwig von Bertalanffy[6] with his general systems
theory. One of the first numerical simulations in biology was published in 1952 by
the British neurophysiologists and Nobel prize winners Alan Hodgkin and Andrew
Huxley[28], who constructed a mathematical model that explained the action poten-
tial propagating along the axon of a neuronal cell. Also, in 1960, Denis Noble[49],
using computer models of biological organs and organ systems to interpret func-
tion from the molecular level to the whole organism, developed the first computer
model of the heart pacemaker. The formal study of systems biology, as a distinct
discipline, was launched by systems theorist Mihajlo Mesarovic[45] in 1966 with an
international symposium at the Case Institute of Technology in Cleveland, Ohio
entitled “Systems Theory and Biology”.

The field of systems biology is large and encompassing, so much so that it, at
times, is hard to define what is and is not part of the field. However, the kinds of
research and problems that have laid the groundwork for establishing the field are
as follows:

(1) complex molecular systems, such as the metabolic control analysis and the
biochemical systems theory between 1960-1980 [52, 27, 9, 25, 57],

(2) quantitative modeling of enzyme kinetics, a discipline that flourished, be-
tween 1900 and 1970 [37, 3],

(3) mathematical modeling of population growth [19],

(4) simulations developed to study neurophysiology, and

(5) control theory and cybernetics [2, 42, 1].

Some recent problems approached by those studying control theory in the field of
biology have been to model, among others:

(1) internal workings of the cell [38, 24],
(2) molecular signaling or energy transfer (among RNA, DNA, proteins, etc.)

8],
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Subject Reference
Spread of diseases Bernoulli 1760[5]
Fluid mechanics of blood flow Euler 1760[15]
Age structure of stable populations Euler 1760 [16]
Logistic equation for limited population growth Verhulst 1838[56]
Branching processes, extinction of family names Galton 1889 [20]
Correlation Pearson 1903 [50
Markov chains, statistics of language Markov 1906[41
Equilibrium in population genetics Hardy 1908; Weinberg 1908[23]
Dynamics of interacting species Lotka 1925[39]; Volterra 1931[58
Traveling waves in genetics Fisher 1937; Kolmogorov et al. 1937[36
Estimating bacterial mutation rates Luria and Delbriick 1943[40]
Birth process, birth and death process Yule 1925[60]; Kendall 1948[30], 1949[31
Analysis of variance, agricultural experiments Fisher 195018
Morphogenesis Turing 1952[55]
Game theory von Neumann and Morgenstern 195346
Circular interval graphs, genetic fine structure Benzer 1959[4
Threshold functions of random graphs Erd6s and Rényi 1960[14]
Sampling formula for haplotype frequencies Ewens 1972[17
Coalescent genealogy of populations Kingman 1982a[34], 1982b[35
Diffusion equation for gene frequencies Kimura 1994[33]

TABLE 1. Mathematics Arising from Biological Problems

(3) cell signal transduction processes [7, 21],

(4) neural pathways [],

(5) regulation versus homeostasis [|,

(6) RNA/DNA transcription with an emphasis on mutation [], and
(7) gene function and interactions [].

The breadth and variety of problems that can be modeled using control theory
runs the gamut, from the molecular through the microscopic up to the macroscopic.
Many areas of biology have been affected by many areas of mathematical science,
and the challenges of biology have also prompted advances of importance to the
mathematical sciences themselves. The rapidly developing field of systems biology
(the merging of biology, physics, engineering, and/or mathematics) is tremendously
exciting, and full of unique research opportunities and challenges, especially for the
application of control theory.

2. BIOLOGICAL MOTIVATION

2.1. Biological Background. A fundamental problem is to understand how growth

factors control the topology of cell proliferation and direct the construction of the
forming neural tissue. It has been demonstrated that extra-cellular matrix (ECM)
molecules strongly influence growth factor-mediated cell proliferation. ECM pro-
teoglycans can capture and present growth factors to the cell surface receptors to
ultimately trigger the biological response of growth factors. Hence, by building a
model that incorporates the most important features of the biological system, we
attempt to simulate how this occurs to give more insight into how structure of bio-
logical systems takes shape under the assumption that it is driven by the presence
of growth factors and activation by ECM moluecules, particularly fractones.
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During our research, we analyzed a space in which there exists three unique
components: fractones, cells/holes, and growth factors (GFs) that cells produce.
The initial configuration is (at least) one cell and one associated fractone. The cells
produce growth factors on a fixed, regular time interval and in discrete amounts.
The time at which an individual cell produces growth factor, however, may be
different from any other cell (depending on when each cell entered the system).
Once produced, the GFs diffuse radially away from the cell into the extra-cellular
diffusion space that occurs between cells. The GFs do not chemically interact with
each other, and they are actively trapped by a fractone when significantly close.
Once a fractone has absorbed enough GF beyond some threshold, it sends a signal
to the associated cell(s) to undergo mitosis. A hole is similar to a cell, except that it
does not produce GF. In fact, a hole can be thought of as a wall, a non-interacting
object that the system evolves around.

3. MATHEMATICAL MOTIVATION

3.1. Mathematical Background. The classical models attempting to describe
morphogenesis are based on Reaction-Diffusion (RD) equations developed in Tur-
ing’s “Morphogenesis” [55]. Although Turing made a great attempt to mathemat-
ically portray morphogenesis, his work is not an adequate model to describe the
system given new discoveries and developments since the 1950s. With his model,
Turing was describing how reactive chemicals present in a static, living structure
interact in a continuous medium (a skin tissue, for example) via diffusion (and,
surprisngly, form wave-like patterns). For the system we are describing, reaction-
diffusion equations cannot be used to study the mechanisms of morphogenesis during
development as the growth factors are non-interacting.

Based on the hypothesis of [32, 43, 44], morphogenesis involves the capture and
activation of growth factors by fractones at specific locations according to a precise
timing. Also, Turing’s assumption of unchanging state space (i.e. there is no
growth, or the cells do not replicate) is not applicable to our model since, as cells
replicate, the system of equations describing the “diffusion-trapping” model grows
by one equation for every new cell produced. This adds mathematical complexity
to the problem in that the system of equations governing the model are increasing
in number. As mentioned in Section 2.1, the fractones influence GF-mediated cell
proliferation, which is also a sign that Turing’s model will not suffice, as there is no
mechanism in the reaction-diffusion equations for structures with this type of action.
Moreover, the distribution of fractones is constantly changing during development,
reflecting the dynamics of the morphogenic events. Therefore, the organizing role
of fractones in morphogenesis must be analyzed by an alternative mathematical
model.

