Numberings and randomness

Paul Brodhead ${ }^{1}$ and Bjørn Kjos-Hanssen ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Hawai'i at Mānoa, Honolulu HI 96822
brodhead@math.hawaii.edu
http://www.math.hawaii.edu/~brodhead
${ }^{2}$ bjoern@math.hawaii.edu
http://www.math.hawaii.edu/~bjoern

Abstract

We prove various results on effective numberings and Friedberg numberings of families related to algorithmic randomness. The family of all Martin-Löf random left-computably enumerable reals has a Friedberg numbering, as does the family of all Π_{1}^{0} classes of positive measure. On the other hand, the Π_{1}^{0} classes contained in the Martin-Löf random reals do not even have an effective numbering, nor do the left-c.e. reals satisfying a fixed randomness constant. For Π_{1}^{0} classes contained in the class of reals satisfying a fixed randomness constant, we prove that at least an effective numbering exists.

1 Introduction

The general theory of numberings was initiated in the mid-1950s by Kolmogorov, and continued by Mal'tsev and Ershov [2]. A numbering, or enumeration, of a collection C of objects is a surjective map $F: \omega \rightarrow C$. In one of the earliest results, Friedberg [3, 1958] constructed an injective numbering ψ of the Σ_{1}^{0} or computably enumerable (c.e.) sets such that the relation " $n \in \psi(e)$ " is itself Σ_{1}^{0}. In a more general and informal sense, a numbering ψ of a collection of objects all having complexity \mathcal{C} (such as n-c.e., Σ_{n}^{0}, or Π_{n}^{0}) is called effective if the relation " $x \in \psi(e)$ " has complexity \mathcal{C}. If in addition the numbering is injective, then it is called a Friedberg numbering.

Brodhead and Cenzer 1] showed that there is an effective Friedberg numbering of the Π_{1}^{0} classes in Cantor space 2^{ω}. They showed that effective numberings exist of the Π_{1}^{0} classes that are homogeneous, and decidable, but not of the families consisting of Π_{1}^{0} classes that are of measure zero, thin, perfect thin, small, very small, or nondecidable, respectively.

In this article we continue the study of existence of numberings and Friedberg numberings for subsets of ω and 2^{ω}. Many of our results are related to algorithmic randomness and in particular Martin-Löf randomness; see the books of Li and Vitányi (4] and Nies [6].

We now outline some notation and definitions used throughout. A subset T of $2^{<\omega}$ is a tree if it is closed under prefixes. The set $[T]$ of infinite paths through T is defined by $X \in[T] \leftrightarrow(\forall n) X \upharpoonright n \in T$, where $X \upharpoonright n$ denotes the initial segment $\langle X(0), X(1), \ldots, X(n-1)\rangle$. Next, P is a Π_{1}^{0} class if $P=[T]$ for some
computable tree T. Let $\sigma^{\frown} \tau$ denote the concatenation of σ with τ and let $\sigma^{\frown} i$ denote $\sigma^{\frown}\langle i\rangle$ for $i \in \omega$. The prefix ordering of strings is denoted by \preceq, so we have $\sigma \preceq \sigma^{\frown} \tau$. The string $\sigma \in T$ is a dead end if no extension $\sigma^{\frown} i$ is in T. For any $\sigma \in 2^{<\omega},[\sigma]$ is the cone consisting of all infinite sequences extending σ. For a set of strings $W,[W] \preceq=\bigcup_{\sigma \in W}[\sigma]$.

2 Families of left-c.e. reals

2.1 Basics

For our definition of left-c.e. reals we will follow the book of Nies [6]. Let \mathbb{Q}_{2} be the set of dyadic rationals $\left\{\frac{a}{2^{b}} \leq 1: a, b \in \omega\right\}$. For a dyadic rational q and real $x \in 2^{\omega}$, we say that $q<x$ if q is less than the real number $\sum_{i \in \omega} x(i) 2^{-(i+1)}$.

