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Abstract. The members of Martin-Löf random closed sets under a dis-
tribution studied by Barmpalias et al. are exactly the infinite paths
through Martin-Löf random Galton-Watson trees with survival param-
eter 2

3
. To be such a member, a sufficient condition is to have effective

Hausdorff dimension strictly greater than γ = log2
3
2
, and a necessary

condition is to have effective Hausdorff dimension greater than or equal
to γ.
Keywords: random closed sets, computability theory.

1 Introduction

Classical probability theory studies intersection probabilities for random sets. A
random set will intersect a given deterministic set if the given set is large, in
some sense. Here we study a computable analogue: the question of which real
numbers are “large” in the sense that they belong to some Martin-Löf random
closed set.

Barmpalias et al. [2] introduced algorithmic randomness for closed sets. Sub-
sequently Kjos-Hanssen [6] used algorithmically random Galton-Watson trees to
obtain results on infinite subsets of random sets of integers. Here we show that
the distributions studied by Barmpalias et al. and by Galton and Watson are
actually equivalent, not just classically but in an effective sense.

For 0 ≤ γ < 1, let us say that a real x is a Memberγ if x belongs to
some Martin-Löf (ML-) random closed set according to the Galton-Watson dis-
tribution (defined below) with survival parameter p = 2−γ . We show that for
p = 2

3 , this is equivalent to x being a member of a Martin-Löf random closed set
according to the distribution considered by Barmpalias et al.

In light of this equivalence, we may state that (i) Barmpalias et al. showed
that in effect not every Memberγ is ML-random, and (ii) Joe Miller and Antonio
Montálban showed that every ML-random real is a Memberγ ; the proof of their
result is given in the paper of Barmpalias et al. [2] The way to sharpen these
results go via effective Hausdorff dimension. Each ML-random real has effective
Hausdorff dimension equal to one. In Section 3 we show that (i′) a Memberγ
may have effective Hausdorff dimension strictly less than one, and (ii′) every real
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of sufficiently large effective Hausdorff dimension (where some numbers strictly
less than one are “sufficiently large”) is a Memberγ .

2 Equivalence of two models

We write Ω = 2<ω, and 2ω, for the sets of finite and infinite strings over 2 =
{0, 1}, respectively. If σ ∈ Ω is an initial substring (a prefix) of τ ∈ Ω we
write σ � τ ; similarly σ ≺ x means that the finite string σ is a prefix of the
infinite string x ∈ 2ω . The length of σ is |σ|. We use the standard notation
[σ] = {x : σ ≺ x}, and for a set U ⊆ Ω, [U ]� :=

⋃
σ∈U [σ]. Let P denote the

power set operation. Following Kjos-Hanssen [6], for a real number 0 ≤ γ < 1 (so
1
2 < 2−γ ≤ 1), let λ1,γ be the distribution with sample space P(Ω) such that each
string in Ω has probability 2−γ of belonging to the random set, independently
of any other string. Let λ∗γ be defined analogously, except that now

λ∗γ({S : S ∩ {σ0, σ1} = J} =

{
1− p if J = {σ0} or J = {σ1}, and
2p− 1 if J = {σ0, σ1},

independently for distinct σ, for p = 2−γ . 1 For S ⊆ Ω, ΓS , the closed set
determined by S, is the (possibly empty) set of infinite paths through the part
of S that is downward closed under prefixes:

ΓS = {x ∈ 2ω : (∀σ ≺ x)σ ∈ S}.

The Galton-Watson (GW) distribution for survival parameter 2−γ , also known
as the (1, γ)-induced distribution [6], and as the distribution of a percolation limit
set [12], is a distribution P1,γ on the set of all closed subsets of 2ω defined by

P1,γ(E) = λ1,γ{S : ΓS ∈ E}.

Thus, the probability of a property E of a closed subset of 2ω is the probability
according to λ1,γ that a random subset of Ω determines a tree whose set of
infinite paths has property E. Similarly, let

P∗γ(E) = λ∗γ{S : ΓS ∈ E}.

A Σ0
1 subset of P(Ω) is the image of a Σ0

1 subset of P(ω) = 2ω via an effective
isomorphism between Ω and ω.

