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Abstract. We prove various results on effective numberings and Fried-
berg numberings of families related to algorithmic randomness. The fam-
ily of all Martin-Löf random left-computably enumerable reals has a
Friedberg numbering, as does the family of all Π0

1 classes of positive
measure. On the other hand, the Π0

1 classes contained in the Martin-Löf
random reals do not even have an effective numbering, nor do the left-c.e.
reals satisfying a fixed randomness constant. For Π0

1 classes contained in
the class of reals satisfying a fixed randomness constant, we prove that
at least an effective numbering exists.

1 Introduction

The general theory of numberings was initiated in the mid-1950s by Kolmogorov,
and continued by Mal’tsev and Ershov [2]. A numbering, or enumeration, of a
collection C of objects is a surjective map F : ω → C. In one of the earliest
results, Friedberg [3, 1958] constructed an injective numbering ψ of the Σ0

1 or
computably enumerable (c.e.) sets such that the relation “n ∈ ψ(e)” is itself Σ0

1 .
In a more general and informal sense, a numbering ψ of a collection of objects all
having complexity C (such as n-c.e., Σ0

n, or Π0
n) is called effective if the relation

“x ∈ ψ(e)” has complexity C. If in addition the numbering is injective, then it
is called a Friedberg numbering.

Brodhead and Cenzer [1] showed that there is an effective Friedberg number-
ing of the Π0

1 classes in Cantor space 2ω. They showed that effective numberings
exist of the Π0

1 classes that are homogeneous, and decidable, but not of the fam-
ilies consisting of Π0

1 classes that are of measure zero, thin, perfect thin, small,
very small, or nondecidable, respectively.

In this article we continue the study of existence of numberings and Friedberg
numberings for subsets of ω and 2ω. Many of our results are related to algorithmic
randomness and in particular Martin-Löf randomness; see the books of Li and
Vitányi [4] and Nies [6].

We now outline some notation and definitions used throughout. A subset T
of 2<ω is a tree if it is closed under prefixes. The set [T ] of infinite paths through
T is defined by X ∈ [T ] ↔ (∀n)X � n ∈ T , where X � n denotes the initial
segment 〈X(0), X(1), . . . , X(n − 1)〉. Next, P is a Π0

1 class if P = [T ] for some
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computable tree T . Let σ_τ denote the concatenation of σ with τ and let σ_i
denote σ_〈i〉 for i ∈ ω. The prefix ordering of strings is denoted by �, so we
have σ � σ_τ . The string σ ∈ T is a dead end if no extension σ_i is in T . For
any σ ∈ 2<ω, [σ] is the cone consisting of all infinite sequences extending σ. For
a set of strings W , [W ]� =

⋃
σ∈W [σ].

2 Families of left-c.e. reals

2.1 Basics

For our definition of left-c.e. reals we will follow the book of Nies [6]. Let Q2 be
the set of dyadic rationals { a

2b ≤ 1 : a, b ∈ ω}. For a dyadic rational q and real
x ∈ 2ω, we say that q < x if q is less than the real number

∑
i∈ω x(i)2−(i+1).

Definition 1. A real x ∈ 2ω is left-c.e. if {q ∈ Q2 : q < x} is c.e.

Let ≤L denote lexicographic order on 2ω. A dyadic rational may be written in
the form q =

∑n
i=1 ai2

−i where an = 1, and each ai ∈ {0, 1}. The associated
binary string of q is s(q) = 〈a1, . . . , an〉. (If q = 0 then n = 0 and the associated
string is the empty string.) Conversely, the associated dyadic rational of σ ∈ 2<ω

is
∑|σ|−1
i=0 σ(i)2−(i+1).

Lemma 1. For each x ∈ 2ω, we have that

{q ∈ Q2 : q < x} is c.e.⇔ {σ ∈ 2<ω : σ_0ω <L x} is c.e.

Proof. We have that σ_0ω <L x iff the associated dyadic rational of σ is less
than x, and q < x iff the associated binary string σ of q satisfies σ_0ω <L x. In
fact, {s(q) : q ∈ Q2, q < x} = {σ : σ_ω <L x}.

