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Abstract. We consider a situation where coalitions are formed
to divide a resource. As in real life, the value of a payoff to a
given agent is allowed to depend on the payoff to other agents with
whom he shares a common interest. There are various notions of
equilibrium for this type of game, including the core and no-treat
equilibrium. These stabilities may exist or not, depending on the
power structure and the rule for allocating the resource. It is shown
that under certain conditions, the no-treat equilibrium can exist
even though the core is empty.

1. Introduction

Today, game theory is increasingly being used to model interactions
in social science, political science, psychology, and especially economics.
But it is actually a field of applied mathematics, one that attempts
to mathematically capture behavior in strategic situations in which an
individual’s success in making choices depends on the choices of others.

The reasons I chose game theory for my master’s project were that
I got interested in when I studied Game Theory in an undergraduate
political science class, and that it is closely related to our everyday
experience.

Although Game Theory is used in a lot of disciplines, it requires many
advanced mathematical techniques, such as analysis, linear algebra,
abstract algebra, and so on. However, game theory is often applied in
these disciplines without using those advanced techniques. So I would
like to extend my mathematical skills to consider one of the models in
economics which is coalition-formation.

Also, I would like to thank professor Juarez and professor Nation
who have been helping me a lot for this project. Without their help,
I cannot complete this project. Also, I would like to thank everyone
who helped for this project to complete.

Date: November 25, 2009.
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2. Definitions and concepts

We are going to analyze agents who are looking to maximize their
share of a divisible resource by being a singleton or forming coalitions.

Let M be a divisible resource, say money. Let N be a set of agents
N = {1, 2, ..., n}, and each agent has an additive preference on his share
of money and other agents’ shares. Each agent has a power described
as π1, π2, ..., πn with πi ≥ 0 and

∑n
i=1 πi = 1. Also, without loss of

generality, we assume that
∑

i∈S πi 6=
∑

i∈T πi for all S 6= T , so we do
not have any ties.

A coalition is a group of agents which they might want to form
with the other agent(s) to win the game. The winning coalition is the
coalition S ⊆ N with

∑
i∈S πi maximum.

A partition is a set of coalitions and/or singletons, and each agent
belongs to one of the elements in the partition.

Let ζ be a function that specifies the allocations of the resource
across the winning agents, That is, for any agent i ∈ S ⊆ N , ζi(S)
is the allocation of the money to agent i with

∑n
i=1 ζi(S) = M when

coalition S is winning. We assume that ζ is cross-monotonic on the
size of the coalition, that is ζi(S) > ζi(T ) for i ∈ S ⊂ T.

Another concept which is very important for this project is external-
ity, which is basically a situation in which each agent cares not only
about himself, but also possibly cares about the other agents. Those
relationships are represented by an n × n matrix for n agents, with
entries Mij representing the externality that agent j imposes on agent
i. We assume that Mii = 1 and

∑
i6=j |Mij| < 1 so that any agent’s

altruism does not exceed their own self-interest.
We are going to consider two rules for dividing money to agents in

the winning coalition, which are equal sharing and proportional shar-
ing. Let me introduce these two sharing rules. Let S be the winning
coalition.

(1) Equal sharing is given by

ζi(S) =





M

|S| if i ∈ S,

0 otherwise.

So under equal sharing, all agents in the winning coalitions
share the same amount of the resource.

(2) Proportional sharing is given by

ζi(S) =





πi∑
j∈S πj

M if i ∈ S,

0 otherwise.
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So under proportional sharing, each agent’s share depends on
his power and the total power in the winning coalition.

There are other sharing rules besides above two rules, but we only
consider these two in this project.

Definition 1. For the payoff function, we define Ui(x1, x2, ..., xn) =∑
j Mijxj where Mij is the externality that agent j imposes on agent

i.

Definition 2. For a partition Π, the net utility to agent i is vi(Π) =∑
j∈S∗ Mijζj(S

∗) where S∗ is the coalition in Π with the largest power.

Definition 3. The core is the set of allocations that cannot be im-
proved by a coalition of agents. That is, a partition Π is in the core if
there is no subset S ⊆ N such that vi(Π− S, S) > vi(Π) for all i ∈ S,
so that all agents in the winning coalition are better off by being in
that coalition in Π. (Note that Π−S = Π restricted N −S for any S.)