S ∈ P(Ω) is called λ1,γ-ML-random if for each uniformly Σ0
1 sequence

{Un}n∈ω of subsets of P(Ω) with λ1,γ(Un) ≤ 2−n, we have S 6∈
⋂
n Un. In

this case ΓS is called P1,γ-ML-random. Similarly, S ∈ P(Ω) is called λ∗γ-ML-
random if for each uniformly Σ0

1 sequence {Un}n∈ω of subsets of P(Ω) with
λ∗γ(Un) ≤ 2−n, we have S 6∈

⋂
n Un. In this case ΓS is called P∗γ-ML-random.

1 The notation λ1,γ is consistent with earlier usage [6] and is also easy to distinguish
visually from λ∗γ .
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Lemma 1 (Axon [1]). For 2−γ = 2
3 , Γ ⊆ 2ω is P∗γ-ML-random if and only if Γ

is a Martin-Löf random closed set under the distribution studied by Barmpalias
et al.

Thinking of S as a random variable, define further random variables

Gn = {σ : |σ| = n & (∀τ � σ) τ ∈ S}

and G =
⋃∞
n=0Gn. We refer to a value of G as a GW-tree when G is considered

a value of the random variable under the λ1,γ distribution. (A BBCDW-tree is
a particular value of the random variable analogous to G, for the distribution
λ∗γ .) We have G ⊆ S and ΓG = ΓS . The set G may have “dead ends”, so let

G∞ = {σ ∈ G : G ∩ [σ] is infinite}.

Thus G∞ ⊆ G ⊆ S, and values of G∞ are in one-to-one correspondence with
values of ΓS .

Let e be the extinction probability of a GW-tree with parameter p = 2−γ ,

e = P1,γ(∅) = λ1,γ({S : ΓS = ∅}).

For any number a let a = 1− a.

Lemma 2.
e = p/p.

Proof. Notice that we are not assuming 〈〉 ∈ S. We have e = p + pe2, because
there are two ways extinction can happen: (1) 〈〉 6∈ S, and (2) 〈〉 ∈ S but both
immediate extension trees go extinct.

We use standard notation for conditional probability,

P(E | F ) =
P(E ∩ F )

P(F )
;

in measure notation we may also write λ(E | F ) = λ(E ∩ F )/λ(F ).

Lemma 3. For all J ⊆ {〈0〉, 〈1〉},

λ1,γ {G∞ ∩ {〈0〉, 〈1〉} = J | G∞ 6= ∅} = λ∗γ [G1 = J ].

Proof. By definition, λ∗γ [G1 = J ] equals

(2p− 1) · 1J={〈0〉,〈1〉} +
1∑
i=0

(1− p) · 1J={〈i〉},

so we only need to calculate λ1,γ {G∞ ∩ {〈0〉, 〈1〉} = J | G∞ 6= ∅}. By sym-
metry, and because the probability that G1 = ∅ is 0, it suffices to calculate
this probability for J = {〈0〉, 〈1〉}. Now if G1 = {〈0〉, 〈1〉} then 〈〉 survives and
both immediate extensions are non-extinct. Thus the conditional probability
that G1 = {〈0〉, 〈1〉} is p(1−e)2

1−e = p(1− e). By Lemma 2, this is equal to 2p− 1.
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Lemma 4. Let the number ps be defined by

ps = λ1,γ(〈j〉 ∈ G | (G ∩ (〈j〉_Ω))∞ = ∅ & 〈〉 ∈ G)

for j = 0 (or j = 1, which gives the same result). Let

λf (·) = λ1,γ(· | G∞ = ∅ & 〈〉 ∈ G).

Then λf (〈i〉 ∈ G1) = ps.

Proof. We have ps = p2e2/(pe) = pe = 1− p. Next, λf [G1 = ∅] = p(1−p)2
pe2 = p2

and λf [G1 = {〈0〉, 〈1〉}] = p3e4

pe2 = (p)2. Hence

λf [G1 = J ] = (1− p)2 · 1J={〈0〉,〈1〉} +
1∑
i=0

p(1− p) · 1J={〈i〉} + p2 · 1J=∅,

and so λf (〈i〉 ∈ G1) = (1− p)2 + p(1− p) = ps, as desired.

Let λc = λ1,γ(· | G∞ 6= ∅) be λ1,γ conditioned on G∞ 6= ∅, and let λi
be the distribution of G∞ ∈ P(Ω) conditional on G∞ 6= ∅. Let µi, µf , µc
be the distribution of the tree G corresponding to the set S under λi, λf , λc,
respectively (so µi = λi). We define a µi × µf → µc measure-preserving map
ψ : 2Ω×2Ω → 2Ω . The idea is to overlay two sets Si, Sf , so that Si specifies G∞,
and Sf specifies G\G∞. Let ψ(Si, Sf ) = Gi∪Sf where Gi is the tree determined
by Si. By Lemma 4, this gives the correct probability for string σ 6∈ G∞ that is
the neighbor of a string in G∞ to be in G. By considering two cases (a string in
G is in G∞ or not) we can derive that ψ is measure-preserving.