Definition 2. An effective numbering of a family of left-c.e. reals R is an onto
map r : ω 7→ R such that

{(q, e) ∈ Q2 × ω | q < r(e)}

is c.e. If r is also injective then r is called a Friedberg numbering of R.

Theorem 1. The family of all left-c.e. reals has an effective numbering.

Proof. Let We,s be the eth c.e. subset of Q2 as enumerated up to stage s. Let re,s
be the greatest element of We,s and let r(e) = lims→∞ re,s. It is easy to check
that r is an effective numbering of R.

Some notions from algorithmic randomness will be needed repeatedly below.
Ω is any fixed Martin-Löf random left-c.e. real with computable approximation
Ωs ≤L Ωs+1, s ∈ ω. Let K denote prefix-free Kolmogorov complexity. Schnorr’s
Theorem states that a real x ∈ 2ω is Martin-Löf random if and only if there is
a constant c such that for all n, K(x � n) ≥ n− c.
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Theorem 2. The family of all Martin-Löf random left-c.e. reals has an effective
enumeration.

Proof. Let Kt a uniformly computable approximation to Kolmogorov complexity
at stage t, satisfying Kt+1 ≤ Kt. To obtain an enumeration of the Martin-Löf
random left-c.e. reals, it suffices to enumerate all Martin-Löf random left-c.e.
reals y such that K(y � n) ≥ n− c for all n, uniformly in c.

Initially our mth ML-random left-c.e. real me will look like re = r(e) from
Theorem 1, i.e. me,s = re,s unless otherwise stated. Let re,t[n] be the associated
string, restricted or appended with zeroes if necessary to obtain length n. If at
some stage t, for some n = nt ∈ ω,

Kt(re,t[n]) < n− c,

then let me,s = re,t[n]_Ωs at all stages s > t until, if ever, Ks(re,s[n]) ≥ n − c
at some stage s > t. At this point, re,t[n] < re,s[n], since re is a left-c.e. real.
Resume where we left off in defining me = re, starting immediately at stage s
with me,s = re,s. This process continues for the entire construction of each me.

This enumeration contains all left-c.e. reals which are Martin-Löf random
with respect to the constant c, and only Martin-Löf left-c.e. random reals. Thus
the merger of these enumerations over all c is an enumeration of all Martin-Löf
random left-c.e. reals.

2.2 Kummer’s method

Kummer [5, 1990] gave a priority-free proof of Friedberg’s result. The conditions
set forth in the proof provide a method of obtaining Friedberg numberings.

A c.e. class is a uniformly c.e. collection of subsets of ω (or equivalently, of
2<ω or Q2).

Theorem 3 (Kummer [5]). If a c.e. class can be partitioned into two disjoint
c.e. subclasses L1 and L2 such that L1 is injectively enumerable and contains
infinitely many extensions of every finite subset of any member of L2, then the
class is injectively enumerable.

Theorem 4. There is a Friedberg numbering of the left-c.e. reals.

Proof. Let C(x) = {τ : τ_0ω <L x}. Let

L = {C(x) : x is left-c.e.},

L1 = {C(x) : x(n) = 1 for an odd finite number of n},
and L2 = L \ L1. It is clear that L1 is injectively enumerable, and each finite
subset F of a member of L2 is contained in infinitely many members of L1.
The non-trivial part is to see that L2 is c.e. Briefly, the idea is that we modify
an enumeration {re}e∈ω of all left-c.e. reals to only allow 1s to be added and
removed in pairs of two. That is, we let r∗e,s be the longest prefix σ of the string
associated with re,s such that the number of 1s in σ is even. If in the end there
are infinitely many 1s in re then r∗e = re, and it is clear that r∗e,s ≤ r∗e,s+1.
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Theorem 5. There is a Friedberg numbering of the Martin-Löf random left-c.e.
reals.