4. ONE DIMENSIONAL MODEL

Our initial assumption is that the geometric configuration of the cells is a ring of
at least 3 cells. For the ring of cells, the topology is unaffected, as only the radius
increases. The model is a control system that will predict the dynamic distribu-
tion of fractones (and attached cells) and their contribution to the morphogenesis
process. The system will be modeled as a control system to incorporate dynamic
changes in the distribution of fractones among the cells. In general, the state space
of our control system represents the concentrations of a given number of growth
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factors at a precise location in a given configuration of cells. Mathematically, these
systems are described by a differential equation of the form:

(1) &(t) = f(z(t),u(d)), x(t) e M

where M is a n-dimensional smooth manifold, x describes the state of the system
and v : [0,7] — U C R™ is a measurable bounded function called the control.
Despite the fact that the field of control theory covers such a broad range, the
biological process that we are analyzing presents a completely new challenge from
the control theory point of view. We are primarily concerned with the affine control
system:

(2) i(t) = FO(a(t)) + ZFj(w(t))ui(tL x(t) € M

where the vector field Fy is referred to as the drift and the F7s are referred to as
the control vector fields (m represents the number of available inputs, in particular
if m < n we say that the system is underactuated). Let us consider the state space
of our control system to be the concentrations of a given number of growth factors
at a precise location in a given configuration of cells. The drift vector field will
represent the diffusion property of the growth factors under the condition that no
fractone is active while the control vector fields represent the impact that a fractone
will have on the diffusion process once it is activated. The spatial distribution of
the fractones is governed by the control function:

for1<i<m

) 0 if fractone inactive
w; (t) =
! 1 if fractone active

Assume that we have k growth factors diffusing among the cells; we call them
X*. Each growth factor has it own diffusion rate that will be denoted by v, > 0 and
XF represents the concentration of the growth factor X* in the i*"—cell. Note that
0" —cell is synonymous with the N*"—cell, where N represents the total number of
cells. Now, we describe the system for a single growth factor. The component 7 of
the drift vector field F*0(X*(t)) is:

3) FFOCXN(1) = v - (B, — 2XF + XE ).

This equation comes from Turing, and is modified to reflect that there are no cross-
reaction terms (since the GFs are non-interacting) and the presence of a diffusion
constant for each respective growth factor. The system X*(t) = F*0(X*(t)) rep-
resents pure diffusion.

Now, as t — o0, such a system tends to the steady state solution in which the
concentration of growth factor is identical in each cell. However, once a fractone
associated to the i*"-cell is activated, the diffusion process is perturbed; there is
diffusion from the neighboring cells to the i*"-cell but diffusion from the i*"-cell to
its neighboring cells is prevented. In other words, the fractone associated to the
it'-cell acts as a captor of growth factor. In terms of the equations describing the
system, when the fractone associated to the i*"-cell is actived, only the component
u; of the control is turned on (taking the value 1) and the control vector field
FFi(X*(t)) describes the new diffusion process. By construction, F**(X¥(t)) only
affects the diffusion of the (i — 1)** i*" and (i + 1)**-cells. Now, we introduce the
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exchanging function that dictates whether neighboring cells give growth factor to
one another by:

Ha(t) = H(XJ(t) — X7 (D) (X3 (1) - XF(1)

if z <
H(z):{o, if 2 <0,

where we define:

1, ifz>0.

With these notations, we have:

(4) FFYXR() = vi(Higri + Hioy g — FRO(XF(®))
(5) FPU(XE() = ve(Hio1s — XF+ XE )
(6) FRUXE() = vi(Hizr s — XF+ XE)

and all the other components of the control vector field F*(X*(t)) are zero. If
we consider multiple growth factors diffusing among the cellular structure, we must
take them into account via superposition of the system and implementation of a
hierachical system to describe the affinity of a given fractone with a certain type
of growth factor. This adds complexity to the system, but it is a straightforward
extension.

From the point of view of control theory, system (2) falls into the classical theory
of control systems since it is affine and fully actuated (a fractone can potentientally
be activated in any cell). All the components of the control are piecewise constant
functions that take their values from the set {0,1} and, given an initial distribution
of fractones, it is trivial to produce a control to reach a prescribed final distribution
of cells. However, to achieve our goal, we must develop a more realistic model to
incorporate the activiation of the growth factors that will dictate the multiplication
of cells.

To refine the model we’ve developed thus far, we assume that once a given con-
centration for the growth factor X* is reached at a fractone (or, equivalently, a
captor), it releases the information to the attached cell to duplicate, and the con-
centration of growth factor in the cell drops to a lower amount. When this situation
manifests, the number of cells in the ring grows from N to N 4 1. This implies
that the state space on which our biological control system is defined is dynamic,
as its dimension transforms with the cells duplication. Based on how we perceive
the system to function, the control system that models it is as follows:

N(t)

(7) a(t) = FO(a(t) + Z FI(x(t))ui(t), a(t) € M(t)

where M (t) is now a space whose dimension and topology varies with time. In a
simplified way, this corresponds to saying that the number of cells grows, which is
reflected in the equation by the introduction of N(t). Also, the domain of control
now varies since fractones can potentially become active in the new cells.

5. Two DIMENSIONAL MODEL

Assumption 5.1. In the 1D case, we associated a fractone with a single cell and
that specific fractone only controlled mitosis for the cell it was associated with.
However, in the 2D case, we will associate a fractone with any cell that is either 1
or v/2 units of distance away from it (given a proper distance formula). This way,
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a fractone can now initialize mitosis for at most 4 neighboring cells in the 2D case
rather than be limited to 1 cell in the 1D case.

5.1. Configuration And State Space. Two continuously evolving objects will
play a major role in the dynamical system predicting the morphogenic events. First,
we introduce a notion of configuration space to depict the cells configuration of our
system at any time ¢ under study. Second, we introduce a state space on which the
dynamical system is defined. More precisely, we have the following definitions.