Intuitively, a λi-ML-random tree may by van Lambalgen’s theorem be ex-
tended to a λc-ML-random tree by “adding finite pieces randomly”. To be pre-
cise, van Lambalgen’s theorem holds in the unit interval [0, 1] with Lebesgue mea-
sure λ, or equivalently the space 2ω. If (X,µ) is a measure space then using the
measure-preserving map ϕ : (X,µ)→ ([0, 1], λ) induced from the Carathéodory
measure algebra isomorphism theorem [7], we may apply van Lambalgen as de-
sired, and obtain

Theorem 1. For each ML-random BBCDW-tree H there is a ML-random GW-
tree G with G∞ = H∞.

We next prove that the live part of every infinite ML-random GW-tree is an
ML-random BBCDW-tree.

Theorem 2. For each S, if S is λ1,γ-ML-random then G∞ is λ∗γ-random.

Proof. Suppose {Un}n∈ω is a λ∗γ-ML-test with G∞ ∈
⋂
n Un. Let Υn = {S :

G∞ ∈ Un}. By Lemma 3, λ1,γ(Υn) = λ∗γ(Un). Unfortunately, Υn is not a Σ0
1

class, but we can approximate it. While we cannot know if a tree will end up
being infinite, we can make a guess that will usually be correct.
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Let e be the probability of extinction for a GW-tree. By Lemma 2 we have
e = p

p , so since p > 1/2, e < 1. Thus there is a computable function (n, `) 7→ mn,`

such that for all n and `, m = mn,` is so large that em ≤ 2−n2−2`. Let Φ be a
Turing reduction so that ΦG(n, `), if defined, is the least L such that all the 2`

strings of length ` either are not on G, or have no descendants on G at level L,
or have at least mn,` many such descendants. Let

Wn = {S : for some `, ΦG(n, `) is undefined}.

Let AG(`) = G∞ ∩ {0, 1}≤` be G∞ up to level `. Let the approximation
AG(`, L) to AG(`) consist of the nodes of G at level ` that have descendants at
level L. Let

Vn = {S : AG(`, L) ∈ Un for some `, where L = ΦG(n, `)}, and

Xn = {S : for some `, L = ΦG(n, `) is defined and AG(`, L) 6= AG(`)}.
Note that Υn = {S : for some `, AG(`) ∈ Un }, hence Υn ⊆ Wn ∪ Xn ∪ Vn.

Thus it suffices to show that ∩nVn, Wn, ∩nXn are all λ1,γ-ML-null sets.

Lemma 5. λ1,γ(Wn) = 0.

Proof. If Φ(`) is undefined then there is no L, which means that for the fixed
set of strings on G at level `, they do not all either die out or reach m many
extensions. But eventually this must happen, so L must exist.

Indeed, fix any string σ on G at level `. Let k be the largest number of
descendants that σ has at infinitely many levels L > `. If k > 0 then with
probability 1, above each level there is another level where actually k + 1 many
descendants are achieved. So we conclude that either k = 0 or k does not exist.

From basic computability theory, Wn is a Σ0
2 class. Hence each Wn is a

Martin-Löf null set.

Lemma 6. λ1,γ(Xn) ≤ 2−n.

Proof. Let Eσ denote the event that all extensions of σ on level L are dead, i.e.
not in G∞. Let Fσ denote the event that σ has at least m many descendants on
G(L).

If AG(`, L) 6= AG(`) then some σ ∈ {0, 1}` ∩G has at least m many descen-
dants at level L, all of which are dead. If a node σ has at least m descendants,
then the chance that all of these are dead, given that they are on G at level L,
is at most em (the eventual extinction of one is independent of that of another),
hence writing P = λ1,γ , we have

P(AG(`, L) 6= AG(`)) ≤
∑

σ∈{0,1}`

P{Eσ & Fσ} =
∑

σ∈{0,1}`

P{Eσ | Fσ} · P{Fσ}

≤
∑

σ∈{0,1}`

P{Eσ | Fσ} ≤
∑

σ∈{0,1}`

em ≤
∑

σ∈{0,1}`

2−n2−2` = 2−n2−`.
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and hence

PXn ≤
∑
`

P{AG(`, L) 6= AG(`)} ≤
∑
`

2−n2−` = 2−n.