Proof. Let
R = {C(x) : x is ML-random and left-c.e.},

L1 = {C(1n_Ω) : n ∈ ω}, and L2 = R\L1. Again, it is clear that L1 is injectively
enumerable and each finite subset of a member of L2 can be extended to infinitely
many members of L1. We will argue that L2 is c.e. Note that 1n_Ω <L 1n+1_Ω
for each n. Thus

L2 =
⋃
n∈ω

{
C(y) ∈ R : 1n_Ω <L y <L 1n+1_Ω

}
.

so it suffices to show that the sets

{C(y) ∈ R : y <L 1n_Ω}, (1)

{C(y) ∈ R : 1n_Ω <L y} (2)

are uniformly c.e.
Notice that y <L 1n_Ω iff there is some k such that y � k <L (1n_Ω) � k,

so for (1) it suffices to show that {C(y) ∈ R : y � k <L (1n_Ω) � k} is c.e.,
uniformly in n and k. This is non-trivial only if k > n, and in fact it suffices to
show that a suitable subfamily Fk of {C(y) ∈ R : y <L Ω} containing

{C(y) ∈ R : y � k <L Ω � k} (1′)

is uniformly c.e. for k ∈ ω.
We modify the enumeration {me}e∈ω of the left-c.e. random reals from The-

orem 2, producing a new enumeration {m̂e}e∈ω. Initially, as long as Ω � k looks
like the constant-zero string 0k then m̂e is made to look like 0_Ω. Note that
since Ω 6= 0ω, 0_Ω <L Ω.

If at any stage it looks like Ω � k 6= 0k then thereafter we let m̂e = me as
long as me � k <L Ω � k. If at some stage s, me,s � k ≥L Ωs � k, then we say
that we are in an undesirable state, and we let m̂e,t = me,s−1 � k_Ωt for all
t ≥ s until a possible later stage where we are in a desirable state again.

Thus, if me really satisfies me � k <L Ω � k then we will have m̂e = me, and
if not then m̂e will be a finite string σ <L Ω � k followed by Ω, so in any case it
will be a Martin-Löf random real. Thus {C(m̂e)}e∈ω is an effective enumeration
of a family Fk as stated. The argument for (2) is analogous.

2.3 Specifying randomness constants

Recall that Schnorr’s Theorem states that a real x ∈ 2ω is Martin-Löf random
if and only if there is a constant c such that for all n, K(x � n) ≥ n − c. The
optimal randomness constant of x is the least c such that this holds. For each
interval I ⊆ ω we let AI (RI) denote the set of all Martin-Löf random (and left-
c.e., respectively) reals whose optimal randomness constant belongs to I. Let µ



Numberings and randomness 5

denote the fair-coin Cantor-Lebesgue measure on 2ω. By the proof of Schnorr’s
Theorem we have

µ({x : (∀n)K(x � n) ≥ n− c}) ≥ 1− 2−(c+1).

Consequently, if c ≥ 0, then µA[0,c] > 0 and A[0,c] 6= ∅.

Theorem 6. Let c ≥ 0. There is no effective enumeration of R[0,c].

Proof. Suppose that {αe}e∈ω is such an enumeration, with a uniformly com-
putable approximation αe,s such that αe = lims→∞ αe,s and αe,s ≤ αe,s+1. Note
that

A[0,c] = {x : (∀n)K(x � n) ≥ n− c}

is a Π0
1 class. Let βs = max{αe,s : e ≤ s}. Then β = lims→∞ βs is left-c.e., and

since the left-c.e. members of A[0,c] are dense in A[0,c], β is the rightmost path
of A[0,c]. However the rightmost path of a Π0

1 class is also right-c.e., defined
in the obvious way. Thus β is a Martin-Löf random real that is computable, a
contradiction.

Theorem 7. For each c there is an effective numbering of R[c+1,∞).

Proof sketch. Let {me}e∈ω be an effective enumeration of all left-c.e. random
reals, with the additional property that for each e there are infinitely many e′

such that for all s, me,s = me′,s. We will define an effective numbering {αe}e∈ω
of R[c+1,∞).