First, let R be a compact connected subset of the 2-dimensional Euclidean space
that we call the ambiant space. For simplicity, we assume that R is fixed and we
identify R to a square. For our model, R is discretised uniformly and we call a
square of our discretization a unit. In the sequel, each unit will be identified to an
integer pair (4, 7). The origin unit of the discretization is choosen arbitrarily and will
be identified to (0,0). Note that the discretization is chosen with a precision to be
chosen by the user (eventually it will be determined by the experimental biological
maps). The three important spaces to take into account into our dynamical system
are: the space filled with cells, the space in which the growth factors diffuse and
finally the space filled with the fractones. Those objects are defined in the following
definitions.

Definition 5.2. We defined by Cell(t) the configuration of cells at a given time
t and we call it the cell space. This forms a closed subset of R. The complement
of Cell(t) in R is denoted by Diff(t) and is called the Diffusion space at time
t. At each time t, the diffusion space is divided into two parts, the free diffusion
space, F'ree(t), and the fractone space, Fract(t). The data of Cell(t), Free(t), and
Fract(t) forms what we call the Configuration space at time t and we denote it by
Conf(t). Note that R(t) = Cell(t) U Dif f(t) and Dif f(t) = Fract(t) U Free(t).

To the discretization of the initial configuration of cells, i.e. Cell(0), we associate
a collection of indices (i, j) where each index is represented by an integer. Each pair
of indices represent a unit of our discretization. Similarly Free(0), Frac(0) (and
therefore Dif f(0)) are represented by collections of indices. For instance, a cell
configuration of four cells (2 horizontals and 2 verticals) and no fractone lead to
Diff(0) = Iy x Jy where Iy = Jy = {0,1,--- ,n}\({13,---,21} U {23,---,31}),
where n represents the length of an edge of the configuration space.

From our definitions, the configuration space at time ¢ is a topological space
identified to R? with holes (the cells). Note that for the diffusion of growth factor,
the holes should rather been seen as obstacles since the cells prevent the diffusion.
The fractones do not prevent the diffusion but perturbe it by acting as captors. This
will be described more precisely in the next section. The morphogenic events will
start from an initial configuration of cells and fractones immerged in the ambiant
space R. Growth factors diffuse freely in the diffusion space F'ree(t) and are under
a pertubed diffusion in Fract(t). We make a few assumptions to mathematically
described those objects.

Assumption 5.3.

(1) We assume the space between the cells account for 20% of the total space
occupied by the cells. This is reflected in our discretization by representing
a cell as a square composed of 81 units (i.e. a 9 by 9 square), while the “in-
between cells” space is represented by single unit-rows and unit-columns.
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(2) We assume the cells to be vertically and horizontally aligned.
(3) The fractones are represented as one unit of our discretization.

Notice that at this stage of the work, those are arbitrary choices and it will
be straightforward to relax these assumptions to reflect the observations from the
experimental maps.

Assumption 5.4. For simplicity, the boundary of the ambiant space in which the
biological process takes place is fixed but our definitions allow for boundaries that
vary with time as well.

Remark 5.5. Due to the morphogenic nature of the biological process under study,
the configuration space is constantly evolving. This distinguishes in a very non-
trivial way our problem for the traditional problems in engineering or physics whose
systems are usually defined on a static configuration space.

As mentioned before, since cells are constantly forming and fractones are moving,
the diffusion space evolves constantly as well, however, it will always be formed by
the product of unions of subsets of Z. We introduce Diff(t) = I; x J; C Z X Z,
where I;, J; are both unions of finite subsets of Z. Note that, with this equality,
we identify the configuration to its discretization and that will be the case in all
that follows. Indeed, there is a one-to-one correspondance between both. The same
holds for the cell space. The dimension of the diffusion space at time ¢ (resp. of
the cell space) is defined as the number of indices (4, j) such that (i,7) € Dif f(t)
(resp. Cell(t)).

In our proposed model, the morphogenic events will be governed by a control
system defined on a state space. The state space is defined at each time ¢ as the
concentration of growth factors in each unit of our discretization of the diffusion
space Dif f(t). We denote the state space by M (t). More precisely, we have:

Definition 5.6. To each unit (i,7) € Dif f(t), and at each time ¢, we associate a
concentration of growth factor that we denote by X; ;(t). The state space M (t) at
time ¢ is then R¥™(Pi/ /(1) such that dim(Dif f(t)) > 0.

5.2. Diffusion Space. For simplicity, we assume the diffusion of a unique type
of growth factor and equal sensitivity of the fractones with respect to that growth
factor. However, our model will be developed such that expanding to several types
of growth factors and varying fractone sensitivity to respective growth factors can
be added in a straightforward way.

Assume at first that there is no cells, therefore the growth factors diffuse freely
in the ambiant space R. We denote by v the diffusion parameter associated to the
considered growth factor, and we define A = {(0,1),(0,—-1),(1,0),(—=1,0)}. The
pure dissipation is then described by:

(8) X(t) = FO(X(t)

where the components of X (¢) are given by X; ;(¢) which represents the quantity of
growth factor in unit (7,7) at time ¢ as described in Definition 5.6, and, assuming
diffusion occurs between a unit (4, ) and its four neighbors, we have:

9) Xij(t) =v- Y (Xiprjui(t) = Xi5(t)) for (i,5) € R.
(k, HeA

Assume now that a cell forms in the ambiant space. The cell therefore becomes
an obstacle to the diffusion process. Mathematically, rather than looking at a cell as
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an obstacle, we identify the cell to a hole in a topological space. The hole, depicting
the location of the cell, insures that the diffusion of the growth factor takes place in
the remainder of the ambiant space only. By doing so, we do not have to perturbe
the diffusion process, instead we continuously modify the topological space in which
the diffusion process takes place.