Xn is Σ0
1 since when L is defined, AG(`) is contained in AG(`, L), and AG(`)

is Π0
1 in G, which means that if the containment is proper then we can eventually

enumerate (observe) this fact. Thus ∩nXn is a λ1,γ-ML-null set.
Vn is clearly Σ0

1 . Moreover Vn ⊆ Υn ∪Xn, so λ1,γ(Vn) ≤ 2 · 2−n, hence ∩nVn
is a λ1,γ-ML-null set.

3 Towards a characterization of members of random
closed sets

For a real number 0 ≤ γ ≤ 1, the γ-weight wtγ(C) of a set of strings C ⊆ Ω is
defined by

wtγ(C) =
∑
w∈C

2−|w|γ .

We define several notions of randomness of individual reals. A Martin-Löf
(ML-)γ-test is a uniformly Σ0

1 sequence (Un)n<ω, Un ⊆ Ω, such that for all n,
wtγ(Un) ≤ 2−n. A strong ML-γ-test is a uniformly Σ0

1 sequence (Un)n<ω such
that for each n and each prefix-free set of strings Vn ⊆ Un, wtγ(Vn) ≤ 2−n. A
real is (strongly) γ-random if it does not belong to ∩n[Un]� for any (strong)
ML-γ-test (Un)n<ω. If γ = 1 we simply say that the real, or the set of integers
{n : x(n) = 1}, is Martin-Löf random (ML-random). For γ = 1, strength makes
no difference. For a measure µ and a real x, we say that x is Hippocrates µ-random
if for each sequence (Un)n<ω that is uniformly Σ0

1 , and where µ[Un]� ≤ 2−n

for all n, we have x 6∈ ∩n[Un]�. Let the ultrametric υ on 2ω be defined by
υ(x, y) = 2−min{n:x(n)6=y(n)}. The γ-energy [12] of a measure µ is

Iγ(µ) :=
∫∫

dµ(b)dµ(a)
υ(a, b)γ

.

x is Hippocrates γ-energy random if x is Hippocrates µ-random with respect
to some probability measure µ such that Iγ(µ) <∞.

For background on γ-energy and related concepts the reader may consult
the monographs of Falconer [3] and Mattila [11] or the on-line lecture notes
of Mörters and Peres [12]. The terminology Hippocrates random is supposed
to remind us of Hippocrates, who did not consult the oracle at Delphi, but
instead looked for natural causes. An almost sure property is more effective
if it is possessed by all Hippocrates µ-random reals rather than merely all µ-
random reals. In this sense Hippocratic µ-randomness tests are more desirable
than arbitrary µ-randomness tests.

Effective Hausdorff dimension was introduced by Lutz [8] and is a notion
of partial randomness. For example, if the sequence x0x1x2 · · · is ML-random,
then the sequence x00x10x20 · · · has effective Hausdorff dimension equal to 1

2 .
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Let dim1
Hx denote the effective (or constructive) Hausdorff dimension of x; then

we have dim1
H(x) = sup{γ : x is γ-random} (Reimann and Stephan [14]).

Examples of measures of finite γ-energy may be obtained from the fact that
if dim1

H(x) > γ then x is Hippocrates γ-energy random [6]. If x is strongly
γ-random then x is γ-random and so dim1

H(x) ≥ γ.

Theorem 3 ([6]). Each Hippocrates γ-energy random real is a Memberγ .

Here we show a partial converse:

Theorem 4. Each Memberγ is strongly γ-random.

Proof. Let P = λ1,γ and p = 2−γ ∈ ( 1
2 , 1]. Let i < 2 and σ ∈ Ω. The probability

that the concatenation σi ∈ G given that σ ∈ G is by definition

P{σi ∈ G | σ ∈ G} = p.

Hence the absolute probability that σ survives is

P{σ ∈ G} = p|σ| =
(
2−γ

)|σ| =
(

2−|σ|
)γ
.

Let U be any strong γ-test, i.e. a uniformly Σ0
1 sequence Un = {σn,i : i < ω},

such that for all prefix-free subsets U ′n = {σ′n,i : i < ω} of Un, wtγ(U ′n) ≤ 2−n.
Let U ′n be the set of all strings σ in Un such that no prefix of σ is in Un. Clearly,
U ′n is prefix-free. Let

[Vn]� := {S : ∃i σn,i ∈ G} ⊆ {S : ∃i σ′n,i ∈ G}.