Definition 4. Similarly to the core, we define an alternative notion,
no-treat equilibrium, call it NTE, under which agents can react to a
deviation in a way that harms the agents who originally deviated. So Π
is NTE if whenever S ⊆ N is such that vi(Π−S, S) > vi(Π) for all i ∈ S,
then there exists T ⊆ N−S such that vi(Π−(S∪T ), T, S) > vi(Π−S, S)
for all i ∈ T and vi(Π− (S ∪ T ), T, S) < vi(Π) for some i ∈ S.
Note that NTE is a relaxation of the core, that is if a partition Π is in
the core, then Π is in NTE. On the other hand, we will see below that
there can be NTE partition where the core is empty.

Definition 5. The minimally winning coalition is a winning coalition
S∗ ⊆ N satisfying

∑
i∈S∗ πi > 1/2 >

∑
i∈S∗−{j} πi for all j ∈ S∗.

Definition 6. The minimally winning coalition of the minimal size is
a minimally winning coalition S∗ ⊆ N satisfying

∑
i∈S∗ πi <

∑
i∈S πi

for all S ⊆ N with S minimally winning. This is used under the equal
sharing.

Definition 7. The minimally winning coalition of the minimal weight
is minimally winning coalition T ∗ ⊆ N such that

∑
i∈T ∗ πi <

∑
i∈T πi

for all T ⊆ N minimally winning. This is used under the proportional
sharing.

With these definitions, what we are going to consider is the following;

• Does there always exist a core-stable partition?
• Can we characterize the set of rules that have a core-stable

partition?
• Does there always exist a NTE-stable partition?
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• Can we characterize the set of rules that have a NTE-stable
partition?

3. No externalities

Observe that, if there are no externalities, then as we increase the
size of a coalition any winning agent is worse off (because his share
decreases), and agents who are not winning would prefer to be winning
(because their net utility is zero when losing). This will also be true in
the case with externalities under weak conditions.

3.1. Equally shared case. For equally shared case, we cannot guar-
antee that the core and NTE always exist. Also, we cannot guarantee
that if the core is empty, then NTE does not exist. Here is an example
where the core does not exist, but NTE exists.

Example 8. Consider the game with N = {1, 2, 3, 4, 5} and π =
(.36, .34, .12, .10, .08). Then each of the following are partitions with
minimally winning coalitions. Now, consider whether these minimally
winning coalitions are in the core or NTE.

• ({1, 2}, {3, 4, 5}) is NTE. (Agent 1 does not want to deviate
because then agent 2 can form a coalition with agent 3,4, and
5.) But this partition is not in the core because agent 1 can
deviate.

• ({1, 3, 4}, {2, 5}) is not NTE. (Agent 1 is not better of in this
coalition because forming a coalition with 2 increases his share.)
Therefore, this partition is not in the core also.

• ({1, 4, 5}, {2, 3}) is not NTE. (Agent 1 is not better of in this
coalition because forming a coalition with 2 increases his share.)
There for this partition is not in the core also.

• ({2, 3, 4}, {1, 5}) is not NTE. (Agent 2 is not better of in this
coalition because forming a coalition with 1 increases his share.)
Therefore, this partition is not in the core also.

• ({2, 4, 5}, {1, 3}) is not NTE. (Agent 2 is not better of in this
coalition because forming a coalition with 1 increases his share.)
Therefore, this partition is not in the core also.

• ({1, 3, 5}, {2, 4}) is not NTE. (Agent 1 is not better of in this
coalition because forming a coalition with 2 increases his share.)
Therefore, this partition is not in the core also.

• ({2, 3, 5}, {1, 4}) is not NTE. (Agent 2 is not better of in this
coalition because forming a coalition with 1 increases his share.)
Therefore, this partition is not in the core also.
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As we have seen above, this game has an NTE, which is ({1, 2}, {3, 4, 5})
but does not have any core-stable partition because agent(s) in the win-
ning coalition can always deviate. So we found an example that has
NTE and empty core.

We are going to characterize below the set of rules that has a core-
stable partition for equal sharing.

Proposition 9. Let S∗ be the minimally winning coalition of minimal
size. Then under the equal sharing rule, the partition Π = {S∗, N−S∗}
is in the core if and only if

∑
i∈S∗−{j} πi <

∑
i∈N−S∗ πi for some j ∈ S∗.