Let us describe the new state space on which the diffusion process takes place.
Assume the cell is centered at unit (a,b). This means that at the time ¢ at which
the cell formed, the diffusion space Dif f(t) = I; x J; transforms into a new free
diffusion space I; x J; from I} x J\ ({a—4, -+ ,a+4} x {b—4,--- b+ 4}) (we
assume it is instantaneous). Notice that since several cells might be forming at
the same time, the topological changes in the conguration space will reflect all the
created holes. We then have:

(10) Xij(t) = vy (Xiprj(t) — Xi (1) for (i, j) € Dif f(t).
(k, HeA
(i+k,jH+l)eDif f(t)

Finally, we need to model how fractones perturbe the diffusion. As mentioned
before, a fractone is represented as a one unit (4,j) of our discretization. The hy-
pothesis is that the fractones store the quantity of growth factors that they capture
from neighboring units in F'ree(t), and that this quantity becomes unavailable to the
diffusion process. To reflect the biological hypothesis that fractones are produced,
signal mitosis, and then disappear, we introduce the following definitions.

Definition 5.7. To each unit (7, j) we associate what we call a passive fractone. A
passive fractone at time ¢ belongs to Free(t). An active fractone at time ¢ is defined
as a unit that belongs to the set Frac(t). An active fractone is one that acts as a
captor for the diffusion process.

The biological translation of this definition goes as follow. A passive fractone
corresponds to the situation such that either no fractone is associated to the unit
or one is currently produced but is not yet part of the biological process. In other
words, in our representation it can be seen that Free(t) is the set of passive fractones
at time ¢. An active fractone is one that acts as a captor for the diffusion process.

Assume now that there is an active fractone (7, j). Then there is perturbation to
the diffusion process as follows. We introduce a control function u(t) = (u; ;(t)) €
{0,1}{¢%7t defined on a time interval [0, T], with T representing the duration of the
cascade of morphogenic events under study. When a fractone is active at time ¢, the
component u; ;(t) of the control is turned on to 1 while it is set to 0 for a passive
fractone. The active fractone store the current quantity of growth factors available
in unit (¢,7) and acts as captor for the diffusion process. In other words, diffusion
from an unit (7,7) € Frac(t) to its neighbors is prevented.

To represent this perturbed-diffusion process, we define a control system:

(11) X(t)=FOX(t)+ Y FONX(t) - uay(t)

(i,5)eDiff(t)
where X (t) is the state variable and denotes the concentration of growth factor in
the diffusion space Dif f(t) = I; x J; at time ¢, the drift vector field FP is given
by the right-hand side of (10) and represents the regular diffusion of growth factors
taking place in the free diffusion space, and finally the control vector fields perturb
the regular diffusion to account for the possible prescence of active fractones. More
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precisely, we have under the assumption that (i, ) is an active fractone:

(12) FE (X)) =v-Y " Xij(t)
(k, HeA
(i+k,jH0)EDIf f(t)

(4,) _ k, eA,
(13) Fiiilin(X(#) = —v- X, 5(t) for (i+k,(j+l))eDiff(t)

These equations reflect the fact that the quantity of growth factor in an active

fractone become invisible to the diffusion process. Once the stored quantity reaches
a given threshold, the fractone signals to the associated cells that mitosis can occur.

Definition 5.8. An admissible control is a measureable function w : [0,7] —
{0, 1}”(t) where T represents the duration of the morphogenic event under study,
and n(t) is the number of pairs included in I; x J;.

5.3. Mitosis. The motivation behind the introduction of fractones as controllers
comes from the hypothesis that the fractones give the order to the cell to undergo
mitosis. Indeed, an active fractone stores a quantity of growth factors through the
diffusion process, and once this quantity reaches a prescribed threshold, all the cells
associated to this active fractone duplicate. In other words, the spatial distribution
of fractones determines the morphogenic events and the topology of the cell space.

To translate this mathematically, we can equivalently state that the spatial dis-
tribution of fractones and the diffusion process of growth factors regulate the ap-
pearance and the location of holes in our topological space, namely the configuration
space. A natural question arises: when a cell undergoes mitosis, how does the exist-
ing mass of cells deform? At this stage, we will limit ourselves to simple assumptions
to avoid making the problem unnecessarily complex.

Based on our representation of the cell space, from here forth we identify a cell
C to a unit of our discretization. Indeed, since we assume our cells to be squares
of 9 x 9 units of our discretization and to be vertically and horizontally aligned, a
cell C'is completely determined by its middle unit (a,b). We write C' = (a,b). The
following assumptions that regulate the deformation of the existing mass of cells
once mitosis occurs is arbitrary and can be modified easily. For simplicity, in this
paper we assume the fractones can be located only at the vertices of the cells. Note
that this assumption can easily be relaxed. First, we introduce the following notion
of distance.

Definition 5.9. Let a = (ay1,a2) and b = (by,bz) be two units such that a; =
b1 mod 10 and as = b mod 10. The linear distance between a and b is defined by:

dp(a,b) = (lax — by| + |ag — b2])
and the geometric distance is defined by:
d(;(a,b) = \/|a1 — b1|2 + |Cl2 — b2|2.

The geometric distance helps to determine a hierachy between units that are at
the same linear distance from a given unit. This notion of geometric distance is
based on the assumption that the mass of cell is optimizing its shape by prioritizing
compactness. Clearly, we have that:

dg(a,b) = {10\/ n2+m?2 | n,mée Z} )
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Notice that, given unit (a,b), the closest units a factor of 10 from (a,b) are at a
distance 1, and there are 4 of them. The next closest units are at a distance /2,
and there are also 4 of them. The table below details some possible distances up to
a maximum distance of 10 units.

For any given distance d¢ from a cell centered at (a, b) to a location toward which
Cell(t) can deform, there are either:

(1) 12 possible locations if d¢ is an integer that is the hypotenuse of a Pythagorean
triple,

(2) 8 possible locations if d¢ is not along a diagonal or an axis in Table 2, or

(3) 4 possible locations if d¢ is on a diagonal or an axis, and is not an integer
that is the hypotenuse of a Pythagorean triple.

(of v [ 2 [ 3 | 4 [ 5 [ 6 [ 7 [ 8] 9 [10]
1| V2

2 | V5 | V8

3| V1o | V13 | V18

4 V1T | V20 | V25 | V32

5 v26 | v29 | V34 | V41 | V50

6 || V37 | V40 | V45 | V52 | V61 | /T2

7 v50 | V53 | VB8 | V65 | V74 | V85 | V98

8 || v65 | V68 | V73 | V80 | V89 | /100 | V113 | /128

9 || V82 | V85 | 90 | V97 | V106 | V117 | v/130 | V145 | /162
10 || V101 | v/104 | v/109 | V116 | v125 | V136 | V149 | V164 | v/181 | +/200

TABLE 2. Sample distance distribution for the deformation of the
mass of cells as measured from the “mother” cell (located at 0).
Here, only one half of one quadrant is displayed since it is symmet-
rical with respect to the other quadrants, and the table is symmet-
rical about its diagonal.