Definition 1. A real $x \in 2^{\omega}$ is left-c.e. if $\left\{q \in \mathbb{Q}_{2}: q<x\right\}$ is c.e.
Let \leq_{L} denote lexicographic order on 2^{ω}. A dyadic rational may be written in the form $q=\sum_{i=1}^{n} a_{i} 2^{-i}$ where $a_{n}=1$, and each $a_{i} \in\{0,1\}$. The associated binary string of q is $s(q)=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. (If $q=0$ then $n=0$ and the associated string is the empty string.) Conversely, the associated dyadic rational of $\sigma \in 2^{<\omega}$ is $\sum_{i=0}^{|\sigma|-1} \sigma(i) 2^{-(i+1)}$.

Lemma 1. For each $x \in 2^{\omega}$, we have that

$$
\left\{q \in \mathbb{Q}_{2}: q<x\right\} \text { is c.e. } \Leftrightarrow\left\{\sigma \in 2^{<\omega}: \sigma \frown 0^{\omega}<_{L} x\right\} \text { is c.e. }
$$

Proof. We have that $\sigma^{\frown} 0^{\omega}<_{L} x$ iff the associated dyadic rational of σ is less than x, and $q<x$ iff the associated binary string σ of q satisfies $\sigma^{\frown} 0^{\omega}<_{L} x$. In fact, $\left\{s(q): q \in \mathbb{Q}_{2}, q<x\right\}=\left\{\sigma: \sigma \frown \omega<_{L} x\right\}$.

Definition 2. An effective numbering of a family of left-c.e. reals \mathcal{R} is an onto map $r: \omega \mapsto \mathcal{R}$ such that

$$
\left\{(q, e) \in \mathbb{Q}_{2} \times \omega \mid q<r(e)\right\}
$$

is c.e. If r is also injective then r is called a Friedberg numbering of \mathcal{R}.
Theorem 1. The family of all left-c.e. reals has an effective numbering.
Proof. Let $W_{e, s}$ be the $e^{\text {th }}$ c.e. subset of \mathbb{Q}_{2} as enumerated up to stage s. Let $r_{e, s}$ be the greatest element of $W_{e, s}$ and let $r(e)=\lim _{s \rightarrow \infty} r_{e, s}$. It is easy to check that r is an effective numbering of \mathcal{R}.

Some notions from algorithmic randomness will be needed repeatedly below. Ω is any fixed Martin-Löf random left-c.e. real with computable approximation $\Omega_{s} \leq_{L} \Omega_{s+1}, s \in \omega$. Let K denote prefix-free Kolmogorov complexity. Schnorr's Theorem states that a real $x \in 2^{\omega}$ is Martin-Löf random if and only if there is a constant c such that for all $n, K(x \upharpoonright n) \geq n-c$.

Theorem 2. The family of all Martin-Löf random left-c.e. reals has an effective enumeration.

Proof. Let K_{t} a uniformly computable approximation to Kolmogorov complexity at stage t, satisfying $K_{t+1} \leq K_{t}$. To obtain an enumeration of the Martin-Löf random left-c.e. reals, it suffices to enumerate all Martin-Löf random left-c.e. reals y such that $K(y \upharpoonright n) \geq n-c$ for all n, uniformly in c.

Initially our $m^{\text {th }}$ ML-random left-c.e. real m_{e} will look like $r_{e}=r(e)$ from Theorem 11 i.e. $m_{e, s}=r_{e, s}$ unless otherwise stated. Let $r_{e, t}[n]$ be the associated string, restricted or appended with zeroes if necessary to obtain length n. If at some stage t, for some $n=n_{t} \in \omega$,

$$
K_{t}\left(r_{e, t}[n]\right)<n-c,
$$

then let $m_{e, s}=r_{e, t}[n] \frown \Omega_{s}$ at all stages $s>t$ until, if ever, $K_{s}\left(r_{e, s}[n]\right) \geq n-c$ at some stage $s>t$. At this point, $r_{e, t}[n]<r_{e, s}[n]$, since r_{e} is a left-c.e. real. Resume where we left off in defining $m_{e}=r_{e}$, starting immediately at stage s with $m_{e, s}=r_{e, s}$. This process continues for the entire construction of each m_{e}.

This enumeration contains all left-c.e. reals which are Martin-Löf random with respect to the constant c, and only Martin-Löf left-c.e. random reals. Thus the merger of these enumerations over all c is an enumeration of all Martin-Löf random left-c.e. reals.

2.2 Kummer's method

Kummer [5, 1990] gave a priority-free proof of Friedberg's result. The conditions set forth in the proof provide a method of obtaining Friedberg numberings.