Proof. (⇐) Let S∗ be a winning coalition of the minimal size. Since∑
i∈S∗−{j} πi <

∑
i∈N−S∗ πi for all j ∈ S∗, all agents in the winning

coalition S∗ are better off in S∗, it follows that {S∗, N − S∗} is in the
core by definition.
(⇒) Suppose that Π = {S1, S2, ..., Sm} is a core-stable partition where
S1 has the largest power and is of the minimal size. Then each agent
in S1 will get M/|S1| for which they are better off. Now suppose for a
contradiction that

∑
i∈S1−{j} πi >

∑
i∈N−S1

πi. Then the coalition S1−
{j} can deviate to (S1−{j}, {j}, S2, ..., Sm) to get M/|S1−{j}| because∑

i∈S1−{j} πi >
∑

i∈Sj
πi for all j = 2, 3, ..., m. But this contradicts the

fact that each agent in S1 is better off with M/|S1|. Hence if the core
is nonempty, then we have

∑
i∈S∗−{j} πi <

∑
i∈N−S∗ πi for some j ∈ S∗

¤
We have found some conditions of tournament games to have a core-

stable partition for equal sharing case. Next, I would like to observe
the conditions of tournament games to have NTE-stable partition.

Proposition 10. Under the equal sharing rule, a partition that has
minimally winning coalition of minimal size is in NTE. In particular,
it is nonempty.

Proof. Let S∗ be the minimally winning coalition of the minimal size.
Then it is clear that for any l ∈ S∗ we have (

∑
i∈S∗ πi)−πl < (

∑
i∈N−S∗ πi)+

πl because
∑

j∈S∗ πj > 1/2 >
∑

j∈S∗−k πj for all k ∈ S∗. Hence for
equal sharing, NTE always exists and is the minimally winning coali-
tion of minimal size. ¤
3.2. Proportionally shared case. Next, we look at the proportion-
ally shared case. The proportionally shared case is slightly more com-
plicated than equally shared case. It does not only depend on the
power structure of the whole set N , but also the power structure of the
coalition.
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Proposition 11. For proportionally shared case, the core is nonempty
if and only if there exists S∗ such that

∑
i∈S∗−{j} πi <

∑
i∈N−S∗ πi for

all j ∈ S∗.

Proof. (⇐) The same proof as equally shared case works. Let S∗ be
the winning coalition of the minimal weight. Since

∑
i∈S∗−{j} πi <∑

i∈N−S∗ πi for all j ∈ S∗, all agents in the winning coalition S∗ are
better off in S∗, it follows that {S∗, N−S∗} is in the core by definition.
(⇒) Suppose that Π = {S1, S2, ..., Sm} is a core-stable partition where
S1 has the largest power and is of the minimal s. Then each agent j
in S1 will get

πjP
i∈S1

πi
M for which they are better off. Now suppose

for a contradiction that
∑

i∈S1−{k} πi >
∑

i∈N−S1
πi for some k ∈ S1.

Then the coalition S1−{k} can deviate to (S1−{k}, {k}, S2, ..., Sm) to
get

πjP
i∈S1−{k} πi

M because
∑

i∈S1−{k} πi >
∑

i∈Sl
πi for all l = 2, 3, ..., m.

But this contradicts the fact that each agent in S1 is better off with
πjP

i∈S1
πi

M . Hence if the core is nonempty, then we have
∑

i∈S∗−{j} πi <∑
i∈N−S∗ πi for some j ∈ S∗ ¤

Proposition 12. For proportionally shared case, NTE always exists
and equal minimally winning coalition of minimal weight.

Proof. Let S∗ be the minimally winning coalition of minimal weight.
Then we must have

∑
i∈S∗−{j} πi <

∑
i∈N−S∗∪{j} πi because we assume

that there is no tie. But this implies that S∗ is NTE by definition. ¤

4. With externality

Now, we consider the cases with externality. That means each agent
cares not only about his own share, but also possibly cares about the
other agents’ shares. This relationship is represented by an n×n matrix
for n agents. Let’s look at some examples of the externality matrix to
see what kind of power structures makes the core empty, but NTE
exists.