We say that a string σ satisfies randomness constant c at stage t if

Kt(σ) ≥ |σ| − c;

otherwise, we say that σ fails randomness constant c at stage t.
We proceed in stages t ∈ ω, monitoring each me,t for e ≤ t at stage t. If

for some t0, n, e, we observe that me,t0 [n] fails randomness constant c, then
we want to assign a place for me in our enumeration of R[c+1,∞). So we let d
be minimal so that αd has not yet been mentioned in the construction, and let
αd,s = me,s for all stages s ≥ t0 until further notice. If me,t1 [n] at some stage
t1 ≥ t0 satifies randomness constant c, then we regret having assigned me a
place in our enumeration {αe}e∈ω. To compensate for this regret, we choose a
large number p = pc,n and for all stages s ≥ t1 let αd,s = me,s[n]_0p_Ωs. The
largeness of p guarantees that me,s[n]_0p does not satisfy randomness constant
c. 1 If me actually does fail randomness constant c, but at a larger length n′ > n,
then because there are infinitely many e′ with me′ = me we will eventually assign
some αd′ to some such me′ at a stage t2 that is so large that me′,t2 [n′] = me′ [n′].
Thus, each real in R[c+1,∞) will eventually be assigned a permanent αd′ .

1 To be precise, if |σ| = n then there are universal constants ĉ and c̃ such that,
thinking of p sometimes as a string, K(σ_0p) ≤ K(σ) +K(p) + ĉ ≤ 2|σ|+ 2|p|+ c̃ =
2n+ 2 log p+ c̃ ≤ n+ p− c provided p− 2 log p ≥ n+ c̃+ c, which is true for p = pn,c

that we can find effectively.
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Remark 1. We believe that one can even show that there is a Friedberg num-
bering of R[c+1,∞). The idea is to modify L1 so that the strings 1n are replaced
by 1dc+n for a sufficiently large dc, as in the footnote on page 5.

Remark 2. Theorems 6 and 7 indicate perhaps that the left-c.e. members of Σ0
2

classes are generally easier to enumerate than those of Π0
1 classes; this may be

due to the “Σ0
n nature” of left-c.e. reals (for n = 1).

Family Enumeration? Friedberg?

All Π0
1 classes Yes, by Theorem 10

All left-c.e. reals Yes, by Theorem 4

Π0
1 classes C, µC > 0 Yes, by Theorem 10

Left-c.e. reals in MLR Yes, by Theorem 5

Π0
1 classes ⊆ A[0,c] Yes, by Proposition 2 Open problem

Π0
1 classes ⊆MLR No, by Theorem 8

Left-c.e. reals in A[0,c] No, by Theorem 6

Fig. 1. Existence of effective numberings and Friedberg numberings, where
MLR =

⋃
c∈ω A[0,c].

Whether a set of the form A[c1,c2] for 0 ≤ c1 ≤ c2 <∞ is nonempty appears
to depend on the universal prefix machine on which Kolmogorov complexity is
based.

Question 1. Does there exist 0 ≤ c1 ≤ c2 <∞ and a choice of universal machine
underlying Kolmogorov complexity such that A[c1,c2] has no effective enumera-
tion?

3 Families of Π0
1 classes

Definition 3 ([1]). Let C be a family of closed subsets of 2ω. We say that C has
a computable enumeration if there is a uniformly computable collection {Te}e∈ω
of trees Te ⊆ 2<ω (that is, {〈σ, e〉 : σ ∈ Te} is computable, and σ_τ ∈ Te implies
σ ∈ Te) such that C = {[Te] : e ∈ ω}.

Definition 4 ([1]). Let C be a family of closed subsets of 2ω. We say that C has
an effective enumeration if there is a Π0

1 set S ⊆ 2ω × ω, such that C = {{X :
(X, e) ∈ S} : e ∈ ω}.

Proposition 1. Let C be a family of closed subsets of 2ω. The following are
equivalent:

(1) C has a computable enumeration;
(2) C has an effective enumeration.
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Proof. (1) implies (2): Let {Te}e∈ω be given, and define

S = {(X, e) : ∀n X � n ∈ Te}.

(2) implies (1): Let S be given, let Φa be a Turing functional such that
(X, e) ∈ S ⇔ ΦXa (e) ↑, and let Te = {σ ∈ 2<ω : Φσa,|σ|(e) ↑}.