Clearly [Vn]� is uniformly Σ0
1 . To prove the inclusion: Suppose G contains some

σn,i. Since G is a tree, it contains the shortest prefix of σn,i that is in Un, and
this string is in U ′n. Now

P[Vn]� ≤
∑
i∈ω

P{σ′n,i ∈ G} =
∑
i∈ω

2−|σ
′
n,i|γ ≤ 2−n.

Thus V is a test for λ1,γ-ML-randomness. Suppose x is a Memberγ . Let S be
any λ1,γ-ML-random set with x ∈ ΓS . Then S 6∈ ∩n[Vn]�, and so for some n,
Γ ∩ [Un]� = ∅. Hence x 6∈ [Un]�. As U was an arbitrary strong γ-test, this shows
that x is strongly γ-random.

Corollary 1. Let x ∈ 2ω. We have the implications

dim1
H(x) > γ ⇒ x is a Memberγ ⇒ dim1

H(x) ≥ γ.

Proof. Each real x with dim1
H(x) > γ is β-capacitable for some β > γ [13].

This implies that x is γ-energy random [6, Lemma 2.5] and in particular x
is Hippocrates γ-energy random. This gives the first implication. For the sec-
ond implication, we use the fact that each strongly γ-random real x satisfies
dim1

H(x) ≥ γ (see e.g. Reimann and Stephan [14]).
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The second implication of Corollary 1 does not reverse, as not every real with
dim1

H(x) ≥ γ is strongly γ-random [14].
The first implication of Corollary 1 fails to reverse as well:

Proposition 1. Let 0 < γ < 1. There is a γ-energy random real of effective
Hausdorff dimension exactly γ.

Proof. Consider the probability measure µ on 2ω such that µ([σ_0]) = µ([σ_1])
for all σ of even length, and such that µ([σ_0]) = µ([σ]) for each σ of odd
length f(k) = 2k + 1. A computation shows that Iγ(µ) =

∑∞
k=0 2(2k+1)γ2−k

which is finite if and only if γ < 1/2. We find that µ-almost all reals are µ-
random and have effective Hausdorff dimension exactly 1/2. By modifying f(k)
slightly we can get Iγ(µ) <∞ for γ = 1/2 while keeping the effective Hausdorff
dimension of µ-almost all reals equal to 1/2. Namely, what is needed is that∑∞
k=0 2f(k)γ2−k < ∞. This holds if γ = 1/2 and f(k) = 2k − 2(1 − ε) log k for

any ε > 0 since
∑
k k
−(1+ε) < ∞. Since this f(k) is asymptotically larger than

(2−δ)k for any δ > 0, the µ-random reals still have effective Hausdorff dimension
1/2. The example generalizes from γ = 1/2 to an arbitrary 0 < γ < 1.

Writing implication known to be strict as ⇒ and other implication as →, we
have

dim1
H(x) > γ ⇒ x is γ-energy random → x is Hippocrates γ-energy

random→ x is a Memberγ → x is strongly γ-random⇒ x is γ-random
⇒ dim(x) ≥ γ.

By Reimann’s effective capacitability theorem [13] x is strongly γ-random if and
only if x is γ-capacitable.

Conjecture 1. There is a strongly γ-random real which is not Hippocrates γ-
energy random.

Conjecture 2. A real x is a Memberγ if and only if x is Hippocrates γ-energy
random.

To prove Conjecture 2, one might try to consult Lyons [10].

Proposition 2. Let 0 < γ < 1. If x is a real such that the function n 7→
x(n) is f -computably enumerable for some computable function f for which∑
j<n f(i)2−nγ goes effectively to zero, then x is not γ-random.

Proof. Suppose n 7→ x(n) is f -c.e. for some such f , and let F (n) =
∑
j<n f(n).

Let α be any computable function such that α(n, i) 6= α(n, i + 1) for at most
f(n) many i for each n, and limi→∞ α(i, n) = x(n). Let c(n, j) be the jth such
i that is discovered for any k < n; so c is a partial recursive function whose
domain is contained in {(n, j) : j ≤ F (n)}. For a fixed i, α defines a real αi by
αi(n) = α(i, n). Let Vn = {x : ∃j ≤ F (n) x � n = αc(n,j) � n)}. Since Vn is the
union of at most F (n) many cones [x � n],

wtγ(Vn) ≤
F (n)∑
j=1

2−nγ = F (n)2−nγ
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which goes effectively to zero by assumption. Thus there is a computable se-
quence {nk}k∈N such that wtγ(Vnk

) ≤ 2−k. Let Uk = Vnk
. Then Uk is Σ0

1

uniformly in k, and x ∈ ∩kUk. Hence x is not γ-random.