A c.e. class is a uniformly c.e. collection of subsets of ω (or equivalently, of $2^{<\omega}$ or \mathbb{Q}_{2}).

Theorem 3 (Kummer [5]). If a c.e. class can be partitioned into two disjoint c.e. subclasses L_{1} and L_{2} such that L_{1} is injectively enumerable and contains infinitely many extensions of every finite subset of any member of L_{2}, then the class is injectively enumerable.

Theorem 4. There is a Friedberg numbering of the left-c.e. reals.
Proof. Let $C(x)=\left\{\tau: \tau^{\frown} 0^{\omega}<_{L} x\right\}$. Let

$$
\mathcal{L}=\{C(x): x \text { is left-c.e. }\}
$$

$L_{1}=\{C(x): x(n)=1$ for an odd finite number of $n\}$,
and $L_{2}=\mathcal{L} \backslash L_{1}$. It is clear that L_{1} is injectively enumerable, and each finite subset F of a member of L_{2} is contained in infinitely many members of L_{1}. The non-trivial part is to see that L_{2} is c.e. Briefly, the idea is that we modify an enumeration $\left\{r_{e}\right\}_{e \in \omega}$ of all left-c.e. reals to only allow 1 s to be added and removed in pairs of two. That is, we let $r_{e, s}^{*}$ be the longest prefix σ of the string associated with $r_{e, s}$ such that the number of 1 s in σ is even. If in the end there are infinitely many 1 s in r_{e} then $r_{e}^{*}=r_{e}$, and it is clear that $r_{e, s}^{*} \leq r_{e, s+1}^{*}$.

Theorem 5. There is a Friedberg numbering of the Martin-Löf random left-c.e. reals.

Proof. Let

$$
\mathcal{R}=\{C(x): x \text { is ML-random and left-c.e. }\}
$$

 enumerable and each finite subset of a member of L_{2} can be extended to infinitely many members of L_{1}. We will argue that L_{2} is c.e. Note that $1^{n \frown \Omega<{ }_{L} 1^{n+1} \Omega} \Omega$ for each n. Thus

$$
L_{2}=\bigcup_{n \in \omega}\left\{C(y) \in \mathcal{R}: 1^{n \frown} \Omega<_{L} y<_{L} 1^{n+1 \frown} \Omega\right\}
$$

so it suffices to show that the sets

$$
\begin{align*}
& \left\{C(y) \in \mathcal{R}: y<_{L} 1^{n \frown} \Omega\right\} \tag{1}\\
& \left\{C(y) \in \mathcal{R}: 1^{n \frown} \Omega<_{L} y\right\} \tag{2}
\end{align*}
$$

are uniformly c.e.
Notice that $y<_{L} 1^{n \frown} \Omega$ iff there is some k such that $y \upharpoonright k<_{L}\left(1^{n \frown \Omega) \upharpoonright k, ~}\right.$ so for (1) it suffices to show that $\left\{C(y) \in \mathcal{R}: y \upharpoonright k<_{L}\left(1^{n \frown \Omega)} \upharpoonright k\right\}\right.$ is c.e., uniformly in n and k. This is non-trivial only if $k>n$, and in fact it suffices to show that a suitable subfamily \mathcal{F}_{k} of $\left\{C(y) \in \mathcal{R}: y<_{L} \Omega\right\}$ containing

$$
\left\{C(y) \in \mathcal{R}: y \upharpoonright k<_{L} \Omega \upharpoonright k\right\}
$$

is uniformly c.e. for $k \in \omega$.
We modify the enumeration $\left\{m_{e}\right\}_{e \in \omega}$ of the left-c.e. random reals from Theorem 2 producing a new enumeration $\left\{\widehat{m}_{e}\right\}_{e \in \omega}$. Initially, as long as $\Omega \upharpoonright k$ looks like the constant-zero string 0^{k} then \widehat{m}_{e} is made to look like $0^{\wedge} \Omega$. Note that since $\Omega \neq 0^{\omega}, 0^{\frown} \Omega<_{L} \Omega$.