Example 13. Consider N = {1, 2, 3, 4} with 1 and 2 are Muslims, and
3 and 4 are Catholic. Agent 1 and 2 care about each other, but do not
care about 3 and 4. Similarly, agent 3 and 4 care about each other, but
do not care about 1 and 2. In this case, the externality matrix would
be following:

M =




1 α 0 0
α 1 0 0
0 0 1 β
0 0 β 1




with 1 > α > 0 and 1 > β > 0.
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4.1. Equally shared case. Observe that for what π the core is nonempty.
Since agent 1 and 2 prefer to form a coalition and so do agent 3 and 4,
Then for equal sharing, the final benefit will be the following.

If {1,2} are the coalition with the largest power, then we have

U1(
1

2
,
1

2
, 0, 0) =

1

2
(1 + α)

U2(
1

2
,
1

2
, 0, 0) =

1

2
(1 + α)

If {3,4} are the coalition with the largest power, then we have

U3(0, 0,
1

2
,
1

2
) =

1

2
(1 + β)

U4(0, 0,
1

2
,
1

2
) =

1

2
(1 + β)

Let π = (.40, .22, .28, .10). Observe some partitions. It is not hard to
see that the only possible partition to have core-stable partition and
NTE is ({1, 2}, {3, 4}). For this coalition, agent 1 prefer to be
singleton, and can deviate because π1 > π3 + π4. So for this π this
game has NTE, but the core is empty.

4.2. Proportionally shared case. Let π = (π1, π2, π3, π4) and
observe the payoff.

U1 = x1 + αx2 U2 = αx1 + x2

U3 = x3 + βx4 U4 = βx3 + x4

In this case, xi depends on π, α, and β. If π = (.40, .39, .11, .10),
α = 1/10, and β = 1/10, then agent 1 might prefer to form a coalition
with agent 3 instead of agent 2 since
v1({1, 2}, {3, 4}) = 40

40+39
+ 1

10
39

40+39
, and v1({1, 3}, {2, 4}) = 40

40+11
, so

v1({1, 2}, {3, 4}) < v1({1, 3}, {2, 4}).
Example 14. Consider N = {1, 2, 3, 4} with agent 1 and 2 are Yankees
fans, and agent 3 and 4 are Mets fans. Agent 1 and 2 do not care about
each other, but harm agent 3 and 4. Similarly, agent 3 and 4 do not care
about each other, but hate agent 1 and 2. In this case, the externality
matrix would be following,

M =




1 0 β β
0 1 β β
α α 1 0
α α 0 1




with α < 0 and β < 0.
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4.3. Equally shared case. Similarly to the previous case, agent 1
and 2 prefer to form a coalition and so do agent 3 and 4, Then for
equal sharing, the final benefit will be the following.

If {1,2} are the coalition with the largest power, then we have

U1(
1

2
,
1

2
, 0, 0) =

1

2

U2(
1

2
,
1

2
, 0, 0) =

1

2
If {3,4} are the coalition with the largest power, then we have

U3(0, 0,
1

2
,
1

2
) =

1

2

U4(0, 0,
1

2
,
1

2
) =

1

2
Let π = (.40, .22, .28, .10) as before. Observe some partitions. It is not
hard to see that the only possible coalitions to have core and NTE is
({1, 2}, {3, 4}). For this coalition, agent 1 prefer to be singleton, and
can deviate because π1 > π3 + π4. So for this π this game has NTE,
but the core is empty.

4.4. Proportionally shared case. Let π = (π1, π2, π3, π4) and
observe the payoff.

U1 = x1 + βx3 + βx4 U2 = x2 + βx3 + βx4

U3 = αx1 + αx2 + x3 U4 = αx1 + αx2 + x4

As in the previous example, xi depends on π, α, and β. But since
β < 0, agent 1 can hardly form a coalition with agent 3. If we let
π = (.40, .39, .11, .10), α = 1/10, and β = −1/100, then agent 1 might
prefer to form a coalition with agent 3 instead of agent 2.