5.3.1. Algorithm For Deformation Of Cell(t). The details of the algorithm for de-
formation of Cell(t) after mitosis occurs are as follows. First, we identify the active
fractone to unit (4, 7). To this fractone, there are at most 4 cells that are connected,
and those are described simply by their center unit:

Cl = (7’+57.7_5)
Cy = (i—5j-5)
Cs (i—5,7+5)
Cy = (i+5,j+5).

At a given time ¢, the active fractone reaches the threshold for the concentration of
growth factor. If C; € Cell(t), then cell C; undergoes mitosis.

Now, consider for simplicity a single cell undergoing mitosis. The deformation
algorithm is defined as to preferentially deform the current mass of cells in the
direction of empty space in a clockwise orientation as starting from angle zero (as
referenced by an axis superimposed on the center of the “mother” cell). More
precisely, it looks incrementally for the closest unit to (i, j) that belongs in Free(t).
Once such a unit is detected, the deformation occurs.

Units at a same distance from (4,j) are selected in the following order. The
linear component distances, respectively, from a cell undergoing mitosis to a location
toward which the mass can deform are i, —ig and j,—jg, for all £, where £ represents
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the number of possible locations at a given distance and (ig, jo) represents the center
of the cell undergoing mitosis. The algorithm looks first for a unit in Free(t) such
that j, — jo < 0 and chooses preferentially the max {i,}. If no such unit is found,
The algorithm searches for a unit in F'ree(t) such that j, — jo > 0, and chooses
preferentially the min {i¢}. If no such values exist, i.e. there is no space available,
the simulation is terminated since Cell(t) can not deform.

5.3.2. Subspace Evolution Post-Mitosis. The topology of the 2D system is depen-
dent on the number of cells present at any given time. The way that the system
has been defined, it evolves such that every “mother” cell always has a neighboring
“baby” cell, or, in other words, is connected (if we ignore the diffusion channel
between any two cells). The space in which the system evolves can be defined to be
either closed or with moving boundaries. If we impose on the system to evolve in
a closed space, then the system will recognize this via the distance algorithm and
will only deform the mass of cells strictly inside of these boundaries. If the system
has moving boundaries under which it is restricted, then the system can grow in
any defined direction as far as the boundary will permit at any given time. When
the system has evolved such that the distance algorithm produces no value, the
simulation terminates.

Now, when a cell undergoes mitosis and the distance algorithm has chosen a
position in Free(t) for Cell(t) to deform toward (call it (4, j) arbitrarily), the growth
factor present in the space must move in order to make room for the deformed mass
of cells. Hence, the program does the following:

(1) calculates the sum of the GF present in the space C' = (i, j) where the mass
of cells will deform toward,4i.e.

> Xipk (b
kl=—4
(2) deforms Cell(t) such that (i,7) € Cell(t).
(3) counts the number of units in Free(t) U Frac(t) such that d < 8 in units
from (i, 7).
(4) distributes 70% of the sum from (1) evenly in each unit from (3).
(5) counts the number of units in Free(t) U Frac(t) such that 8 < d < 11 in
units from (i, j).
(6) distributes the remaining 30% of the sum from (1) evenly in each unit from
(5).

In this way, one can see that once the new cell enters the system, the deforma-
tion of Cell(t) creates a “pressure wave” that distributes the GF around the space
where the deformation impacts Free(t). It should be noted that the distances and
percentages chosen are arbitrary and are easily adjustable.

From the details thus far, we can glean the criteria that guide the system from
one topological space to the next:

(1) in the absence of cell production of GF, the initial concentration of growth
factor(s) dictate how many times mitosis can possibly occur (maximum
number of cells, maximum number of configurations),

(2) the group of cells arrangement(s) will dictate how GF is distributed through-
out, thus determining possibility for mitosis,

(3) the number of fractones present will determine the maximum change in
dimension at any given time t,
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(4) the affinity of the individual fractone to a certain GF,

(5) how often the cells, now producing GFs, do this and in what amounts,
(6) the amount of any one GF required to initiate mitosis,

(7) the “reset value” a fractone assumes post-mitosis, and

(8)

8) how many cells each individual fractone is associated with.

6. MATHEMATICAL STATEMENT OF THE PROBLEM

The morphogenic events have been modelled as an affine control system of the
form:

(14) () = FO(a(t) + Y uilt) - F'(x(1)), a(t) € M(1)

i=1
where the state space M(t) C R¥™Pif (1) varies with time, and such that u(-)
is an admissible control. Notice that the initial and final conditions of our system
are not given in terms of M(0) and M(T) but in terms of Cell(0), Frac(0) and
Cell(T), Frac(T). Also, note that the dimension of M (¢) is arbitrary since it de-
pends only on our discretization. The problem is now the following:

Problem:

Given an initial and final configuration of cells in a prescribed ambiant space,
determine an initial concentration of growth factors and a dynamic spatial
distribution of fractones such that the mass of cells transforms from its initial
configuration to its final configuration.

Mathematically:

Given Cell(0) and Cell(T), which are subspaces of R, determine X (0) and an
admissible control u(-) such that Cell(0) transforms into Cell(T) under the
evolution of system (11) and the rules for mitosis described in section 5.3.

Now that the main problem has been stated, it is clear that the algorithm we
have chosen for deforming Cell(t) (the “clockwise” arrangement starting at angle
zero) is arbitrary since any two spaces are equivalent if they are rotations of a
factor of 90 degrees of each other. If we had picked a different algorithm (either
in direction of cell deformation or starting angle from the mother cell), the two
different algorithms would produce final configurations that were a rotation of 90n
degrees from each other (for n € {1,2,3}).

6.1. Existence Of Solutions. As with any problem, one must check to see, for a
given set of initial and final configurations, if there actually exist a solution to the
problem, even in the simplest cases. For our problem, one can quickly produce a
counterexample for which there is no “exact” solution. Of course, this is assum-
ing that the initial configuration of cells is not one that arbitrarily leads to final
configuration, such as the degenerate case in which Conf(0) = Conf(T).