If at any stage it looks like $\Omega \upharpoonright k \neq 0^{k}$ then thereafter we let $\widehat{m}_{e}=m_{e}$ as long as $m_{e} \upharpoonright k<_{L} \Omega \upharpoonright k$. If at some stage $s, m_{e, s} \upharpoonright k \geq_{L} \Omega_{s} \upharpoonright k$, then we say that we are in an undesirable state, and we let $\widehat{m}_{e, t}=m_{e, s-1} \upharpoonright k \frown \Omega_{t}$ for all $t \geq s$ until a possible later stage where we are in a desirable state again.

Thus, if m_{e} really satisfies $m_{e} \upharpoonright k<_{L} \Omega \upharpoonright k$ then we will have $\widehat{m}_{e}=m_{e}$, and if not then \widehat{m}_{e} will be a finite string $\sigma<_{L} \Omega \upharpoonright k$ followed by Ω, so in any case it will be a Martin-Löf random real. Thus $\left\{C\left(\widehat{m}_{e}\right)\right\}_{e \in \omega}$ is an effective enumeration of a family \mathcal{F}_{k} as stated. The argument for (2) is analogous.

2.3 Specifying randomness constants

Recall that Schnorr's Theorem states that a real $x \in 2^{\omega}$ is Martin-Löf random if and only if there is a constant c such that for all $n, K(x \upharpoonright n) \geq n-c$. The optimal randomness constant of x is the least c such that this holds. For each interval $I \subseteq \omega$ we let $\mathcal{A}_{I}\left(\mathcal{R}_{I}\right)$ denote the set of all Martin-Löf random (and leftc.e., respectively) reals whose optimal randomness constant belongs to I. Let μ
denote the fair-coin Cantor-Lebesgue measure on 2^{ω}. By the proof of Schnorr's Theorem we have

$$
\mu(\{x:(\forall n) K(x \upharpoonright n) \geq n-c\}) \geq 1-2^{-(c+1)} .
$$

Consequently, if $c \geq 0$, then $\mu \mathcal{A}_{[0, c]}>0$ and $\mathcal{A}_{[0, c]} \neq \varnothing$.
Theorem 6. Let $c \geq 0$. There is no effective enumeration of $\mathcal{R}_{[0, c]}$.
Proof. Suppose that $\left\{\alpha_{e}\right\}_{e \in \omega}$ is such an enumeration, with a uniformly computable approximation $\alpha_{e, s}$ such that $\alpha_{e}=\lim _{s \rightarrow \infty} \alpha_{e, s}$ and $\alpha_{e, s} \leq \alpha_{e, s+1}$. Note that

$$
\mathcal{A}_{[0, c]}=\{x:(\forall n) K(x \upharpoonright n) \geq n-c\}
$$

is a Π_{1}^{0} class. Let $\beta_{s}=\max \left\{\alpha_{e, s}: e \leq s\right\}$. Then $\beta=\lim _{s \rightarrow \infty} \beta_{s}$ is left-c.e., and since the left-c.e. members of $A_{[0, c]}$ are dense in $A_{[0, c]}, \beta$ is the rightmost path of $A_{[0, c]}$. However the rightmost path of a Π_{1}^{0} class is also right-c.e., defined in the obvious way. Thus β is a Martin-Löf random real that is computable, a contradiction.

Theorem 7. For each c there is an effective numbering of $\mathcal{R}_{[c+1, \infty)}$.
Proof sketch. Let $\left\{m_{e}\right\}_{e \in \omega}$ be an effective enumeration of all left-c.e. random reals, with the additional property that for each e there are infinitely many e^{\prime} such that for all $s, m_{e, s}=m_{e^{\prime}, s}$. We will define an effective numbering $\left\{\alpha_{e}\right\}_{e \in \omega}$ of $\mathcal{R}_{[c+1, \infty)}$.

