Let $G = \mathbb{R}^n$, T^n or \mathbb{Z}^n. A bi-linear operator $T : L^{p_1}(G) \times L^{p_2}(G) \to L^{p_3}(G)$, $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3}$, is called a bilinear multiplier if it commutes with simultaneous translations and satisfying $\|T(f, g)\|_{p_3} \leq C\|f\|_{p_1}\|g\|_{p_2}$. Each such T is associated with a symbol $m(\xi, \eta)$ in the following way

$$T(f, g)(x) = \int_{\hat{G}} \int_{\hat{G}} m(\xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{2\pi ix(\xi + \eta)} d\xi d\eta,$$

for "nice" functions f and g. Denote $M_{p_1, p_2}^{p_3}(G)$ as the set of all such symbols. In this talk we will explore the relations between the spaces $M_{p_1, p_2}^{p_3}(G)$ when $G = \mathbb{R}^n$, T^n or \mathbb{Z}^n using transference techniques. This will be analogous to classical results for Fourier multiplier spaces due to deLeeuw and Jodeit.