13. Graph \(1 - \sqrt{1-x} \).

Factor out the “−” under the radical (you can’t pull it outside of the radical) Rewrite it in the form \(a\sqrt{b(x-c)} + d \).

\[___\sqrt{___}(x - ___) + __ \]

Start with the graph (1) of \(\sqrt{x} \) and apply the shifts and reflections needed to get the graph of \(1 - \sqrt{1-x} \).

Graph 1 is given. Number the other graphs, 2, 3, 4, 5. 5 being the final answer.

The graph has an \(x \)-intercept. Be careful to get the \(x \)-intercept right (it is not a fraction).
13. Graph $1 - |2 - x|$.

Factor out the “-” under the radical. Rewrite it in the form $a|b(x - c)| + d$.

$$1 - |2 - x| = -|-x + 2| + 1 = -|- (x - 2)| + 1$$

<table>
<thead>
<tr>
<th>$a = -1$</th>
<th>$b = -1$</th>
<th>$c = 2$</th>
<th>$d = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>x</td>
<td>\rightarrow -</td>
<td>x</td>
</tr>
<tr>
<td>vert. reflection</td>
<td>hor. reflection</td>
<td>right 2</td>
<td>up 1</td>
</tr>
</tbody>
</table>

Graph number:
1 2 3 4 5