We say that a string σ satisfies randomness constant c at stage t if

$$
K_{t}(\sigma) \geq|\sigma|-c ;
$$

otherwise, we say that σ fails randomness constant c at stage t.
We proceed in stages $t \in \omega$, monitoring each $m_{e, t}$ for $e \leq t$ at stage t. If for some t_{0}, n, e, we observe that $m_{e, t_{0}}[n]$ fails randomness constant c, then we want to assign a place for m_{e} in our enumeration of $\mathcal{R}_{[c+1, \infty)}$. So we let d be minimal so that α_{d} has not yet been mentioned in the construction, and let $\alpha_{d, s}=m_{e, s}$ for all stages $s \geq t_{0}$ until further notice. If $m_{e, t_{1}}[n]$ at some stage $t_{1} \geq t_{0}$ satifies randomness constant c, then we regret having assigned m_{e} a place in our enumeration $\left\{\alpha_{e}\right\}_{e \in \omega}$. To compensate for this regret, we choose a large number $p=p_{c, n}$ and for all stages $s \geq t_{1}$ let $\alpha_{d, s}=m_{e, s}[n] \frown 0^{p \frown} \Omega_{s}$. The largeness of p guarantees that $m_{e, s}[n] \frown 0^{p}$ does not satisfy randomness constant c. ${ }^{1}$ If m_{e} actually does fail randomness constant c, but at a larger length $n^{\prime}>n$, then because there are infinitely many e^{\prime} with $m_{e^{\prime}}=m_{e}$ we will eventually assign some $\alpha_{d^{\prime}}$ to some such $m_{e^{\prime}}$ at a stage t_{2} that is so large that $m_{e^{\prime}, t_{2}}\left[n^{\prime}\right]=m_{e^{\prime}}\left[n^{\prime}\right]$. Thus, each real in $\mathcal{R}_{[c+1, \infty)}$ will eventually be assigned a permanent $\alpha_{d^{\prime}}$.

[^0]Remark 1. We believe that one can even show that there is a Friedberg numbering of $\mathcal{R}_{[c+1, \infty)}$. The idea is to modify L_{1} so that the strings 1^{n} are replaced by $1^{d_{c}+n}$ for a sufficiently large d_{c}, as in the footnote on page 5 .

Remark 2. Theorems 6 and 7 indicate perhaps that the left-c.e. members of Σ_{2}^{0} classes are generally easier to enumerate than those of Π_{1}^{0} classes; this may be due to the " Σ_{n}^{0} nature" of left-c.e. reals (for $n=1$).

Family	Enumeration?	Friedberg?
All Π_{1}^{0} classes		Yes, by Theorem 10
All left-c.e. reals		Yes, by Theorem $\sqrt{4}$
Π_{1}^{0} classes $C, \mu C>0$		Yes, by Theorem $\sqrt[10]{10}$
Left-c.e. reals in MLR		Yes, by Theorem $\sqrt{5}$
Π_{1}^{0} classes $\subseteq \mathcal{A}_{[0, c]}$	Yes, by Proposition	2
Π_{1}^{0} classes \subseteq MLR	No, by Theorem $\overline{8}$	
Left-c.e. reals in $\mathcal{A}_{[0, c]}$	No, by Theorem $\overline{6}$	

Fig. 1. Existence of effective numberings and Friedberg numberings, where $\mathrm{MLR}=\bigcup_{c \in \omega} \mathcal{A}_{[0, c]}$.

Whether a set of the form $\mathcal{A}_{\left[c_{1}, c_{2}\right]}$ for $0 \leq c_{1} \leq c_{2}<\infty$ is nonempty appears to depend on the universal prefix machine on which Kolmogorov complexity is based.

Question 1. Does there exist $0 \leq c_{1} \leq c_{2}<\infty$ and a choice of universal machine underlying Kolmogorov complexity such that $\mathcal{A}_{\left[c_{1}, c_{2}\right]}$ has no effective enumeration?

3 Families of Π_{1}^{0} classes

Definition 3 ([1]). Let \mathcal{C} be a family of closed subsets of 2^{ω}. We say that \mathcal{C} has a computable enumeration if there is a uniformly computable collection $\left\{T_{e}\right\}_{e \in \omega}$ of trees $T_{e} \subseteq 2^{<\omega}$ (that is, $\left\{\langle\sigma, e\rangle: \sigma \in T_{e}\right\}$ is computable, and $\sigma^{\frown} \tau \in T_{e}$ implies $\left.\sigma \in T_{e}\right)$ such that $\mathcal{C}=\left\{\left[T_{e}\right]: e \in \omega\right\}$.

Definition 4 ([1]). Let \mathcal{C} be a family of closed subsets of 2^{ω}. We say that \mathcal{C} has an effective enumeration if there is a Π_{1}^{0} set $S \subseteq 2^{\omega} \times \omega$, such that $\mathcal{C}=\{\{X$: $(X, e) \in S\}: e \in \omega\}$.