In Figure 1, if the initial configuration is that of one cell and one associated
fractone (the “classical” configuration), there is no way to produce the exact final
configuration as shown. However, given the other initial configuration, it is clear
that the final configuration in Figure 1 is a reachable configuration. This gives rise
to a new level of complexity within the problem: the set of reachable final configura-
tions (or, perhaps more appropriately, the set of non-reachable final configurations)
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FIGURE 1. Two separate initial configurations and a final configu-
ration. Here, the right initial configuration can exactly produce the

final configuration, but the left initial configuration is unable.

as predetermined by the initial configuration. Even with this new point made, it is
still obvious from our first counterexample that there does not exist for every set
of given initial and final configurations a solution, i.e. a set of controls such that

Conf(0) = Conf(T).

6.2. Uniqueness Of Solutions. Now, given Conf(0) and Conf(T), suppose there
exists a set of controls such that Conf(0) — Conf(T). Naturally, we should deter-
mine whether or not a solution to the problem is unique. As before, it is easy to
choose an initial configuration and a final configuration such that the set of controls
that guides the system is not unique. In Figure 2, we present an initial configura-
tion and a final configuration for which the solution is clearly not unique. In this
simulation, the fractone reaches the threshold to initiate mitosis from one level to
the next lower level.

oge _ege
ge \

i
°—eo0 o%e oo __ s0e

rred

h :O. *eP /

FIGURE 2. Starting from the “classical” configuration, three unique
solutions produce the final configuration. Here, cells in red indicate
the direction in which cell deformation occurred, fractones are green,

and cells in blue represent either static cells or mother cells.
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7. OPEN QQUESTIONS

After stating the problem as above, we can attempt to formalize questions con-
cerning the system. Indeed, as seen in Figure 1, there might not exist a solution to
this problem for a given set of initial and final configurations. In this case, how do
we modify the question? One solution is to introduce a notion of distance between
configurations of cells and to ask how to reach a final configuration that is at the
shortest distance from the desired one. There is also clearly the possibility that
several controls lead to the same final configuration of cells, as seen in Figure 2. In
this case, how do we select one? What is the criteria to be used to determine the
most efficient control function?

One strategy to be explored in forthcoming work is based on the experimental
observations collected in the lab through the fractone maps. Indeed, the experi-
mental maps will provide information about the control function used by nature to
produce morphogenic events. Based on those observations as well as assumptions
such as minimizing the number of times mitosis can take place during the entire
duration of the morphogenic event or minimizing the number of switching in the
control function (which is equivalent to minimize the changes in the spatial distribu-
tion of the fractones), we can ascribe a cost function to be minimized. Our problem
then becomes an optimal control problem. However, due to the complexity of the
system, there is an extremly large number of questions associated to this problem,
and, as said previously, new methods need to be developed.

8. NEw CLASS OF PROBLEMS IN CONTROL THEORY

Our model clearly diverges from Turing’s model (or any other Reaction-Diffusion
model), and it presents new challenges that will advance the field of control theory.
To envision how our problem does this, we must compare and contrast versus typical
control theory problems. For example, in physics, the state space is static and the
equations of motion are derived from minimizing a Lagrangian. In engineering, the
configuration manifold is fixed and one either attempts to determine the evolution
of the system while minimizing a prescribed cost or one tries to design controls to
take into account uncertainties of the system. Due to the morphogenic nature of
the biological process under study, the configuration space is constantly evolving
(caused by the creation of new cells), and thus can not be analyzed using traditional
techniques of control theory in which the equations describing a given system are
predetermined when defining the system. This distinguishes in a very non-trivial
way our problem from the traditional problems whose systems are usually defined
on a static configuration space.

Inspired by the biological question, we propose an entirely new theoretical con-
trol problem by noting that an intrinsic property of biological systems is having
a dynamic state space. As a result, new methods have to be proposed to analyze
these type of systems from the control theory point of view. This will advance the
field of control theory by considering new problems and by providing insight toward
the development of innovative ideas and methods to solve these types of problems.
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9. SIMULATIONS

Based on the algorithm in Section 5.3, we present some simulations that show
the evolution of some typical cellular systems.

In Figure 3, we present a simulation of the perturbed-diffusion process in which
one cell and one fractone exists in the ambient space. The initial distribution of
growth factor is a single source (not to scale) as seen in the initial image in the
upper corner above the cell, while the fractone is located near the bottom corner in
green. The growth factors diffuse through the free space to eventually be captured
by the fractone in the last image. It should be mentioned that, if there was a cell
appropriately close to the fractone, that cell would undergo mitosis. However, since
there is not, the fractone merely stores the growth factor that it collects from the
neighboring units in which diffusion is occurring.

FIGURE 3. Diffusion from a high concentration source through the

free space, around a cell (red), towards a fractone (green). Here,
the height of the column above each unit represents the amount of

growth factor.
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In Figure 4, we present a simulation of the perturbed-diffusion process in which
one cell and one fractone exists in the ambient space, and this cell undergoes mi-
tosis. The initial distribution of growth factor is a double source (not to scale)
as seen in the initial image near the lower corner below the cell and to the left of
the cell, while the fractone in green is located on the left of the cell. The growth
factors diffuse through the free space and are captured by the fractone. In Image
2, the fractone reaches/exceeds the threshold of growth factor, and initiates mitosis
of the associated cell. In Image 3, the cell space has deformed according to the
deformation algorithm, and has displaced the growth factor that was present via
the redistribution algorithm. Notice that there is no growth factor present between
the cells in accordance with how mitosis actually occurs in nature. In Image 4, the
cell space has finished deforming, the redistributed growth factor has diffused ap-
propriately, and the amount of growth factor present on the site of the fractone has
again reached the threshold for mitosis. In the next two images, the aforementioned
process is repeated according to the respective algorithms.

FIGURE 4. Diffusion from two high concentration sources through
the free space, around a cell (red), towards a fractone (green). One
can also see cell deformation post-mitosis and growth factor redis-

tribution due to deformation.
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In the following figures, we only display the 2D projection of the cellular con-
figurations since the initial concentrations of growth factor and its distribution is
unimportant to the evolution of the simulations.