Example 15. Let’s look at one more example, which is N = {1, 2, 3, 4}
with agent 1 and 2 are Muslim, and agent 3 and 4 are Jewish. Agent 1
and 2 care about each other, but harm agent 3 and 4. Similarly, agent
3 and 4 care about each other, but harm agent 1 and 2. In this case,
the externality matrix would be following,

M =




1 α β β
α 1 β β
γ γ 1 δ
γ γ δ 1




with 1 > α > 0, β < 0, γ < 0, and 1 > δ > 0.
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4.5. Equally shared case. Observe for what π is core nonempty. In
this case agent 1 and 2 strongly prefer to form a coalition and so do
agent 3 and 4, The final benefit will be the following.

If {1,2} are the coalition with the largest power, then we have

U1 = (
1

2
,
1

2
, 0, 0) =

1

2
(1 + α)

U2 = (
1

2
,
1

2
, 0, 0) =

1

2
(1 + α)

If {3,4} are the coalition with the largest power, then we have

U3 = (0, 0,
1

2
,
1

2
) =

1

2
(1 + δ)

U4 = (0, 0,
1

2
,
1

2
) =

1

2
(1 + δ)

4.6. Proportionally shared case. Let π = (π1, π2, π3, π4) and
observe the payoff.

U1 = x1 + αx2 + βx3 + βx4 U2 = αx1 + x2 + βx3 + βx4

U3 = γx1 + γx2 + x3 + δx4 U4 = γx1 + γx2 + δx3 + x4

In this case it is very hard for agent 1 to form a coalition with agent 3
and 4 because they are going to harm agent 1. But if we let
π = (.40, .39, .05, .16), α = 1/10, and β = −1/10, then agent 1 might
prefer to form a coalition with agent 3 instead of agent 2 since
v1({1, 2}, {3, 4}) = 40

40+39
+ 1

10
39

40+39
and

v1({1, 3}, {2, 4}) = 40
40+5

− 1
10

5
40+5

, so
v1({1, 2}, {3, 4}) < v1({1, 3}, {2, 4}).

We have seen several examples to see how externality works in tour-
nament games. Now, let’s look at the specific example which has no
NTE and empty core.

Example 16. We consider the model with following externality matrix
for equally shared case;

M =




1 1
3

0
0 1 1

3
1
3

0 1




and π = (.35, .34, .31).
Suppose agent 1 and 2 form a coalition. Then the net utility is going
to be

U1(
1

2
,
1

2
, 0) = 1× 1

2
+

1

3
× 1

2
+ 0× 0 =

1

2
+

1

6
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U2(
1

2
,
1

2
, 0) = 0× 1

2
+ 1× 1

2
+

1

3
× 0 =

1

2

U3(
1

2
,
1

2
, 0) =

1

3
× 1

2
+ 0× 1

2
+ 1× 0 =

1

6
In this case, agent 2 can deviate and form a new coalition with agent
3 to get more benefit.

U1(0,
1

2
,
1

2
) = 1× 0 +

1

3
× 1

2
+ 0× 1

2
=

1

6

U2(0,
1

2
,
1

2
) = 0× 0 + 1× 1

2
+

1

3
× 1

2
=

1

2
+

1

6

U3(0,
1

2
,
1

2
) =

1

3
× 0 + 0× 1

2
+ 1× 1

2
=

1

2
In this case, agent 3 can deviate and form a new coalition with 1 to
get more benefit.

U1(
1

2
, 0,

1

2
) = 1× 1

2
+

1

3
× 0 + 0× 1

2
=

1

2

U2(
1

2
, 0,

1

2
) = 0× 1

2
+ 1× 0 +

1

3
× 1

2
=

1

6

U3(
1

2
, 0,

1

2
) =

1

3
× 1

2
+ 0× 0 + 1× 1

2
=

1

2
+

1

6
In this case, agent 1 can deviate and form a new coalition with agent
2 to get more benefit. Therefore, this particular example has no NTE
and empty core.

Above, we looked at simple externality matrices. Next I would like
to observe a matrix which is more complicated.

Example 17. Let π = (.35, .34, .31). Consider the following external-
ity matrix,

M =




1 1
3

1
6

X 1 Y
1
10

1
8

1




Then their final utilities are the followings.

U1(x1, x2, x3) = 1× x1 +
1

3
× x2 +

1

6
× x3

U2(x1, x2, x3) = X × x1 + 1× x2 + Y × x3

U3(x1, x2, x3) =
1

10
× x1 +

1

8
× x2 + 1× x3



NO-TREAT EQUILIBRIUM 11

(1) If we let X < Y , then this game would have a cycle as in
previous example because agent 1 prefer to form a coalition
with agent 3, but agent 3 prefer to form a coalition with agent
2, but agent 2 prefer to form a coalition with agent 1, and so
on. So this game has no NTE and empty core.

