13a. Graph $1 - \sqrt{1-x}$.

Factor out the “−” under the radical (you can’t pull it outside of the radical) Rewrite it in the form $a\sqrt{b(x - c)} + d$.

$\sqrt{\quad}(x - \quad) + \quad$

Start with the graph (1) of \sqrt{x} and apply the shifts and reflections needed to get the graph of $1 - \sqrt{1-x}$.
Graph 1 is given. Number the other graphs, 2, 3, 4, 5. 5 being the final answer.
The graph has an x-intercept. Be careful to get the x-intercept right (it is not a fraction).

There is an example on the next page
13b. Given the graph of \(g(x) \), graph \(-1 + g(1-x)\). First rewrite it in the form \(a \sqrt{b(x-c)} + d \).

\[
-1 + g(1-x) = g(1-x) - 1 = g(-x + 1) - 1 = g(-(x-1)) - 1
\]

\[
g(x) \rightarrow g(-x) \rightarrow g(-(x-1)) \rightarrow g(-(x+1)) - 1
\]

Graph number:

1 2 3 4

Start with the graph of \(g(x) \) which is given and apply the shifts and reflections needed to get the graph of \(-1 + g(-1-x)\). Number the given graph (1) and number the other graphs, 2, 3, 4.