Proposition 1. Let \mathcal{C} be a family of closed subsets of 2^{ω}. The following are equivalent:
(1) \mathcal{C} has a computable enumeration;
(2) \mathcal{C} has an effective enumeration.

Proof. (1) implies (2): Let $\left\{T_{e}\right\}_{e \in \omega}$ be given, and define

$$
S=\left\{(X, e): \forall n X \upharpoonright n \in T_{e}\right\}
$$

(2) implies (1): Let S be given, let Φ_{a} be a Turing functional such that $(X, e) \in S \Leftrightarrow \Phi_{a}^{X}(e) \uparrow$, and let $T_{e}=\left\{\sigma \in 2^{<\omega}: \Phi_{a,|\sigma|}^{\sigma}(e) \uparrow\right\}$.

In light of Proposition 1, we may use either notion. Note that if C belongs to a family as in Proposition 1 then C is a Π_{1}^{0} class.

3.1 Existence of numberings

Theorem 8. Let $P \subseteq 2^{\omega}$, let \mathcal{C}_{P} be the collection of all Π_{1}^{0} classes contained in P, and let \mathcal{N}_{P} be the collection of all nonempty Π_{1}^{0} classes contained in P. Assume P has the following properties:
(i) P is co-dense: no cone $[\sigma], \sigma \in 2^{<\omega}$, is contained in P;
(ii) P is closed under shifts: if $x \in P$ then $\sigma^{\frown} x \in P$;
(iii) $\mathcal{N}_{P} \neq \emptyset$.

Then there is no effective numbering of either \mathcal{C}_{P} or \mathcal{N}_{P}.
Proof. If there is a numbering of \mathcal{N}_{P} then there is one of \mathcal{C}_{P}, because if $\emptyset \in \mathcal{C}_{P}$ (as is always the case) we may simply add an index of \emptyset to the numbering. Thus it suffices to show that there is no effective numbering of \mathcal{C}_{P}. Suppose to the contrary that $e \mapsto\left[T_{e}\right]$ enumerates the family of Π_{1}^{0} classes in \mathcal{C}_{P}. By (iii), we may assume $\left[T_{0}\right] \neq \emptyset$. By (i), T_{0} has infinitely many dead ends. Let the dead ends of T_{0} be listed in a computable way (for instance, by length-lexicographic order), as $\sigma_{n}, n \in \omega$. By (i) again, we may let τ_{n} be the least extension of σ_{n} which extends a dead end of T_{n}. Define a computable tree T by putting T_{0} above τ_{n}. That is, let $[T] \cap\left[\tau_{n}\right]=\left[\tau_{n} T_{0}\right]$ and $[T]=\left[T_{0}\right] \cup \bigcup_{n}\left[\tau_{n} T_{0}\right]$. By (ii), the resulting class $[T]$ belongs to \mathcal{C}_{P}. Since $\left[T_{0}\right] \neq \varnothing,[T] \cap\left[\tau_{n}\right] \neq \emptyset=\left[T_{n}\right] \cap\left[\tau_{n}\right]$, so $[T]$ is not contained in or equal to any $\left[T_{n}\right]$.

All assumptions (i), (ii), (iii) of Theorem 8 are necessary: consider $P=2^{\omega}$, $P=\{x\}$, where x is a single computable real, and $P=\emptyset$, respectively.

Corollary 1. The following families of Π_{1}^{0} classes have no effective numbering:

1. Π_{1}^{0} classes containing only Martin-Löf random reals;
2. special Π_{1}^{0} classes (those containing only non-computable reals);
3. Π_{1}^{0} classes containing only reals x such that the Muchnik degree 7 of $\{x\}$ is above a fixed nonzero Muchnik degree;
4. Π_{1}^{0} classes containing only finite (or only co-finite) subsets of ω.

Proposition 2. (1) The family of all Π_{1}^{0} classes containing only reals that are Martin-Löf random with respect to a fixed randomness constant is effectively enumerable.
(2) The family of all Σ_{2}^{0} classes containing only Martin-Löf random reals is effectively enumerable.