(2) If we let X > Y , then we would not make a cycle because agent
1 prefer to form a coalition with agent 2, and agent 2 prefer to
form a coalition with agent 1. So ({1, 2}, 3) is NTE.

Lemma 18. Let S ⊆ N . Assume that whenever i ∈ S ⊆ N and j 6∈ S,
we have Mij <

∑
k∈S Mik/|S| < 1. Then

(1) as we increase the size of coalition, any winning agent is worse
off (cross-monotonicity), and

(2) agents who are not winning prefer to be winning.

Proof. (1) Let (π, M) be a game with N = {1, 2, ..., n}. Suppose
we have a coalition {1,2}. If they are winning, then the utili-
ties of the winning agents are U1(

1
2
, 1

2
, 0..., 0) = 1

2
(M11 + M12)

and U2(
1
2
, 1

2
, 0..., 0) = 1

2
(M21 + M22). If agent 3 was added to

this coalition, then the utilities of the winning agents would be
U1(

1
3
, 1

3
, 1

3
, 0, ..., 0) = 1

3
(M11 + M12 + M13), and so on. We need

1
2
(M11 + M12) > 1

3
(M11 + M12 + M13) > 1

4
(M11 + M12 + M13 +

M14) > ... > 1
n
(M11 + M12 + ... + M1n) in order to say that any

winning agent is worse off as we increase the size of a coalition.
But if we know that Mij <

∑
k∈S Mik/|S| < 1, then we have

1
k
(M11 + M12 + ... + M1k) > 1

k+1
(M11 + M12 + ... + M1(k+1))

since M1(k+1) < 1
k
(M11 + M12 + ... + M1k). Hence if we have

Mij <
∑

k∈S Mik/|S| < 1, then as we increase the size of coali-
tion, any winning agent is worse off.

(2) As in (1), let (π, M) be a game with N = {1, 2, ..., n}, and
suppose we have a coalition S = {1, 2}. If they are winning, we
know that they gets 1/2(M11 + M12) and 1/2(M21 + M22), and
any other agent (losing) j gets 1/2(Mj1 + Mj2). But since we
know that Mij <

∑
k∈S Mik/|S| < 1 for i ∈ S ⊆ N and j 6∈ S, it

follows that 1/2(Mj1 + Mj2) <
∑

k∈S∪{j} Mjk/|{1, 2, j}|. Hence

if we have Mij <
∑

k∈S Mik/|S| < 1, then agents who are not
winning prefer to be winning.

¤
We have seen several examples which has empty core and which has

nonempty core. Now we are interested in finding a set of externality
matrices for which we can guarantee that the core is empty or nonempty
for any π.
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Theorem 19. For equal sharing, we have the following results.

(1) If n = 3, given ε with |ε| < 1/2, then any matrix of the form

M =




1 ε ε
ε 1 ε
ε ε 1




always have a nonempty core for any π.
(2) If n = 3, given ε with |ε| < 1/2, for any matrix of the type

M 6=



1 ε ε
ε 1 ε
ε ε 1




we can find π such that (π,M) has empty core.
(3) For n = 4, for any matrix M there exists π that has empty core

and π̃ that has a nonempty core.
(4) For n ≥ 5, for any matrix M there exists π that has empty core

and π̃ that has a nonempty core.

Proof. (1) Let π = {π1, π2, π3} with π1 > π2 > π3. If we have
π1 > 1

2
, then we are done because agent 1 can be singleton.

Next, suppose that we have π1 < 1
2
. Then the only possible

partitions to have the core are the ones with minimally winning
coalition, which are ({1, 2}, {3}), ({1, 3}, {2}), and ({2, 3}, {1}).
But for the first two, agent 1 can deviate to get more benefit,
so not in the core. Therefore, ({2, 3}, {1}) is the only possible
partition to have the core. We need to analyze that ({2, 3}, {1})
is in the core for this game.
For this externality matrix, we get U1(x1, x2, x3) = x1 + εx2 +
εx3, U2(x1, x2, x3) = εx1 +x2 +εx3, U3(x1, x2, x3) = εx1 +εx2 +
x3. Therefore, it does not matter with which agent to form a
coalition, their share will be the same. It follows that this game
can be now treated as if this is no-externality case except for
the final benefit. Then it is clear that ({2, 3}, {1}) is in the
core. Hence any matrix of this form has a nonempty core.

