Problem 1 Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.

1. Give an example of A and B such that $\text{null}(AB) \supseteq \text{null}(B)$.

2. Give an example of A and B such that $\text{null}(AB) = \text{null}(B)$.

3. Prove that $\text{null}(AB) \supseteq \text{null}(B)$.
Problem 2 Suppose A and B are $n \times n$ matrices, that $\det(B) \neq 0$ and there are k linearly independent vectors in $\text{null}(A)$ for some $k \leq n$. Show that there are k linearly independent vectors in $\text{null}(AB)$.
Problem 3 Suppose that $S = \{v_1, \ldots, v_n\}$ is a linearly independent set of vectors in a vector space V. Show that $T = \{a_1v_1, \ldots, a_nv_n\}$ is linearly independent for any nonzero numbers a_1, \ldots, a_n.