Proof. (1). We enumerate all Π_{1}^{0} classes as $\left\{P_{i}\right\}_{i \in \omega}$ and let

$$
Q_{i}=P_{i} \cap\{x: \forall n K(x \upharpoonright n) \geq n-c\} .
$$

Then $\left\{Q_{i}\right\}_{i \in \omega}$ is an enumeration of all Π_{1}^{0} classes containing only reals that are Martin-Löf random with randomness constant c. Part (2) is analogous.

We may sum up the situation by stating that it is only the mixture of Π_{1}^{0} and Σ_{2}^{0} classes that leads to the negative result of Corollary 11(1). The proof of Theorem 8 for the case in Corollary 1(1) proves the following basic property of Martin-Löf tests.

Corollary 2. For each Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}$ there is a Σ_{1}^{0} class V containing all non-Martin-Löf random reals but containing no set $U_{n}, n \in \omega$.

As is well-known, all Π_{1}^{0} classes containing Martin-Löf random reals have positive measure. In contrast to Corollary 1(1), such classes can be effectively enumerated:

Theorem 9. There is an effective numbering of the Π_{1}^{0} classes of positive measure.

Proof. It suffices to enumerate, uniformly in $n \in \omega$, all Π_{1}^{0} classes of measure at least $r:=\frac{1}{n}$. To accomplish this, let $e \mapsto W_{e}$ be an effective numbering of Σ_{1}^{0} sets of strings, which gives rise to all Π_{1}^{0} classes. That is, if P is a Π_{1}^{0} class, then $P=2^{\omega} \backslash\left[W_{e}\right] \preceq$ for some e. Modify this enumeration so that strings enumerate into each W_{e} so long as the overall measure never surpasses $1-r$. More precisely, if, at some stage $s>0$, some σ is supposed to enter $W_{e, s}$ but this causes the measure of $\left[W_{e}\right]$ to surpass $1-r$, then we hereafter discontinue to enumerate strings into W_{e}; call this modified set $\widehat{W}_{e ; n}$. It follows that $e \mapsto \widehat{W}_{e ; n}$ is a numbering that gives rise to all Σ_{1}^{0} classes of measure at most $1-\frac{1}{n}$. Then the sequence of sets $\left\{\left[\widehat{W}_{e ; n}\right]^{\preceq}\right\}$ for $\langle e, n\rangle \in \omega \times \omega$ is an effective enumeration of the Σ_{1}^{0} classes of measure less than 1.

This contrasts with the result of [1] that there is no effective numbering of the Π_{1}^{0} classes of measure zero. We next show that any effectively enumerable family of Π_{1}^{0} classes containing all the clopen classes has a Friedberg numbering. In fact, we show something slightly stronger.

Definition 5. The optimal covering of $S \subseteq 2^{<\omega}$ is

$$
O=O_{S}=\{\sigma:[\sigma] \subseteq[S] \preceq \& \neg(\exists \tau \prec \sigma)([\tau] \subseteq[S] \preceq)\} .
$$

Let \mathfrak{A} be the family of all sets O that have odd cardinality and are optimal coverings of sets S.

Theorem 10. Any effectively enumerable family of Σ_{1}^{0} classes \mathcal{F} with $\mathcal{F} \supseteq$ $\{[O] \preceq: O \in \mathfrak{A}\}$ has a Friedberg numbering.

Proof. For a set $Z \subseteq 2^{<\omega}$, we say that Z is filter closed if Z is closed under extensions $\left(\sigma \in Z \Rightarrow \sigma^{\frown} \tau \in Z\right)$ and such that whenever both $\sigma^{\frown} 0$ and $\sigma^{\frown} 1$ are in Z then $\sigma \in Z$. The filter closure of Y is the intersection of all filter closed sets containing Y and is denoted by Y^{\uparrow}.

Since \mathcal{F} is effectively enumerable, we may let $e \mapsto Y_{e}$ be a numbering of all filter closed sets of strings with $\left[Y_{e}\right] \preceq \in \mathcal{F}$. Since $Y_{e} \neq Y_{e^{\prime}}$ implies $\left[Y_{e}\right] \preceq \neq\left[Y_{e^{\prime}}\right] \preceq$, it suffices to injectively enumerate these sets Y_{e}. Let

$$
L_{1}=\left\{O^{\uparrow}: O \in \mathfrak{A}\right\} \text { and } L_{2}=\left\{Y_{e}: Y_{e} \notin L_{1}\right\}
$$

It is clear that L_{1} is injectively enumerable. By the assumption of the theorem, each $\left[O^{\uparrow}\right] \preceq \in \mathcal{F}$. It is also clear that each finite subset of any $Y \in L_{2}$ is contained in infinitely many $O^{\uparrow} \in L_{1}$.