In Figure 5, we start with a single cell and an associated fractone. In this
simulation, we chose a highly concentrated source near the fractone for our initial
growth factor distribution and a low threshold such that mitosis would occur on a
short time scale in order to produce the morphogenic event. Choosing a different
initial distribution, however, would still produce similar images since there is only a
single fractone that would eventually capture the growth factor via diffusion. Also,
one can see how the mass of cells deforms according to our algorithm. In particular,
the configuration of the mass of cells is deforming such that it attempts to maintain
compactness. In Image 11 in Figure 5, it should be noted that the cell space takes
the shape that it has due to restrictions in the computer program of the whole space
only.
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FIGURE 5. Cellular evolution starting from one cell and one associ-

ated fractone.
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In Figure 6, we present an initial configuration of cells and fractones, and the
resulting simulated configuration predicted by our algorithm. Again, we chose a
highly concentrated source near the center of the fractones for our initial growth
factor distribution and a low threshold such that mitosis would occur on a short
time scale in order to produce the morphogenic events. Each individual cell will
produce neighbor cells until the mass of cells deforms in such a way that the lone
fractone interacts with it. At that point, the lone fractone will have accumulated
a significant amount of GF so that, once the mass of cells reaches it, the fractone
will signal mitosis several times on a short time interval.

I-l
[

FIGURE 6. First and last frame of a simulation with multiple cells
and fractones. Simulation was stopped one frame early to exhibit

some structure prior to absolutely filling the space.

It should be noted that in Figure 5 and Figure 6, a fractone is initially associated
with one cell. However, in Figure 5, the fractone is only associated with its two
neighboring cells throughout the simulation versus in Figure 6 where each fractone
is eventually associated with its four neighboring cells. This is an arbitrary choice
that is easily modified in the computer code.
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10. FuTuRE WORK

The are mainly two directions of work that we are planning to undertake at
this stage. First, from a purely mathematical perspective, an open question is the
development of new techniques to answer controllability and optimality questions
for control systems such as the one introduced in this paper. Second, the interplay
between the biological motivation and the mathematics must be refined to predict
neurulation and post-neurulation growth by the mathematical model using fractone
maps produced by biological research.

The current model is based on what we believe are the most critical features of
our hypothesis. However, some of our assumptions are very restrictive and we also
need to add some complexity to produce a more realistic model. Other important
features of the biological system that have not yet been taken into account that will
be incorporated into our model are to:

(1) relax the assumption that the cells are horizontally and vertically aligned to
allow broader configuration of cells, i.e. non-symmetrical cellular arrange-
ments,

(2) establish a penality function for the diffusion of growth factors in the space
found between the cells with respect to diffusion in the free ambiant space,
and

(3) add the possibility of having multiple growth factors diffusing in the am-
biant space at different rates as well as having active fractones with varying
sensitivities to each respective growth factor.

However, despite the new features to be added, the statement of the problem will
generally remain the same.

After all of this has been accomplished, we will discretize the fractone maps pro-
vided by biologists and then determine whether the prediction of the mathematical
model reflects the growth of the neural tissue observed in the maps. The obser-
vation of spatial distribution of fractones provided by the maps will determine the
control function to be used in the mathematical model to produce our simulations.



an

1

2

3

[4

[5

6

7

»©

9
[10]
1]

(12]

(13]

(14]
(15]

(16]

(17]
(18]
(19]
20]
(21]
(22]

23]
[24]

[25]

[26]

MODELLING MORPHOGENESIS USING CONTROL THEORY 23

Although we have not cited every work in the references below, we have included
extended bibliography for possible future investigations.

REFERENCES

Ashby WR (1956) An Introduction to Cybernetics. Chapman and Hall, London. Internet
(1999): http://pcp.vub.ac.be/books/IntroCyb.pdf

Ashby WR and von Forester H (1964) Biological Computers. Bioastronautics, K. E. Schaefer,
Macmillan Co., New York, pp. 333-360.

Bender ML, Begué-Cantén ML, Blakeley RL, et al. (1966). The determination of the con-
centration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase,
subtilisin, and acetylcholinesterase. J. Am. Chem. Soc. 88 (24): 5, 890-913.

Benzer S (1959) On the topology of the genetic fine structure. Proc Natl Acad Sci U S A 45:
1607-1620.

Bernoulli D: Essai d “une nouvelle analyse de la mortalité causée par la petite vérole, et des
avantages de 1’inoculation pur la prévenir. Histoire de 1”Acad. Roy. Sci. (Paris) avec Mém.
des Math. et Phys. Mém., 1-45 (1760). In: Murray, J.D. (ed.) Mathematical Biology, 2nd edn.
Springer, Heidelberg (1993)

von Bertalanffy, L (1968). General System theory: Foundations, Development, Applications.
George Braziller.

Becskei A and Serrano L (2000) Engineering Stability in Gene Networks by Autoregulation.
Nature 405: 590-593.

Bullinger E, Findeisen R, Kalamatianos D, Wellstead P (2007) System and Control Theory
Furthers the Understanding of Biological Signal Transduction. Biology and Control Theory:
Current Challenges. Berlin/Heidelberg: Springer. 357: 123-135.

Burns K and Burns J (1973) The control of flux. Symp Soc Exp Biol. 27, 65-104.

Cannon WB. The wisdom of the body. New York: Norton, 1932.

(2009) Autonomous Underwater vehicles Ocean Engineering, Special Issue on Autonomous
Underwater Vehicles, Chyba, M: Guest Editor, Vol 36/1, pp. 1-132.

Chyba M, Haberkorn T, Smith, RN, and Choi, SK (2008) Autonomous Underwater Vehicles:
Development and Implementation of time and Energy Efficient Trajectories. Ship Technology
Research, 55/2, pp.36-48.

Douet V and Mercier F. Investigating the role of the extracellular matrix structures fractones
as captors and modulators of growth factor activity in the adult neurogenic zone. Submitted
to Integrative Biology.

Erdds P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci
5: 17-61.

Euler L (1760) Recherches générales sur la mortalité et la multiplication. Mémoires de
I’Académie Royal des Sciences et Belles Lettres 16: 144-164.