In light of Proposition 1, we may use either notion. Note that if C belongs to a
family as in Proposition 1 then C is a Π0

1 class.

3.1 Existence of numberings

Theorem 8. Let P ⊆ 2ω, let CP be the collection of all Π0
1 classes contained

in P , and let NP be the collection of all nonempty Π0
1 classes contained in P .

Assume P has the following properties:

(i) P is co-dense: no cone [σ], σ ∈ 2<ω, is contained in P ;
(ii) P is closed under shifts: if x ∈ P then σ_x ∈ P ;

(iii) NP 6= ∅.

Then there is no effective numbering of either CP or NP .

Proof. If there is a numbering of NP then there is one of CP , because if ∅ ∈ CP
(as is always the case) we may simply add an index of ∅ to the numbering. Thus
it suffices to show that there is no effective numbering of CP . Suppose to the
contrary that e 7→ [Te] enumerates the family of Π0

1 classes in CP . By (iii), we
may assume [T0] 6= ∅. By (i), T0 has infinitely many dead ends. Let the dead
ends of T0 be listed in a computable way (for instance, by length-lexicographic
order), as σn, n ∈ ω. By (i) again, we may let τn be the least extension of σn
which extends a dead end of Tn. Define a computable tree T by putting T0 above
τn. That is, let [T ]∩ [τn] = [τnT0] and [T ] = [T0]∪

⋃
n[τnT0]. By (ii), the resulting

class [T ] belongs to CP . Since [T0] 6= ∅, [T ] ∩ [τn] 6= ∅ = [Tn] ∩ [τn], so [T ] is not
contained in or equal to any [Tn].

All assumptions (i), (ii), (iii) of Theorem 8 are necessary: consider P = 2ω,
P = {x}, where x is a single computable real, and P = ∅, respectively.

Corollary 1. The following families of Π0
1 classes have no effective numbering:

1. Π0
1 classes containing only Martin-Löf random reals;

2. special Π0
1 classes (those containing only non-computable reals);

3. Π0
1 classes containing only reals x such that the Muchnik degree [7] of {x}

is above a fixed nonzero Muchnik degree;
4. Π0

1 classes containing only finite (or only co-finite) subsets of ω.

Proposition 2. (1) The family of all Π0
1 classes containing only reals that are

Martin-Löf random with respect to a fixed randomness constant is effectively
enumerable.
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(2) The family of all Σ0
2 classes containing only Martin-Löf random reals is

effectively enumerable.

Proof. (1). We enumerate all Π0
1 classes as {Pi}i∈ω and let

Qi = Pi ∩ {x : ∀n K(x � n) ≥ n− c}.

Then {Qi}i∈ω is an enumeration of all Π0
1 classes containing only reals that are

Martin-Löf random with randomness constant c. Part (2) is analogous.

We may sum up the situation by stating that it is only the mixture of Π0
1

and Σ0
2 classes that leads to the negative result of Corollary 1(1). The proof of

Theorem 8 for the case in Corollary 1(1) proves the following basic property of
Martin-Löf tests.

Corollary 2. For each Martin-Löf test {Un}n∈ω there is a Σ0
1 class V contain-

ing all non-Martin-Löf random reals but containing no set Un, n ∈ ω.

As is well-known, all Π0
1 classes containing Martin-Löf random reals have

positive measure. In contrast to Corollary 1(1), such classes can be effectively
enumerated:

Theorem 9. There is an effective numbering of the Π0
1 classes of positive mea-

sure.

Proof. It suffices to enumerate, uniformly in n ∈ ω, all Π0
1 classes of measure

at least r := 1
n . To accomplish this, let e 7→ We be an effective numbering

of Σ0
1 sets of strings, which gives rise to all Π0

1 classes. That is, if P is a Π0
1

class, then P = 2ω \ [We]� for some e. Modify this enumeration so that strings
enumerate into each We so long as the overall measure never surpasses 1 − r.
More precisely, if, at some stage s > 0, some σ is supposed to enter We,s but this
causes the measure of [We]� to surpass 1 − r, then we hereafter discontinue to
enumerate strings into We; call this modified set Ŵe;n. It follows that e 7→ Ŵe;n

is a numbering that gives rise to all Σ0
1 classes of measure at most 1− 1

n . Then

the sequence of sets
{[
Ŵe;n

]�}
for 〈e, n〉 ∈ ω × ω is an effective enumeration

of the Σ0
1 classes of measure less than 1.