We claim that L_{2} has an effectively enumeration $\left\{Y_{e}^{*}\right\}_{e \in \omega}$, to be constructed below. Fix e and let $Y_{e}=\left\{\sigma_{n}\right\}_{n \in \omega}$ in order of enumeration.
$S \subseteq 2^{<\omega}$ is an acceptable family if its optimal covering O has finite even cardinality. In particular $O \notin \mathfrak{A}$. We say that stage n is good if σ_{n} has greater length than any member of $O_{n}=O_{S_{n}}$ for $S_{n}=\left\{\sigma_{0}, \ldots, \sigma_{n-1}\right\}$ and does not extend any member of O_{n}.
Construction. We will construct Y_{e}^{*} as $Y_{e}^{*}=\bigcup_{n \in \omega} Y_{e, n}$ for uniformly computable sets $Y_{e, n}$. We set $Y_{e,-1}=\varnothing$. Suppose $n \geq 0$. If stage n is not good, we keep $Y_{e, n}=Y_{e, n-1}$.
If stage n is good, there are two cases.
Case a. S_{n} is an acceptable family. Then let $Y_{e, n}$ be the filter closure of O_{n}.
Case b. Otherwise. Then let $Y_{e, n}$ be the filter closure of $O_{n} \cup\left\{\sigma_{n}\right\}$.
We separately enumerate all sets generated from any acceptable family whose optimal covering has finite even cardinality. (*)
End of Construction.
Verification. Note that in both Case a and Case b, $Y_{e, n}$ is the filter closure of an acceptable family, so we do not enumerate any member of L_{1}. By $\left(^{*}\right)$, it therefore suffices to show that we enumerate all sets generated from an infinite family, i.e. non-clopen sets, and that each Y_{e}^{*} is some $Y_{e^{\prime}}$.

If Y_{e} is not clopen then there are infinitely many good stages. Then in the end $Y_{e}^{*}=Y_{e}$, because σ_{n} is covered either right away (case b) or at the next good stage (case b).

Corollary 3. The family of all Σ_{1}^{0} classes of measure less than one, or equivalently Π_{1}^{0} classes of positive measure, has a Friedberg numbering.

Acknowledgments

The second author was partially supported by NSF grant DMS-0652669.

Bibliography

[1] Paul Brodhead and Douglas Cenzer, Effectively closed sets and enumerations, Arch. Math. Logic 46 (2008), no. 7-8, 565-582. MR 2395559 (2009b:03119)
[2] Yuri L. Ershov, Theory of numberings, Handbook of computability theory, Stud. Logic Found. Math., vol. 140, North-Holland, Amsterdam, 1999, pp. 473-503. MR 1720731 (2000j:03060)
[3] Richard M. Friedberg, Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication, J. Symb. Logic 23 (1958), 309-316. MR 0109125 (22 \#13)
[4] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its applications, 2nd ed., Graduate Texts in Computer Science, Springer-Verlag, New York, 1997. MR 1438307 ($97 \mathrm{k}: 68086$)
[5] Martin Kummer, An easy priority-free proof of a theorem of Friedberg, Theoret. Comput. Sci. 74 (1990), no. 2, 249-251. MR 1067521 (91h:03056)
[6] André Nies, Computability and randomness, Oxford University Press, 2009.
[7] Stephen G. Simpson, An extension of the recursively enumerable Turing degrees, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 287-297. MR 2340228 (2008d:03041)

[^0]: ${ }^{1}$ To be precise, if $|\sigma|=n$ then there are universal constants \hat{c} and \tilde{c} such that, thinking of p sometimes as a string, $K\left(\sigma^{\frown} 0^{p}\right) \leq K(\sigma)+K(p)+\hat{c} \leq 2|\sigma|+2|p|+\tilde{c}=$ $2 n+2 \log p+\tilde{c} \leq n+p-c$ provided $p-2 \log p \geq n+\tilde{c}+c$, which is true for $p=p_{n, c}$ that we can find effectively.

