9. Simplify to at most 3 or 4 symbols.
 (a) \(\log_9 \left(\frac{1}{3} \right) = \) 4 symb, chk=3

 (b) \(\log_9 (\sqrt{3}) = \) 3 symb, chk=5

Hint for (a): write the argument as a power of the base: solve \(9^x = \frac{1}{3} \).

Replace the argument of the logarithm with this power of its base: \(\log_9 \left(\frac{1}{3} \right) = \log_9 (9^x) \). Use the fact that \(\log_b b^x = x \).

Alternately, let \(y = \log_9 \left(\frac{1}{3} \right) \). Then \(9^y = \frac{1}{3} \). Write both sides to base 3. \((3^2)^y = 3^{-1} \) and solve for \(y \).

Do (b) similarly.

11. \(3^{x-1} = 2^{x+4} \). Solve for \(x \) using natural logarithms.

 Take the natural logarithm of both sides.

 Bring the exponents inside the logarithm outside. They become coefficients on the outside.

 Use \(\log x^n = n \log x \).

 Get terms involving \(x \) on the left, everything else (the constants) on the right.

 Factor out \(x \) and then divide to solve for \(x \).

 Use the following properties to simplify the answer to a ratio of two logarithms, e.g., \(\frac{\ln 40}{\ln 5/3} \).

 Log properties

 \(\log_b xy = \log_b x + \log_b y \)

 \(\log_b x/y = \log_b x - \log_b y \)

 \(\log_b x^n = n \log_b x \)