This contrasts with the result of [1] that there is no effective numbering of
the Π0

1 classes of measure zero. We next show that any effectively enumerable
family of Π0

1 classes containing all the clopen classes has a Friedberg numbering.
In fact, we show something slightly stronger.

Definition 5. The optimal covering of S ⊆ 2<ω is

O = OS = {σ : [σ] ⊆ [S]� & ¬(∃τ ≺ σ)([τ ] ⊆ [S]�)}.

Let A be the family of all sets O that have odd cardinality and are optimal
coverings of sets S.
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Theorem 10. Any effectively enumerable family of Σ0
1 classes F with F ⊇

{[O]� : O ∈ A} has a Friedberg numbering.

Proof. For a set Z ⊆ 2<ω, we say that Z is filter closed if Z is closed under
extensions (σ ∈ Z ⇒ σ_τ ∈ Z) and such that whenever both σ_0 and σ_1 are
in Z then σ ∈ Z. The filter closure of Y is the intersection of all filter closed
sets containing Y and is denoted by Y ↑.

Since F is effectively enumerable, we may let e 7→ Ye be a numbering of all
filter closed sets of strings with [Ye]� ∈ F . Since Ye 6= Ye′ implies [Ye]� 6= [Ye′ ]�,
it suffices to injectively enumerate these sets Ye. Let

L1 =
{
O↑ : O ∈ A

}
and L2 = {Ye : Ye 6∈ L1}.

It is clear that L1 is injectively enumerable. By the assumption of the the-
orem, each [O↑]� ∈ F . It is also clear that each finite subset of any Y ∈ L2 is
contained in infinitely many O↑ ∈ L1.

We claim that L2 has an effectively enumeration {Y ∗e }e∈ω, to be constructed
below. Fix e and let Ye = {σn}n∈ω in order of enumeration.

S ⊆ 2<ω is an acceptable family if its optimal covering O has finite even
cardinality. In particular O 6∈ A. We say that stage n is good if σn has greater
length than any member of On = OSn

for Sn = {σ0, . . . , σn−1} and does not
extend any member of On.
Construction. We will construct Y ∗e as Y ∗e =

⋃
n∈ω Ye,n for uniformly computable

sets Ye,n. We set Ye,−1 = ∅. Suppose n ≥ 0. If stage n is not good, we keep
Ye,n = Ye,n−1.
If stage n is good, there are two cases.
Case a. Sn is an acceptable family. Then let Ye,n be the filter closure of On.
Case b. Otherwise. Then let Ye,n be the filter closure of On ∪ {σn}.
We separately enumerate all sets generated from any acceptable family whose
optimal covering has finite even cardinality. (*)
End of Construction.
Verification. Note that in both Case a and Case b, Ye,n is the filter closure of an
acceptable family, so we do not enumerate any member of L1. By (*), it therefore
suffices to show that we enumerate all sets generated from an infinite family, i.e.
non-clopen sets, and that each Y ∗e is some Ye′ .

If Ye is not clopen then there are infinitely many good stages. Then in the
end Y ∗e = Ye, because σn is covered either right away (case b) or at the next
good stage (case b).

Corollary 3. The family of all Σ0
1 classes of measure less than one, or equiva-

lently Π0
1 classes of positive measure, has a Friedberg numbering.
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[4] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its appli-
cations, 2nd ed., Graduate Texts in Computer Science, Springer-Verlag, New York,
1997. MR 1438307 (97k:68086)

[5] Martin Kummer, An easy priority-free proof of a theorem of Friedberg, Theoret.
Comput. Sci. 74 (1990), no. 2, 249–251. MR 1067521 (91h:03056)
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