Problem 1 Consider an arbitrary $m \times n$ matrix A and arbitrary $n \times p$ matrices B and C. Show that $A(B+C) = AB + AC$.
Problem 2 Find the null space of the matrix
\[
\begin{bmatrix}
0 & 2 & -1 & 1 & 0 \\
2 & 2 & 0 & 0 & -1 \\
-2 & 0 & -1 & 1 & 1
\end{bmatrix}.
\]
Problem 3 Find the null space of the matrix

\[
\begin{bmatrix}
2 & 2 & 3 & 4 \\
0 & 1 & \frac{1}{2} & 1 \\
1 & 0 & 1 & 1 \\
-1 & 0 & 0 & -1
\end{bmatrix}
\]
Problem 4 Let A be an arbitrary $m \times n$ matrix. Find a matrix C such that $CA = B$ for each of the following matrices B.

a. B is the matrix that results from multiplying row i of A by a nonzero number c.

b. B is the matrix that results from swapping rows i and j of A.

c. B is the matrix that results from adding c times row i of A to row j of A.