Euler, L: Principia pro moto sanguinis per arterias determinando (1775). In: Sherwin, S.J.,
Franks, V., Peir, J., Parker, K. (eds.) One-dimensional modelling of a vascular network in
spacetime variables. J. Eng. Math. 47, 217-250 (2003)

Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:
87-112.

Fisher RA (1950) Contributions to mathematical statistics. Tukey J, indexer. New York:
Wiley. 1 v.

von Foerster H, Mora PM, and Amiot LW (1960) Doomsday: Friday, November 13, AD 2026.
Science. 132, pp. 1291-1295.

Galton F (1889) Natural inheritance. London: Macmillan. 259 p.

Gardner T and Collins JJ (2000) Neutralizing Noise in Gene Networks. Nature 405: 520-521.
Hannon B and Ruth M (1997) Modeling Dynamic Biological Systems. Springer-Verlag, Series
: Modeling Dynamic Systems, New York, 1997

Hardy GH (1908) Mendelian proportions in a mixed population. Science 28: 49-50.
Hartwell LH, Hopfield JJ, Leibler S, and Murray AW (1999) From molecular to modular cell
biology. Nature, 402: C47-C52.

Heinrich R and Rapoport T (1974) A linear steady-state treatment of enzymatic chains.
General properties, control and effector strength. Eur J Biochem. 42(1):89-95.

Herrero MA (2007) On the role of mathematics in biology. J. Math. Biol. 54:887-889



24

27]
(28]

29]

(30]
(31]

(32]

33]
34]
(35]
(36]
37]
(38]

39]
(40]

(41]
42]
(43]
44]

[45]
[46]

[47]

(48]

[49]

[50]
[51]

[52]
[53]

[54]
[55]

[56]

JOHN RADER

Higgins J (1963) Analysis of sequential reactions., Ann. New York Acad. Sci. 108, 305-321.
Hodgkin AL, Huxley AF (1952). A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol 117 (4): 500-544.

Kalman RE. On the General Theory of Control Systems. Proceedings First International
Conference on Automatic Control, Moscow, USSR, 1960.

Kendall DG (1948) On the generalized birth-and-death process. Ann Math Stat 19: 1-15.
Kendall DG (1949) Stochastic processes and population growth. J R Stat Soc [Ser B] 11:
230-264.

Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, and
Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture
the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:
2146-2157.

Kimura M (1994) Population genetics, molecular evolution, and the neutral theory: Selected
papers. Takahata N, editor. Chicago: University of Chicago Press. 686 p.

Kingman JFC (1982a) On the genealogy of large populations. J Appl Prob 19A: 27-43.
Kingman JFC (1982b) The coalescent. Stoch Proc Appl 13: 235-248.

Kolmogorov A, Petrovsky I, Piscounov N (1937) Etude de 1’équation de la diffusion avec
croissance de la quantité de matiere et son application a un probleme biologique. Moscow
University Bull Math 1: 1-25.

Koshland DE (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis.
Proc. Natl. Acad. Sci. U.S.A. 44 (2): 98-104.

Lauffenburger DA (2000) Cell signaling pathways as control modules: Complexity for sim-
plicity. Proc Natl Acad Sci USA. 97: 5031-5033.

Lotka AJ (1925) Elements of physical biology. Baltimore: Williams and Wilkins. 460 p.
Luria SE, Delbriick M (1943) Mutations of bacteria from virus sensitivity to virus resistance.
Genetics 28: 491-511.

Markov AA (1906) Extension of the law of large numbers to dependent variables [Russian].
Izv Fiz-Matem Obsch Kazan Univ (2nd Ser) 15: 135-156.

Maturana H. (1991) The origin of the theory of autopoietic systems. Fischer, H. R. (ed.),
Autopoiesis. Eine Theorie im Brennpunkt der Kritik. Frankfurt: Suhrkamp Verlag.

Mercier F, Kitasako JT, and Hatton GI (2002) Anatomy of the brain neurogenic zones revis-
ited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-188.
Mercier F, Kitasako JT, and Hatton GI (2003) Fractones and other basal laminae in the
hypothalamus. J Comp Neurol 455: 324-340.

Mesarovic, MD (1968). Systems Theory and Biology.

von Neumann J, Morgenstern O (1953) Theory of games and economic behavior, 3rd ed. New
York: John Wiley and Sons. 641 p.

von Neumann J (1959) On the theory of games of strategy. Bargmann S, translator. In: Tucker
AW, Luce RD, editors. Contributions to the theory of games, Volume 4. Princeton: Princeton
University Press. pp. 13-42.

Ni XY, Drengstig T, and Ruoff P (2009) The control of the controller: molecular mechanisms
for robust perfect adaptation and temperature compensation. Biophys J. Sep 2;97(5):1244—
1253.

Noble D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action
and pacemaker potentials. J Physiol 160: 317-352, 1962.

Pearson K, Lee A (1903) On the laws of inheritance in man. Biometrika 2: 357-462.

Piccoli B and Garavello M (2006) Traffic Flow on Network. AMS book series, Applied Math
Series. n.1, American Institute of Mathematical Sciences.

Savageau MA (1976) Biochemical systems analysis: a study of function and design in molec-
ular biology, Reading, MA, AddisonWesley.

Sontag ED (2004) Some new directions in control theory inspired by systems biology. IET
Systems Biology, 1:9-18.

Sontag ED (2005) Molecular systems biology and control. Eur. J. Control, 11(4-5):396-435.
Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B Biol Sci
237: 37-72.

Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corre-
spondance mathématique et physique publiée par A. Quételet (Brussels) 10: 113-121.



MODELLING MORPHOGENESIS USING CONTROL THEORY 25

[57] Voit EO (2000) Computational Analysis of Biochemical Systems. A Practical Guide for Bio-
chemists and Molecular Biologists, Cambridge University Press, Cambridge, U.K.

[58] Volterra V (1931) Variations and fluctuations of the number of individuals in animal species
living together. In: Animal ecology. New York: McGraw Hill. pp. 409-448.

[59] Wiener N. The Extrapolation, Interpolation and Smoothing of Stationary Time Series. John
Wiley and Sons, Inc., New York, N.Y., 1949.

[60] Yule GU (1925) The growth of population and the factors which control it. J R Stat Soc 88
(Part I): 1-58.



