Math 140 Lecture 16
Fri. = last day to withdraw. Keller 419A secretary will sign for me.

FACTS. Know the sin, cos and tan of: 0, π/6, π/4, π/3, π/2.

\[\sin(0) = 0 \quad \cos(0) = 1 \quad \tan(0) = 0 \]
\[\sin(\pi/6) = 1/2 \quad \cos(\pi/6) = \sqrt{3}/2 \quad \tan(\pi/6) = 1/\sqrt{3} \]
\[\sin(\pi/3) = \sqrt{3}/2 \quad \cos(\pi/3) = 1/2 \quad \tan(\pi/3) = \sqrt{3} \]
\[\sin(\pi/2) = 1 \quad \cos(\pi/2) = 0 \quad \tan(\pi/2) = \text{undefined} \]

* \(\sqrt{2}/2 \) is also ok.

THEOREM. The sin and cos of \(\theta \) equals the sin and cos of its reference angle except for the sign which is determined by \(\theta \)'s quadrant.

- List three angles (in radian measure) whose cos is ½.
 \(\pi/3, \pi/2, 5\pi/3 \)

NOTATION. sin\(\theta \) means sin(\(\theta \)); sin\(^2\)\(\theta \) means (sin(\(\theta \)))\(^2\).

THEOREM. Since sin\(\theta \) and cos\(\theta \) are the legs of a right triangle of hypotenuse 1,
\[\text{sin}^2 \theta + \text{cos}^2 \theta = 1 \]

- \(\sin\theta = -2/3 \) and \(\pi < \theta < 3\pi/2 \). Find \(\cos \theta \) and tan\(\theta \).
 \((-2/3)^2 + \cos^2 \theta = 1 \)
 \(\cos\theta = \pm \sqrt{5}/3 \)
 \(\pi < \theta < 3\pi/2 \) is in quadrant III, thus \(\cos\theta < 0 \):.
 \[\cos\theta = -\sqrt{5}/3 \]
 \[\tan\theta = \sin\theta/\cos\theta = (-2/3)/(-\sqrt{5}/3) = 2/\sqrt{5} \]

- \(\sec\theta = -3 \) and \(\sin \theta < 0 \). Find tan\(\theta \). First find sin, cos.
 \(\cos\theta = -1/3 \)
 \(\sin^2 \theta + (-1/3)^2 = 1 \)
 \(\sin\theta = 1-1/9 = 8/9 \)
 \(\sin\theta = \pm \sqrt{8}/3 \). Since sin \(\theta \) < 0,
 \(\sin\theta = -\sqrt{8}/3 = -2\sqrt{2}/3 \). : \(\tan\theta = 2\sqrt{2} \).

- Simplify \(\cos(\theta + \cot\theta)(\tan \theta + \sec\theta) \)
 \(= \cos\theta \tan\theta + \cos\theta \sec\theta + \cot\theta \tan\theta + \cot\theta \sec\theta \)
 \(= \cos\theta (\sin\theta + \cos\theta) + \cos\theta (\sin\theta + \cos\theta) + \cos\theta (\sin\theta \cos\theta + \cos\theta \sin\theta) \)
 \(= \sin\theta + 1 + 1 + \sin\theta \)
 \(= \sin\theta + 2 + \csc \theta \).

Note: \(y^2 + 3y + 2 \) factors into \((y+1)(y+2)\).

- Factor: \(\csc^2 \theta + 3\csc \theta + 2 = (\csc \theta + 1)(\csc \theta + 2) \).
Note: \(x^2 - y^2 = (x+y)(x-y) \).

- Factor: \(\sin^2 B - \cos^2 B = (\sin B - \cos B)(\sin B + \cos B) \).