Corollary 2 ([2]). No member of a ML-random closed set under the BBCDW
distribution is f -c.e. for any polynomial-bounded f .

Proof. If f is polynomially bounded then clearly
∑
j<n f(i)2−nγ goes effectively

to zero. Therefore if x is f -c.e., x is not γ-random, hence not a Memberγ for
any 0 < γ < 1, and thus not a member of a ML-random closed set under the
BBCDW distribution.

Computing Brownian slow points. A function f : ω → ω is diagonally non-
recursive (DNR) if for each n, f(n) is not equal to ϕn(n), the value (if any) of the
nth partial recursive function on input n. A real A is Kurtz random relative to
an oracle B if it does not belong to any Π0

1 (B) subset of 2ω of fair-coin measure
zero. Furthermore, B is Low(ML, Kurtz) if each real A that is ML-random is
Kurtz random relative to B.

A starting point for the present paper was the observation (*) that each non-
DNR Turing degree is Low(ML, Kurtz). A proof of this result due and credited to
Kjos-Hanssen is given by Greenberg and Miller [4]; they prove that the converse
holds as well. This can be used to show that each slow point (see Mörters and
Peres [12]) of any ML-random Brownian motion must be of DNR Turing degree.
The fast points on the other hand form a dense Gδ set, so there are fast points
that are 1-generic and hence do not Turing compute any slow points.

In any case, the idea was initially to use the result (*) to understand members
of random closed sets. However, as it turned out one could use the work of Hawkes
[5] and Lyons [9] to better effect, in the present paper and in the precursor [6].

Acknowledgments

The authors thank the Institute of Mathematical Science at Nanjing University
(and in particular Liang Yu), where the research leading to Section 2 was carried
out in May 2008, for their hospitality. Section 3 contains some earlier results of
the second author, who was partially supported by NSF grant DMS-0652669.



Bibliography

[1] Logan Axon, Random closed sets and probability, doctoral dissertation, University
of Notre Dame, 2009.

[2] George Barmpalias, Paul Brodhead, Douglas Cenzer, Ali Seyyed Dashti, and Re-
becca Weber, Algorithmic randomness of closed sets, J. Logic Comput. 17 (2007),
no. 6, 1041–1062. MR 2376074

[3] Kenneth Falconer, Fractal geometry, John Wiley & Sons Ltd., Chichester, 1990.
Mathematical foundations and applications. MR 1102677 (92j:28008)

[4] Noam Greenberg and Joseph S. Miller, Lowness for Kurtz randomness, Journal of
Symbolic Logic 74 (2009), no. 2, 665–678.

[5] John Hawkes, Trees generated by a simple branching process, J. London Math.
Soc. (2) 24 (1981), no. 2, 373–384. MR 631950 (83b:60072)

[6] Bjørn Kjos-Hanssen, Infinite subsets of random sets of integers, Mathematical
Research Letters 16 (2009), 103–110.

[7] Bjørn Kjos-Hanssen and Anil Nerode, Effective dimension of points visited by
Brownian motion, Theoretical Computer Science 410 (2009), no. 4–5, 347–354.

[8] Jack H. Lutz, Gales and the constructive dimension of individual sequences, Au-
tomata, languages and programming (Geneva, 2000), 2000, pp. 902–913.

[9] Russell Lyons, Random walks and percolation on trees, Annals of Probability 18
(1990), no. 3, 931–958. MR 1062053 (91i:60179)

[10] , Random walks, capacity and percolation on trees, Annals of Probability
20 (1992), no. 4, 2043–2088. MR 1188053 (93k:60175)

[11] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge
Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cam-
bridge, 1995. Fractals and rectifiability. MR 1333890 (96h:28006)

[12] Peter Mörters and Yuval Peres, Brownian Motion. Draft available at
http://www.stat.berkeley.edu/∼peres/.

[13] Jan Reimann, Effectively closed classes of measures and randomness, Annals of
Pure and Applied Logic 156 (2008), no. 1, 170–182.

[14] Jan Reimann and Frank Stephan, Effective Hausdorff dimension, Logic Collo-
quium ’01, 2005, pp. 369–385.


	Members of random closed sets
	David Diamondstone and Bjørn Kjos-Hanssen