(2) Let π = {π1, π2, π3} and

M =




1 M12 M13

M21 1 M23

M31 M32 1




be externality matrix, not all Mij’s are the same. Then we get
U1(x1, x2, x3) = x1 + M12x2 + M13x3, U2(x1, x2, x3) = M21x1 +
x2 + M23x3, U3(x1, x2, x3) = M31x1 + M32x2 + x3. First of
all, we have seen that if we have a cycle in the externality
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matrix and πi < 1/2 for i = 1, 2, 3, then clearly we have
an empty core. There are two possibilities to have cycle, the
one is M12 > M13,M23 > M21,M31 > M32, and the other is
M12 < M13,M23 < M21,M31 < M32. Let’s look at Mij’s which
do not make cycles.
Case 1: Suppose M12 > M13. Then if M21 > M23, then
({1, 2}, {3}) will be the winning coalition and if we let π1 >
π2 > π3, the game has an empty core. If M21 < M23, then we
have M31 < M32 in order not to have a cycle. Then ({2, 3}, {1})
will be the winning coalition and if we let π2 > π3 > π1, the
game has an empty core.
Case 2: Suppose M12 < M13. Then if M31 > M32, then
({1, 3}, {2}) will be the winning coalition and if we let π1 >
π3 > π2, the game has an empty core. If M31 < M32, then we
have M21 < M23 in order not to have a cycle. Then ({2, 3}, {1})
will be the winning coalition and if we let π2 > π3 > π1, the
game has an empty core. Hence for any matrix of this form, we
can find π such that (π, M) has empty core.

(3) Let

M =




1 M12 M13 M14

M21 1 M23 M24

M31 M32 1 M34

M41 M42 M43 1




be the externality matrix. First of all, if we have πi > 1/2 for
some i ∈ {1, 2, 3, 4}, then clearly the core is always nonempty
since agent i can be singleton. So we only need to consider
π’s that make the core empty. Suppose that πi < 1/2 for all
i ∈ {1, 2, 3, 4} First, consider the matrix whose entries are all ε
except for 1’s on diagonal. Then if we let π = (.32, .26, .19, .23),
then the game has an empty core. Next, we analyze any matrix.
As we have seen in (2), if M have a cycle, then the game has
an empty core. Also, we know that if the externality matrix
does not have a cycle, then at least two agents prefer to form
a coalition with each other, say agent i and j. Then if we let
πi > πj > πk > πl, then the game has an empty core.

(4) Let

M =




1 M12 .. M1n

M21 1 .. :
: : 1 :

Mn1 .. .. 1



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be the externality matrix. First of all, if we have πi > 1/2 for
some i ∈ {1, 2, ..., n}, then clearly the core is always nonempty.
Therefore, we proved that for any matrix M there exists π̃
that has a nonempty core. Now we only need to consider π’s
that make the core empty. First, consider the matrix whose
entries are all ε except for 1’s on diagonal. As in (1), this
game can be treated as if it is no-externality case. So if we
let π = (.36, .34, .12, .10, .08), for which we understood that the
core is empty, then the game has an empty core. Next, we ob-
serve the matrix whose entries are not all the same. We know
that if the matrix has a cycle, then the core is always empty.
So suppose that M does not have a cycle. Then as before, at
least two agents prefer to form a coalition with each other, say
agent i and j. So if we let πi > πj > πk > ..., then the game
has an empty core. Hence For n ≥ 5, for any matrix M there
exists π that has empty core and π̃ that has a nonempty core.

¤

5. Conclusions and future work

We have been analyzed two sharing rules to analyze agents who
are looking to maximize their share of a divisible resource by being a
singleton or forming coalitions. I do not believe that this situation is yet
immediately applied to our real life. However, if we keep analyzing a lot
of situations and use different types of sharing rules, I can assure you
that it will become more useful tools to get more benefit. Therefore,
I am looking to keep researching and hopefully find good strategies
which can be applied in a lot of disciplines.
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