Recall. **Theorem.** \(x^2 + ax = (x + \frac{a}{2})^2 - (\frac{a}{2})^2 \)

3. \(y = 2(x + 4)^2 - 3 \). Rewrite in the completed-square form \(a(x - x_0)^2 + y_0 \). Hint, \(x_0, y_0 \) can be negative

3. \(y = 2x^2 + 8x + 3 \). Find the vertex, intercepts, graph.

Do the “horns” of the parabola point up \(\cup \) or down \(\cap \) ?

Leave the constant 3 alone. Factor the 2 out of \((2x^2 + 8x) \) then complete the square using the theorem above.

If your equation looks like \(a(x + x_0)^2 - y_0 \), rewrite it in the completed-square form \(a(x - x_0)^2 + y_0 \).

vertex =

You must use “()”. E.g., vertex=(3,4), not vertex = 3,4. 7 symbols.

x-intercept(s)? Set \(y = 0 \).

Either factor \(2x^2 + 8x + 3 \) or, if not possible, use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) or set the completed square form equal to 0. No roots if the radical is undefined.

7 or 8 symbols counting \(\pm \) as 1 symbol. chk=5 or 7 or 9.

y-intercept? Equation has 3 symbols

Draw the graph. Label the vertex with its coordinates.